- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
平行四邊形教案范文匯編5篇
作為一位兢兢業(yè)業(yè)的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學(xué)能力。那么問題來了,教案應(yīng)該怎么寫?下面是小編整理的平行四邊形教案5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
平行四邊形教案 篇1
教學(xué)建議
1。重點(diǎn) 平行四邊形的判定定理
重點(diǎn)分析 平行四邊形的判定方法涉及平行四邊形元素的各方面,同時它又與平行四邊形的性質(zhì)聯(lián)系,判定一個四邊形是否為平行四邊形是利用平行四邊形性質(zhì)解決其他問題的基礎(chǔ),所以平行四邊形的判定定理是本節(jié)的重點(diǎn).
2。難點(diǎn) 靈活運(yùn)用判定定理證明平行四邊形
難點(diǎn)分析 平行四邊形的判定方法較多,綜合性較強(qiáng),能靈活的運(yùn)用判定定理證明平行四邊形,是本節(jié)的難點(diǎn).
3。關(guān)于平行四邊形判定的教法建議
本節(jié)研究平行四邊形的判定方法,重點(diǎn)是四個判定定理,這也是本章的重點(diǎn)之一.
1.教科書首先指出,用定義可以判定平行四邊形.然后從平行四邊形的性質(zhì)定理的逆命題出發(fā),來探索平行四邊形的判定定理.因此在開始的教學(xué)引入中,要充分調(diào)動學(xué)生的情感因素,盡可能利用形式多樣的多媒體課件,激發(fā)學(xué)生興趣,使學(xué)生能很快參與進(jìn)來.
2.素質(zhì)教育的主旨是發(fā)揮學(xué)生的主體因素,讓學(xué)生自主獲取知識.本章重點(diǎn)中前三個判定定理的順序與它的性質(zhì)定理相對應(yīng),因此在講授新課時,建議采用實(shí)驗(yàn)式教學(xué)模式或探索式教學(xué)模式:在證明每個判定定理時,由學(xué)生自己去判斷命題成立與否,并根據(jù)過去所學(xué)知識去驗(yàn)證自己的結(jié)論,比較各種方法的優(yōu)劣,這樣使每個學(xué)生都積極參與到教學(xué)中,自己去實(shí)驗(yàn),去探索,去思考,去發(fā)現(xiàn),在動手動腦中得到的結(jié)論會更深刻――同時也要注意保護(hù)學(xué)生的參與積極性.
3.平行四邊形的判定方法較多,綜合性較強(qiáng),能靈活的運(yùn)用判定定理證明平行四邊形,是本節(jié)的難點(diǎn).因此在例題講解時,建議采用啟發(fā)式教學(xué)模式,根據(jù)題目中具體條件結(jié)合圖形引導(dǎo)學(xué)生根據(jù)分析法解題程序從條件或結(jié)論出發(fā),由學(xué)生自己去思考,去分析,充分發(fā)揮學(xué)生的主體作用,對學(xué)生靈活掌握熟練應(yīng)用各種判定定理會有幫助.
教學(xué)設(shè)計(jì)示例1
[教學(xué)目標(biāo)]
通過本節(jié)課教學(xué),使學(xué)生訓(xùn)練掌握平行四邊形的各條判定定理,并能靈活地運(yùn)用平行四邊形的性質(zhì)定理和判定定理及以前學(xué)過的'知識進(jìn)行有關(guān)證明,培養(yǎng)學(xué)生的邏輯思維能力,數(shù)學(xué)教案-平行四邊形的判定。
[教學(xué)過程]
一、準(zhǔn)備題系列
1。復(fù)習(xí)舊知識:前面我們學(xué)習(xí)了平行四邊形的性質(zhì),哪位同學(xué)能敘述一下。(答對者記分,答錯的另點(diǎn)同學(xué)補(bǔ)充)
2。小實(shí)驗(yàn):有一塊平行四喧形的玻璃片,假如不小心碰碎了解部分(如圖所示),同學(xué)們想想看,有沒有辦法把原來的平行四邊形重新畫出來?
(讓學(xué)生思考討論,再各自畫圖,畫好后互相交流畫法,教師巡回檢查,初中數(shù)學(xué)教案《數(shù)學(xué)教案-平行四邊形的判定》。對個別差生稍加點(diǎn)撥,最后請學(xué)生回答畫圖方法) 學(xué)生可能想到的畫法有:⑴ 分別過A、C作DC、DA的平行線,兩平行線相交于B; ⑵過C作DA的平行線,再在這平行線上截取CB=DA,連結(jié)BA;⑶ 分別以A、C為圓心,以DC、DA的長為半徑畫弧,兩弧相交于B,連結(jié)AB、CB。
還有一種一法,學(xué)生不易想到,即由平行四邊形對角線的特性,引導(dǎo)學(xué)生得出 連結(jié)AC,取AC的中點(diǎn)O,再連結(jié)DO,并延長DO至B,使BO=DO,連結(jié)AB、CD。
二、引入新課
上面作出的四邊形是否都是平行四邊形呢?請同學(xué)們猜一猜。生答后師指出這就是今天所要不得 研究的問題“平行四邊形的判定”(板書課題)。
三、嘗試議練
1。要判定我們剛才畫出的四邊形是不是平行四邊形,應(yīng)當(dāng)加以證明。第一種畫法,由平行四邊形的定義可知,它是平行四邊形(定義可作性質(zhì)也可作判定)。
2,F(xiàn)在我們來看看第二種畫法,這就是平行四邊形判定定理一(翻開課本看它的文字?jǐn)⑹觯。請想想,一組對邊平行且相等的四邊形究竟是不是平行四邊形呢?這里已知是什么?求證是什么?請寫出。
自學(xué)課本上的證明過程,看后提問:這個證明題不作輔助線行不行?為什么?(因?yàn)橐C平行線,一般要證兩角相等,或互補(bǔ),要證兩角相等,一般要證全等三角形,而這里沒有三角形,要連一對角線才有三角形)
3。再看第三種畫法,在兩組對邊分別相等的情況下是不是平行四邊形?教師寫出已知、求證,請兩位學(xué)生上臺證明,其余在課堂練習(xí)本上做。(注意考慮要不要添輔助線)
完成證明后提問哪些學(xué)生是用判定定理一落千丈證明的?哪些是用定義證明的?(解題后思考)
四、變式練習(xí)
1。再看看第四種畫法,可知,已各條件是四邊形的對角線互相一平分,這種情況下它是不平行四邊形?
閱讀課本上的判定定理之后,要求學(xué)生思考用什么方法求證最簡便?(應(yīng)該用判定定理一) 2。變式題
⑴兩組對角分別相等的四邊形是不是平行四邊形?為什么?(練習(xí)第1題)(口述證明,不要示書面證明)(問要不要添輔助線?)
、埔唤M對邊平行,一組對角相等的四邊形是不是平行四邊形?(教師補(bǔ)充)
⑶一組對邊相等,一組對家相等及一組對邊相等,另一組對邊相等的四邊形是不是平行四邊形?(引導(dǎo)學(xué)生在草稿紙上畫圖思考,然后回答不是平行四邊形。因?yàn)檫吔遣荒茏C全等三角形)
、茸詫W(xué)課本例1思考:此例證明中,什么地方用了平行四邊形的“性質(zhì)”?什么地方用“判定”定理?
觀察下圖:
平行四邊形ABCD中,<A、<C的平行線分別交對邊于E和F,求證:AE=FC(怎樣證最簡便?)
五、課堂小結(jié)
1。今天這節(jié)課我們學(xué)了什么?平行四這形的判定有哪些方法?試列舉之。
2。這些平行四邊形的判定方法中最基本的是哪一條?
3。平行四邊形的判定定理和性質(zhì)有什么關(guān)系?同一個證明題中應(yīng)注意什么地方用判定,什么地方性質(zhì)?
平行四邊形教案 篇2
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
平行四邊形對角線的性質(zhì).
2.內(nèi)容解析
這節(jié)課承接了上一節(jié)平行四邊形的性質(zhì):對邊相等,對角相等,本節(jié)繼續(xù)研究對角線互相平分的性質(zhì),課本先設(shè)置一個探究欄目,讓學(xué)生發(fā)現(xiàn)結(jié)論,形成猜想,然后利用三角形全等證明這個結(jié)論,對角線互相平分是平行四邊形的重要性質(zhì),在九年級上冊“旋轉(zhuǎn)”一章,通過旋轉(zhuǎn)平行四邊形,得到平行四邊形是中心對稱圖形和對角線互相平分,學(xué)生會有進(jìn)一步體會.平行四邊形是最基本的幾何圖形,它在生活中有著十分廣泛的應(yīng)用.這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包括其性質(zhì)在生產(chǎn)、生活各領(lǐng)域的實(shí)際應(yīng)用.是中心對稱圖形的具體化,是以后學(xué)習(xí)平行四邊形判定的重要依據(jù).
教科書例2是的平行四邊形對角線的性質(zhì)的直接運(yùn)用,而且涉及勾股定理以及平行四邊形面積的計(jì)算.
基于以上分析,本節(jié)課的教學(xué)重點(diǎn)是:平行四邊形對角線性質(zhì)的探究與應(yīng)用.
二、目標(biāo)和目標(biāo)解析
1.目標(biāo)
(1)探究并掌握平行四邊形對角線互相平分的性質(zhì).
(2)能綜合運(yùn)用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計(jì)算問題,和簡單的證明題.
2.目標(biāo)解析
達(dá)成目標(biāo)(1)的標(biāo)志是:能發(fā)現(xiàn)平行四邊形對角線互相平分這一結(jié)論并形成猜想,會利用三角形全等證明猜想.
達(dá)成目標(biāo)(2)的標(biāo)志是:能發(fā)現(xiàn)平行四邊形的邊、角、對角線等基本要素間的關(guān)系,會運(yùn)用等量代換等進(jìn)行線段長、圖形面積等的計(jì)算,掌握簡單的邏輯論證.
三、教學(xué)問題診斷分析
本節(jié)課在已學(xué)習(xí)了三角形全等證明,平行四邊形定義,平行四邊形邊、角的性質(zhì)的基礎(chǔ)上,在積累了一定的`經(jīng)驗(yàn)的情況下學(xué)習(xí)本節(jié)課內(nèi)容.例2是既是鞏固平行四邊形對角線互相平分的性質(zhì),又復(fù)習(xí)了勾股定理以及平行四邊形面積的計(jì)算.這些問題常常需要運(yùn)用勾股定理求平行四邊形的高或底.這些問題比較綜合,需要靈活運(yùn)用所學(xué)的有關(guān)知識加以解決.
基于以上分析,本節(jié)課的教學(xué)難點(diǎn)是:綜合運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算.
四、教學(xué)過程設(shè)計(jì)
引言:前面我們研究了平行四邊形的邊、角這兩個基本要素的性質(zhì),下面我們研究平行四邊形對角線的性質(zhì).
1. 引入要素 探究性質(zhì)
問題1 我們研究平行四邊形邊、角這兩個要素的性質(zhì)時,經(jīng)歷了怎樣的過程?
師生活動:學(xué)生回顧我們研究平行四邊形邊、角這兩個要素的性質(zhì)時經(jīng)歷的過程,并請學(xué)生代表回答.
設(shè)計(jì)意圖:回顧研究研究平行四邊形邊、角這兩個要素的性質(zhì)時經(jīng)歷的過程,總結(jié)研究平行四邊形的性質(zhì)的一般活動過程(即觀察、度量、猜想、證明等),積累研究圖形的活動經(jīng)驗(yàn),為本節(jié)課研究對角線要素作準(zhǔn)備.
問題2如圖,在ABCD中,連接AC,BD,并設(shè)它們相交于點(diǎn)O,OA與OC,OB與OD有什么關(guān)系?你能證明發(fā)現(xiàn)的結(jié)論嗎?
師生活動:啟發(fā)學(xué)生去發(fā)現(xiàn)并猜想:平行四邊形的對角線互相平分.
你能證明上述猜想嗎?
教師操作投影儀,提出下面問題:
圖中有哪些三角形全等?哪些線段是相等的?請同學(xué)們用多種方法加以驗(yàn)證.
學(xué)生合作學(xué)習(xí),交流自己的思路,并討論不同的驗(yàn)證思路.
教師點(diǎn)撥:圖中有四對三角形全等,分別是:△AOB≌△COD,△AOD≌△COB,
△ABD≌△BCD,△ADC≌△CBA.有如下線段相等:OA=OC,OB=OD,AD=BC,AB=DC證明中應(yīng)用到“AAS”,“ASA”證明.
師生歸納整理:
定理:平行四邊形的對角線互相平分.
我們證明了平行四邊形具有以下性質(zhì):
(1)平行四邊形的對邊相等;
(2)平行四邊形的對角相等;
(3)平行四邊形的對角線互相平分.
設(shè)計(jì)意圖:應(yīng)用三角形全等的知識,猜想并驗(yàn)證所要學(xué)習(xí)的內(nèi)容.
2.例題解析 應(yīng)用所學(xué)
問題3如圖,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的長以及ABCD的面積.
師生活動:教師分析解題思路, 可以利用平行四邊形對邊相等求出BC=AD=8,CD=AB=10,在求AC長度時,因?yàn)椤螦CB=90°,可以在Rt△ACB中應(yīng)用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面積是48,學(xué)生板演解題過程.
變式追問:在上題中,直線EF過點(diǎn)O,且與AB,CD分別相交于點(diǎn)E,F(xiàn).求證:OE=OF.圖中還在哪些相等的量?
設(shè)計(jì)意圖:對于幾何計(jì)算或證明,分析思路和方法是根本,本題既鞏固平行四邊形對角線互相平分的性質(zhì),又復(fù)習(xí)勾股定理和平行四邊形面積計(jì)算的知識,通過本例,讓學(xué)生學(xué)會如何分析,滲透“綜合分析法”. 讓學(xué)生理解平行四邊形對角線互相平分的性質(zhì)的應(yīng)用價值.
3.課堂練習(xí),鞏固深化
(1)ABCD的周長為60cm,對角線交于O,△AOB的周長比△BOC的周長大8cm,則AB、BC的長分別是_________.
(2)如圖,在ABCD中,BC=10,AC=8,BD=14,△AOD的周長是多少?△ABC與△DBC的周長哪個長?長多少?
設(shè)計(jì)意圖:通過練習(xí),深化理解平行四邊形的性質(zhì),提高選擇運(yùn)用平行四邊形定義、性質(zhì)解決問題的能力.
4.反思與小結(jié)
(1)我們學(xué)習(xí)了平行四邊形的哪些性質(zhì)?
(2)結(jié)合本節(jié)的學(xué)習(xí),談?wù)勓芯科叫兴倪呅涡再|(zhì)的思想方法.
(3)根據(jù)研究幾何圖形的基本套路,你認(rèn)為我們還將研究平行四邊形的什么問題?
5.布置作業(yè)
教科書P49頁習(xí)題18.1 第3題;
教科書第51頁第14題.
平行四邊形教案 篇3
【學(xué)習(xí)目標(biāo)】
1.能運(yùn)用勾股定理解決生活中與直角三角形有關(guān)的問題;
2.能從實(shí)際問題中建立數(shù)學(xué)模型,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,同時滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想。
3.進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會數(shù)學(xué)的應(yīng)用價值
【學(xué)習(xí)重、難點(diǎn)】
重點(diǎn):勾股定理的應(yīng)用
難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題
【新知預(yù)習(xí)】
1.如圖,單杠AC的高度為5m,若鋼索的底端B與單杠底端C的距離為12m,求鋼索AB的長.
【導(dǎo)學(xué)過程】
一、情境創(chuàng)設(shè)
欣賞生活中含有直角三角形的圖片,如果知道斜拉橋上的索塔AB的高,如何計(jì)算各條拉索的長?
二、探索活動
活動一 如圖,起重機(jī)吊運(yùn)物體,已知BC=6m,AC=10m,求AB的長.
活動二 在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請問這個水池的深度和這根蘆葦?shù)拈L度各為多少?
活動三 一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如圖所示的某工廠,問這輛卡車能否通過該工廠的廠門?
三、例題講解:
1.《中華人民共和國道路交通安全法》規(guī)定:小汽車在城市道路上行駛速度不得超過70km/h,如圖一輛小汽車在一條城市中的直道上行駛,某一時刻剛好行駛到路對面車速檢測儀的正前方30m處,過了2s后,測得小汽車與車速檢測儀間的距離為50m,這輛小汽車超速了嗎?
2.一種盛飲料的圓柱形杯(如圖),測得內(nèi)部地面半徑為2.5cm,高為12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,問吸管需要多長?
【反饋練習(xí)】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,則AB=______;若AB=4,BC=2,則AC=_____;
(2)一個直角三角形的模具,量得其中兩邊的長分別為5cm,3cm,則第三邊的長是______;
(3)甲乙兩人同時從同一地出發(fā),甲往東走4km,乙往南走6km,這時甲乙兩人相距____km.
2.如圖,圓柱高為8cm,地面半徑為2cm ,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.無法確定
3.如圖,筆直的公路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個土特產(chǎn)品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應(yīng)建在離A點(diǎn)多遠(yuǎn)處?
【課后作業(yè)】P67 習(xí)題2.7 1、4題
八年級數(shù)學(xué)競賽輔導(dǎo)教案:由中點(diǎn)想到什么
第十八講 由中點(diǎn)想到什么
線段的中點(diǎn)是幾何圖形中一個特殊的點(diǎn),它關(guān)聯(lián)著三角形中線、直角三角形斜邊中線、中心對稱圖形、三角形中位線、梯形中位線等豐富的知識,恰當(dāng)?shù)乩弥悬c(diǎn),處理中點(diǎn)是解與中點(diǎn)有關(guān)問題的關(guān)鍵,由中點(diǎn)想到什么?常見的聯(lián)想路徑是:
1.中線倍長;
2.作直角三角形斜邊中線;
3.構(gòu)造中位線;
4.構(gòu)造中心對稱全等三角形等.
熟悉以下基本圖形,基本結(jié)論:
例題求解
【例1】 如圖,在△ABC中,∠B=2∠C,AD⊥BC于D,M為BC的中點(diǎn), AB=10cm,則MD的長為 .
(“希望杯”邀請賽試題)
思路點(diǎn)撥 取AB中點(diǎn)N,為直角三角形斜邊中線定理、三角形中位線定理的運(yùn)用創(chuàng)造條件.
注 證明線段倍分關(guān)系是幾何問題中一種常見題型,利用中點(diǎn)是一個有效途徑,基本方法有:
(1)利用直角三角斜邊中線定理;
(2)運(yùn)用中位線定理;
(3)倍長(或折半)法.
【例2】 如圖,在四邊形ABCD中,一組對邊AB=CD,另一組對邊AD≠BC,分別取AD、BC的中點(diǎn)M、N,連結(jié)MN.則AB與MN的關(guān)系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中數(shù)學(xué)創(chuàng)新與知識應(yīng)用競賽試題) 思路點(diǎn)撥 中點(diǎn)M、N不能直接運(yùn)用,需增設(shè)中點(diǎn),常見的方法是作對角線的中點(diǎn). 【例3】如圖,在△ABC中,AB=AC,延長AB到D,使BD=AB,E為AB中點(diǎn),連結(jié)CE、CD,求證:C D=2EC. (浙江省寧波市中考題) 思路點(diǎn)撥 聯(lián)想到與中位線相關(guān)的豐富知識,將線段倍分關(guān)系的證明轉(zhuǎn)化為線段相等關(guān)系的證明,解題的關(guān)鍵是恰當(dāng)添輔助線. 【例4】 已知:如圖l,BD、CE分別是△ABC的外角平分線,過點(diǎn)A作AF⊥BD,AG ⊥ CE,垂足分別為F、G,連結(jié)FG,延長AF、AG,與直線BC相交,易證FG= (AB+BC+AC). 若(1)BD、CF分別是△ABC的內(nèi)角平分線(如圖2); (2)BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線(如圖3),則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并對其中的一種情況給予證明. (20xx年黑龍江省中考題) 思路點(diǎn)撥 圖1中FG與△ABC三邊的數(shù)量關(guān)系的求法(關(guān)鍵是作輔助線),對尋求后兩個圖形中線段FG與△ABC三邊的數(shù)量關(guān)系起著重要作用,而由平分線、垂線發(fā)現(xiàn)中點(diǎn),這是解題的基礎(chǔ). 注 三角形與梯形的中位線.在位置上涉及到平行,在數(shù)量上是上下底和的一半,它起著傳遞角的位置關(guān)系和線段長度的功能,在證明線段倍分關(guān)系、兩直線位置關(guān)系、線段長度的計(jì)算等方面有著廣泛的應(yīng)用. 【例5】 如圖,任意五邊形ABCDE,M、N、P、Q分別為AB、CD、BC、DE的中點(diǎn),K、L分別為MN、PQ的中點(diǎn),求證:KL∥AE且KL= AE. (20xx年天津賽區(qū)試題) 思路點(diǎn)撥 通過連線,將多邊形分割成三角形、四邊形,為多個中點(diǎn)的 利用創(chuàng)造條件,這是解本例的突破口. 注 需要什么,構(gòu)造什么,構(gòu)造基本圖形、構(gòu)造線段的和差(倍分)關(guān)系、構(gòu)造角的關(guān)系等,這是作輔助線的有效思考方法之一. 學(xué)歷訓(xùn)練 1.BD、CE是△ABC的中線,G、H分別是BE、CD的中點(diǎn),BC=8,則GH= . (20xx年廣西中考題) 2.如圖,△ABC中、BC=a,若D1、E1;分別是AB、AC的中點(diǎn),則 ;若 D2、E2分別是D1B、E1C的中點(diǎn),則 :若 D3、E3分別是D2B、E2C的.中點(diǎn).則 ……若Dn、En分別是Dn-1B、En-1C的中點(diǎn),則DnEn= (n≥1且 n為整數(shù)). (200l年山東省濟(jì)南市中考題) 3.如圖,△ABC邊長分別為AD=14,BC=l6,AC=26,P為∠A的平分線AD上一點(diǎn),且BP⊥AD,M為BC的中點(diǎn),則PM的值是 . 4.如圖, 梯形ABCD中,AD∥BC,對角線AC⊥BD,AC=5cm,BD=12cm,則該梯形的中位線的長等于 cm. (20xx年天津市中考題) 5.如圖,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,則EF+GH=( ) A.40 B.48 C 50 D.56 6.如圖,在梯形ABCD中,AD∥BC,E、F分別是對角線BD、AC的中點(diǎn),若AD=6cm,BC=18?,則EF的長為( ) A.8cm D.7cm C. 6cm D.5cm 7.如圖,矩形紙片ABCD沿DF折疊后,點(diǎn)C落在AB上的E點(diǎn),DE、DF三等分∠ADC,AB的長為6,則梯形ABCD的中位線長為( ) A.不能確定 B.2 C. D. +1 (20xx年浙江省寧波市中考題) 8.已知四邊形ABCD和對角線AC、BD,順次連結(jié)各邊中點(diǎn)得四邊形MNPQ,給出以下6個命題: ①若所得四邊形MNPQ為矩形,則原四邊形ABCD為菱形; 、谌羲盟倪呅蜯NPQ為菱形,則原四邊形ABCD為矩形; 、廴羲盟倪呅蜯NPQ為矩形,則AC⊥BD; 、苋羲盟倪呅蜯NPQ為菱形,則AC=BD; 、萑羲盟倪呅蜯NPQ為矩形,則∠BAD=90°; ⑥若所得四邊形MNPQ為菱形,則AB=AD. 以上命題中,正確的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江蘇省蘇州市中考題) 9.如圖,已知△ABC中,AD是 高,CE是中線,DC=BE,DG⊥CE,G為垂足.求證:(1)G 是CE的 中點(diǎn);(2)∠B=2∠BCE. (20xx年上海市中考題) 10.如圖,已知在正方形ABCD中,E為DC上一點(diǎn),連結(jié)BE,作CF⊥BE于P,交AD于F點(diǎn),若恰好使得AP=AB,求證:E是DC的中點(diǎn). 11.如圖,在梯形ABCD中,AB∥CD,以AC、AD為邊作平行四邊形ACED,DC的延長線交BE于F. (1)求證:EF=FB; (2)S△BCE能否為S梯形ABCD的 ?若不能,說明理由;若能,求出AB與CD的關(guān)系. 12.如圖,已知AG⊥BD,AF⊥CE,BD、CF分別是∠ABC和∠ACB的角平分線,若BF=2,ED=3,GC=4,則△ABC的周長為 . (20xx年四川省競賽題) 13.四邊形ADCD的對角線AC、BD相交于點(diǎn)F,M、N分別為AB、CD中點(diǎn),MN分別交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,則AC= . (重慶市競賽題) 1 4.四邊形ABCD中,AD>BC,C、F分別是AB、CD的中點(diǎn),AD、BC的延長線分別與EF的延長線交于H、G,則∠AHE ∠BGE(填“>”或“=”或“<”號) 15.如圖,在△ABC中,DC=4,BC邊上的中線AD=2,AB+AC=3+ ,則S△ABC等于( ) A. B. C. D. 16.如圖,正方形ABCD中,AB=8,Q是CD的中點(diǎn),設(shè)∠DAQ=α,在CD上取一點(diǎn)P,使∠BAP=2α,則CP的長是( ) A.1 D.2 C.3 D. 17.如圖,已知A為DE的中點(diǎn),設(shè)△DBC、△ABC、△EBC的面積分別為S1,S2,S3,則S1、S2、S3之間的關(guān)系式是( ) A. B. C. D. 18.如圖,已知在△ABC中,D為AB的中點(diǎn),分別延長CA、CB到E、F,使DE=DF,過E、F分別作CA、 CB的垂線,相交于點(diǎn)P.求證:∠PAE=∠PBF. (20xx年全國初中數(shù)學(xué)聯(lián)賽試題) 19.如圖,梯形ABCD中,AD∥BC,AC⊥BD于O,試判斷AB+CD與AD+BC的大小,并證明你的結(jié)論. (山東省競賽題) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連結(jié)DE,設(shè)M為D正的中點(diǎn). (1)求證:MB=MC; (2)設(shè)∠BAD=∠CAE,固定△ABD, 讓Rt△ACE繞頂點(diǎn)A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問:MB;MC是否還能成立?并證明其結(jié)論. (江蘇省競賽題) 21.如圖甲,平行四邊形ABCD外有一條直線MN,過A、B、C、D4個頂點(diǎn)分別作MN的垂線AA1、BB1、CCl、DDl,垂足分別為Al、B1、Cl、D1. (1)求證AA1+ CCl = BB1 +DDl; (2)如圖乙,直線MN向上移動,使點(diǎn)A與點(diǎn)B、C、D位于直線MN兩側(cè),這時過A、B、C、D向直線MN引垂線,垂足分別為Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之間存在什么關(guān)系? 教學(xué)內(nèi)容:國標(biāo)蘇教版數(shù)學(xué)第八冊P43-45。 教學(xué)目標(biāo): 1、學(xué)生在聯(lián)系生活實(shí)際和動手操作的過程中認(rèn)識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,認(rèn)識平行四邊形的高。 2、學(xué)生在活動中進(jìn)一步積累認(rèn)識圖形的學(xué)習(xí)經(jīng)驗(yàn),學(xué)會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能測量或畫出平行四邊形的高。 3、學(xué)生感受圖形與生活的聯(lián)系,感受平面圖形的學(xué)習(xí)價值,進(jìn)一步發(fā)展對“空間與圖形”的學(xué)習(xí)興趣。 教學(xué)重點(diǎn):進(jìn)一步認(rèn)識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,會畫高。 教學(xué)難點(diǎn):引導(dǎo)學(xué)生發(fā)現(xiàn)平行四邊形的特征。 教學(xué)準(zhǔn)備:配套多媒體課件。 教學(xué)過程: 一、生活導(dǎo)入。 1、(課件出示學(xué)校大門關(guān)閉和打開的錄象,最后定格成放大的圖片)教師談話:同學(xué)們每天都要經(jīng)過校門進(jìn)入校園,但是你們注意觀察我們的校門了嗎?從圖片中你們能找到一些平面圖形嗎?根據(jù)回答,教師板書:平行四邊形。 2、你們還能找出我們生活中見過的一些平行四邊形嗎?學(xué)生回答后,教師課件出示一些生活中的平行四邊形:如活動衣架、風(fēng)箏、樓梯欄桿等。 3、今天這節(jié)課我們一起來進(jìn)一步研究平行四邊形,相信通過研究,我們將有新的收獲。板書完整課題:認(rèn)識平行四邊形。 [評:《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的!边x擇學(xué)生熟悉和感興趣的素材,吸引學(xué)生的注意力,激發(fā)學(xué)生主動參與學(xué)習(xí)活動的熱情,讓學(xué)生初步感知平行四邊形。] 二、探究特點(diǎn)。 1、剛才同學(xué)們已經(jīng)能找出生活中的一些平行四邊形了,那我們能不能利用身邊的一些物品,自己來想辦法來制作一個平行四邊形呢?你們可以先看一看材料袋中有哪些材料,再獨(dú)立思考一下準(zhǔn)備怎么做;如果有困難的可以先看看學(xué)具袋中的平行四邊形再操作。 2、大家已經(jīng)完成了自己的創(chuàng)作,現(xiàn)在請你們和小組的同學(xué)交流一下,說說自己的做法和為什么這樣做,然后派代表上來交流。 學(xué)生小組交流,教師巡視,并進(jìn)行一定的輔導(dǎo)。 3、哪個小組派代表上來交流?注意把你的方法展示在投影儀上,然后說說這么做的理由,其他小組等他們說完后可以進(jìn)行補(bǔ)充。 (1)方法一:用小棒擺。請你說說你為什么這么做?要注意些什么呢? (2)方法二:在釘子板上面圍一個平行四邊形。你介紹一下,在圍的時候要注意些什么?怎樣才能做一個平行四邊形? (3)方法三:在方格紙上畫一個平行四邊形。你能提醒一下大家嗎?應(yīng)該怎樣才能得到一個平行四邊形? (4)用直尺畫一個平行四邊形。 …… (評:這個個環(huán)節(jié)的設(shè)計(jì),本著學(xué)生為主體的思想,敢于放手,讓學(xué)生的多種感官參與學(xué)習(xí)活動,讓學(xué)生在操作中體驗(yàn)平行四邊形的一些特點(diǎn);既實(shí)現(xiàn)了探究過程開放性,也突出了師生之間、學(xué)生之間的多向交流,體現(xiàn)那了學(xué)生為本的理念。) 4、剛才我們已經(jīng)能用多種方法來制作平行四邊形,現(xiàn)在請大家在方格紙上獨(dú)立在方格紙上畫一個平行四邊形,想想應(yīng)該怎么畫?注意些什么? (評:本環(huán)節(jié)的設(shè)計(jì),通過在方格紙上畫,讓學(xué)生再次感知平行四邊形的一些特點(diǎn),為下面的猜想、驗(yàn)證和畫高作了鋪墊。) 5、我們已經(jīng)能夠用不同的方法制作平行四邊形,并且能夠在方格紙上話一個平行四邊形。那么這些大小不同的平行四邊形到底有什么共同特點(diǎn)呢?下面我們一起來研究。 根據(jù)你們在制作平行四邊形的時候的體會,你們可以猜想一下:平行四邊形有哪些特點(diǎn)?(友情提示:課件中出示提示:我們可以從平行四邊形的那些方面來猜想它的特征呢?邊?角?) 6、學(xué)生小組討論后提問并板書猜想: 對邊可能平行; 對邊可能相等; 對角相等; …… 7、你們真行,有了這么多的猜想,那我們能夠自己想辦法來證明這些猜想是否正確呢?請每個小組先認(rèn)領(lǐng)一條,時間有多余可以再研究其他的猜想。 學(xué)生每小組上臺認(rèn)領(lǐng)一條猜想,學(xué)生分組驗(yàn)證猜想。 8、經(jīng)過同學(xué)們的努力,我們已經(jīng)自己驗(yàn)證了其中一條猜想,現(xiàn)在我們舊來交流一下,其他小組認(rèn)真聽好,他們的回答是否正確,你覺得怎樣? 9、小組派代表上來交流自己小組的驗(yàn)證方法,其他小組在其完成后進(jìn)行評價。 (1) 兩組對邊分別相等:學(xué)生介紹可以用對折或用直尺量的方法來驗(yàn)證對邊相等后,教師用課件直觀展示。 (2) 兩組對邊分別平行:學(xué)生匯報的時候如果不一定很完整,教師用課件展示:兩條對邊分別延伸,然后顯示不相交。 (3) 對角相等:學(xué)生說出方法后,教師讓學(xué)生再自己量一量。 …… 最后,教師板書出經(jīng)過驗(yàn)證特點(diǎn): 兩組對邊分別平行并且相等; 對角相等; 內(nèi)角和是360° (評:這個環(huán)節(jié)的設(shè)計(jì)蘊(yùn)涵了“猜想-驗(yàn)證-結(jié)論”這樣一個科學(xué)的探究方法。給學(xué)生提供了充分的自制探索的空間,引導(dǎo)學(xué)生先猜測特點(diǎn),再放手讓學(xué)生自己去驗(yàn)證和交流,使學(xué)生在碰撞和交流中最后的出結(jié)論。在這個過程中,學(xué)生充分展示了自己的思維過程,在交流中與傾聽中把自己的方法與別人的想法進(jìn)行了比較。) 10、完成“想想做做1”。學(xué)生獨(dú)立完成后說說理由。 三、認(rèn)識高、底。 1、出示一張平行四邊形的圖,介紹:這是一個平行四邊形,你能量出平行四邊形兩條紅線間的`距離嗎?應(yīng)該怎么量?把你量的線段畫出來。 學(xué)生自己嘗試后交流。 2、老師剛才發(fā)現(xiàn),大家畫的高位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數(shù)條。) 說明:從平行四邊形一條邊上的一點(diǎn)到它對邊的垂直線段是平行四邊形的高,這條對邊是平行四邊形的底。 3、你能畫出另一組對邊上的高,并量一量嗎?學(xué)生繼續(xù)嘗試。 完成后,讓學(xué)生指一指:兩次畫的高分別垂直于哪一組對邊。板書:高和一組對邊對應(yīng)。 4、完成“試一試”:(1)先指一指高垂直于哪條邊;(2)量出每個平行四邊形的底和高各是多少厘米。 5、想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高,注意畫上直角標(biāo)記。如果有錯誤,讓學(xué)生說說錯在哪里。 (這個環(huán)節(jié)的設(shè)計(jì),通過學(xué)生自己去量、去畫,從而很方便得到了平行四邊形的高和底的概念,在的出高和底對應(yīng)的時候比較巧妙,學(xué)生學(xué)得輕松、明了。設(shè)計(jì)的練習(xí)也遵循循序漸進(jìn)的原則,很好地讓學(xué)生領(lǐng)悟了高的知識。) 四、練習(xí)提高。 1、想想做做1,哪些圖形是平行四邊形,為什么。 2、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個平行四邊形,在小組里交流是怎樣拼的。 3、想想做做3,用七巧板中的3塊拼成一個平行四邊形。 出示,你能移動其中的一塊將它改拼成長方形嗎? 4、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的長方形桌面,該從哪里鋸開呢?找一張平行四邊形紙?jiān)囈辉嚒?/p> 5、想想做做6,用飲料管作成一個長方形,再拉成平行四邊形,比一比長方形和平行四邊形的相同點(diǎn)和不同點(diǎn)。 (評:在鞏固練習(xí)中,注意通過學(xué)生動手、動腦來進(jìn)一步掌握平行四邊形的特點(diǎn)。來年系的層次清楚、逐步提高,學(xué)生容易接受,并且注意了引導(dǎo)學(xué)生去自主探索、合作交流。) 五、閱讀調(diào)查 自主閱讀“你知道嗎?”,說說有什么收獲,再到生活中去找找類似的例子。 六、全課小結(jié) 今天我們重點(diǎn)研究了哪種平面圖形?它有什么特點(diǎn)?回想一下,我們通過哪些活動進(jìn)行研究? 教學(xué)目標(biāo) 教學(xué)目標(biāo): 知識目標(biāo):通過操作活動,經(jīng)歷推導(dǎo)四邊形面積計(jì)算公式的過程;能運(yùn)用公式計(jì)算相關(guān)圖形的面積,并解決一些實(shí)際問題。 能力目標(biāo):通過實(shí)際操作發(fā)展學(xué)生的觀察、操作、推理、交流能力;培養(yǎng)運(yùn)用轉(zhuǎn)化的方法解決實(shí)際問題的能力。 情感目標(biāo):培養(yǎng)學(xué)生勇于探索、克服困難的精神;感受數(shù)學(xué)的美。 教學(xué)重點(diǎn)和難點(diǎn) 教學(xué)重、難點(diǎn): 理解平行四邊形面積公式的推導(dǎo)過程,掌握平行四邊形面積的計(jì)算公式。 培養(yǎng)學(xué)生運(yùn)用公式解決實(shí)際問題的能力。 教學(xué)過程 (一)創(chuàng)設(shè)情境,設(shè)疑引入 談話:出示兩個美麗的花壇(課件呈現(xiàn))。 提問:請大家觀察一下,這兩個花壇哪一個大呢 然后給出長方形的長和寬讓學(xué)生計(jì)算長方形的`面積。 提問:那平行四邊形的面積你會算嗎?從而導(dǎo)入新課。 。ǘ┎僮魈剿,獲取新知 數(shù)方格感知平行四邊形和長方形之間的關(guān)系 。1)數(shù)方格,用數(shù)方格的方法來求平行四邊形和長方形的面積,(電腦出示) 。2)匯報交流自己的發(fā)現(xiàn)。 小結(jié):用數(shù)方格的方法不能滿足我們的實(shí)際需要,如果我們能像長方形那樣有一個計(jì)算平行四邊形面積的公式就容易解決了。 2、應(yīng)用“轉(zhuǎn)化”思想,引入割補(bǔ)、平移法 。1)小組合作探究:想辦法充分利用手中的學(xué)具把平行四邊形轉(zhuǎn)化成會學(xué)算面積的圖形。(這時教師巡視,了解情況) 。2)精彩展示:要求邊講邊操作。 提問:為什么都要轉(zhuǎn)化成長方形? 為什么一定要沿著高剪開呢? 接著電腦演示其它方法,滲透割補(bǔ)、平移法 3、建立聯(lián)系,推導(dǎo)公式 。1)小組合作探索: a、原來的平行四邊形轉(zhuǎn)化成長方形后,什么變了?什么沒變? b、拼成長方形的長與原來平行四邊形的底有什么關(guān)系? c、拼成長方形的寬與原來平行四邊形的高有什么關(guān)系? d、能否根據(jù)長方形的面積公式推導(dǎo)出平行四邊形的面積計(jì)算公式?(平行四邊形的面積= ) 。2)交流平行四邊形和長方形之間的聯(lián)系:平行四邊形的面積=長方形的面積;長=底;寬=高;平行四邊形的面積(公式)=底×高(板書) 提問:用字母怎么表示呢?自學(xué)課本。 學(xué)生回答s=ah(板書) 提問:s、a、h分別表示什么呢? 提問:要計(jì)算平行四邊形的面積必須知道什么?(演示不是對應(yīng)的底和高),這樣能求出它的面積嗎?那底和高必須是什么樣的關(guān)系?(對應(yīng)) 。ㄈ╈柟虘(yīng)用,內(nèi)化新知 前面的花壇題 課本第2題:你能想辦法求出下面兩個平行四邊形的面積嗎? 拓展題:先分別口算出下面圖中兩個平行四邊形的面積,然后看你發(fā)現(xiàn)了什么? 。ㄋ模┱n堂總結(jié),深化新知 師:同學(xué)們,通過今天的學(xué)習(xí),你有什么收獲呢? 【平行四邊形教案】相關(guān)文章: 平行四邊形教案04-01 認(rèn)識平行四邊形教案10-16 平行四邊形教案[熱]12-30 《認(rèn)識平行四邊形》教案03-30 【優(yōu)】平行四邊形教案03-26 《平行四邊形的面積》教案06-23 《平行四邊形的認(rèn)識》教案03-15 平行四邊形的面積教案11-08 平行四邊形優(yōu)秀教案03-08 平行四邊形面積教案03-09平行四邊形教案 篇4
平行四邊形教案 篇5