欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當前位置:好文網(wǎng)>實用文>教案>二次根式教案

      二次根式教案

      時間:2024-09-01 17:53:37 教案 我要投稿

      二次根式教案集合10篇

        作為一名教學工作者,就難以避免地要準備教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。那么什么樣的教案才是好的呢?下面是小編整理的二次根式教案10篇,歡迎閱讀,希望大家能夠喜歡。

      二次根式教案集合10篇

      二次根式教案 篇1

        1.請同學們回憶(≥0,b≥0)是如何得到的?

        2.學生觀察下面的例子,并計算:

        由學生總結(jié)上面兩個式的關(guān)系得:

        類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:

       。ā0,b0)

        使學生回憶起二次根式乘法的運算方法的推導過程.

        類似地,請每個同學再舉一個例子,

        請學生們思考為什么b的.取值范圍變小了?

        與學生一起寫清解題過程,提醒他們被開方式一定要開盡.

        對比二次根式的乘法推導出除法的運算方法

        增強學生的自信心,并從一開始就使他們參與到推導過程中來.

        對學生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

        強化學生的解題格式一定要標準.

        教學過程設(shè)計

        問題與情境師生行為設(shè)計意圖

        活動二自我檢測

        活動三挑戰(zhàn)逆向思維

        把反過來,就得到

        (≥0,b0)

        利用它就可以進行二次根式的化簡.

        例2化簡:

       。1)

        (2)(b≥0).

        解:(1)(2)練習2化簡:

       。1)(2)活動四談?wù)勀愕氖斋@

        1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

        2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.

        找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.

        二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

        找學生口述解題過程,教師將過程寫在黑板上.

        請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.

        請學生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

        為了更快地發(fā)現(xiàn)學生的錯誤之處,以便糾正.

        此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎(chǔ)理解并不難.

        讓學困生在自己做題時有一個參照.

        充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

      二次根式教案 篇2

        教學目的:

        1、在二次根式的混合運算中,使學生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

        2、會求二次根式的代數(shù)的值;

        3、進一步提高學生的綜合運算能力。

        教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

        教學難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值

        教學過程:

        一、二次根式的混合運算

        例1 計算:

        分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

        (2)題是含乘方、加、減和除法的混合運算,應(yīng)按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的計算。

        練習1:P206 / 8--① P207 / 1①②

        例2 計算

        問:計算思路是什么?

        答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。

        二、求代數(shù)式的值。 注意兩點:

        (1)如果已知條件為含二次根式的式子,先把它化簡;

        (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

        例3 已知,求的.值。

        分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。

        例4 已知,求的值。

        觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。

        答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。

        三、小結(jié)

        1、對于二次根式的混合混合運算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。

        2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

        3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

        四、作業(yè)

        P206 / 7 P206 / 8---②③

      二次根式教案 篇3

        一、教學目標

        1.了解二次根式的意義;

        2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

        3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

        4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

        5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學美.

        二、教學重點和難點

        重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

        難點:確定二次根式中字母的取值范圍.

        三、教學方法

        啟發(fā)式、講練結(jié)合.

        四、教學過程

        (一)復習提問

        1.什么叫平方根、算術(shù)平方根?

        2.說出下列各式的意義,并計算:

        通過練習使學生進一步理解平方根、算術(shù)平方根的概念.

        觀察上面幾個式子的特點,引導學生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

        表示的是算術(shù)平方根.

        (二)引入新課

        我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

        新課:二次根式

        定義: 式子 叫做二次根式.

        對于 請同學們討論論應(yīng)注意的問題,引導學生總結(jié):

        (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

        若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

        (2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次

        根式指的是某種式子的外在形態(tài).請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學生分析、回答.

        例1 當a為實數(shù)時,下列各式中哪些是二次根式?

        分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0

        例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

        解:略.

        說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

        例3 當字母取何值時,下列各式為二次根式:

        (1) (2) (3) (4)

        分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

        解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.

        (2)-3x0,x0,即x0時, 是二次根式.

        (3) ,且x0,x0,當x0時, 是二次根式.

        (4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.

        例4 下列各式是二次根式,求式子中的字母所滿足的條件:

        (1) ; (2) ; (3) ; (4)

        分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應(yīng)滿足的'條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

        解:(1)由2a+30,得 .

        (2)由 ,得3a-10,解得 .

        (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

        (4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

        (三)小結(jié)(引導學生做出本節(jié)課學習內(nèi)容小結(jié))

        1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術(shù)平方根的表達式.

        2.式子中,被開方數(shù)(式)必須大于等于零.

        (四)練習和作業(yè)

        練習:

        1.判斷下列各式是否是二次根式

        分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

        2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

        五、作業(yè)

        教材P.172習題11.1;A組1;B組1.

        六、板書設(shè)計

      二次根式教案 篇4

        【1】二次根式的加減教案

        教材分析:

        本節(jié)內(nèi)容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

        學生分析:

        本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎(chǔ)差、自學能力差,因此要提供賞識性評價教學策略,給予個別關(guān)照、心理暗示以及適當?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務(wù)。

        設(shè)計理念:

        新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W生的自主性、探究性、合作性學習活動的'設(shè)計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

        教學目標知識與技能目標:

        會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

        過程與方法目標:

        通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經(jīng)歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。

        情感態(tài)度與價值觀:

        通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣.

        重點、難點:重點:

        合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

        難點:

        二次根式加減法的實際應(yīng)用。

        關(guān)鍵問題 :

        了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

        教學方法:.

        1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結(jié)論,掌握規(guī)律。

        2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

        3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。

        【2】二次根式的加減教案

        教學目標:

        1.知識目標:二次根式的加減法運算

        2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

        3.情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。

        重難點分析:

        重點:能熟練進行二次根式的加減運算。

        難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應(yīng)用。

        教學關(guān)鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設(shè)問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數(shù)學上有不同的發(fā)展。

        運用教具:小黑板等。

        教學過程:

      問題與情景

      師生活動

      設(shè)計目的

      活動一:

      情景引入,導學展示

      1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

      2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

      這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關(guān)注:學生是否能熟練得到正確答案。 教師傾聽學生的交流,指導學生探究。

      問:什么樣的二次根式能進行加減運算,運算到那一步為止。

      由此也可以看到二次根式的.加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。

      加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。

      引出二次根式加減法則。

      3. A、B層同學自主學習15頁例1、例2、例3,C層同學至少完成例1、例2的學習。

      例1.計算:

      (1) ;

      (2) - ;

      例2. 計算:

      1)

      2)

      例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

      活動二:分層練習,合作互助

      1.下列計算是否正確?為什么?

      (1)

      (2) ;

      (3) 。

      2.計算:

      (1) ;

      (2)

      (3)

      (4)

      3.(見課本16頁)

      補充:

      活動三:分層檢測,反饋小結(jié)

      教材17頁習題:

      A層、 B層:2、3.

      C層1、2.

      小結(jié):

      這節(jié)課你學到了什么知識?你有什么收獲?

      作業(yè):課堂練習冊第5、6頁。

      自學的同時抽查部分同學在黑板上板書計算過程。抽2名C層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名B層同學訂正。抽2名B層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學訂正。抽1名A層同學在黑板上完成例3板書過程,并做適當?shù)姆治鲋v解。

      此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結(jié)果精確到0.1 m, 學生考慮問題要全面,不能漏掉任何一段鋼材。

      老師提示:

      1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。

      A層同學完成16頁練習1、2、3;B層同學完成練習1、2,可選做第3題;C層同學盡量完成練習1、2。多數(shù)同學完成后,讓學生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名C層同學口答練習1;抽4名B層或C層同學在黑板上板書練習第2題;抽1名A層或B層同學在黑板上板書練習第3題后再分析講解。

      點撥:1)對 的化簡是否正確;2)當根式中出現(xiàn)小數(shù)、分數(shù)、字母時,是否能正確處理;

      3)運算法則的運用是否正確

      先測試,再小組內(nèi)互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。

      小結(jié)時教師要關(guān)注:

      1)學生是否抓住本課的重點;

      2)對于常見錯誤的認識。

      把學習目標由高到低分為A、B、C三個層次,教學中做到分層要求。

      學生學習經(jīng)歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。

      二次根式的加減運算融入實際問題中去,提高了學生的學習興趣和對數(shù)學知識的應(yīng)用意識和能力。

      小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關(guān)、合作互助的目的。

      培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。

      對課堂的問題及時反饋,使學生熟練掌握新知識。

      每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。

      二次根式教案 篇5

        【 學習目標 】

        1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應(yīng)用它解決相關(guān)問題。

        2、過程與方法:進一步體會分類討論的數(shù)學思想。

        3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數(shù)學的樂趣。

        【 學習重難點 】

        1、重點:準確理解二次根式的概念,并能進行簡單的計算。

        2、難點:準確理解二次根式的雙重非負性。

        【 學習內(nèi)容 】課本第2— 3頁

        【 學習流程 】

        一、 課前準備(預(yù)習學案見附件1)

        學生在家中認真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習學案。

        二、 課堂教學

        (一)合作學習階段。

        教師出示課堂教學目標及引導材料,各學習小組結(jié)合本節(jié)課學習目標,根據(jù)課堂引導材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學習中碰到的.問題。組內(nèi)各成員根據(jù)課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

        (二)集體講授階段。(15分鐘左右)

        1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

        2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。

        3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

        (三)當堂檢測階段

        為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

        (注:合作學習階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)

        三、 課后作業(yè)(課后作業(yè)見附件2)

        教師發(fā)放根據(jù)本節(jié)課所學內(nèi)容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。

        四、板書設(shè)計

        課題:二次根式(1)

        二次根式概念 例題 例題

        二次根式性質(zhì)

        反思:

      二次根式教案 篇6

        第十六章 二次根式

        代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

        5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的'最小值為5.)

        6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

        7.解:(1) . (2)寬:3 ;長:5 .

        8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

        9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

        10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

        解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

        本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

        在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

        在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

        練習(教材第4頁)

        1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

        2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

        習題16.1(教材第5頁)

        1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

        2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

        3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

        4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

        5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

        6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

        7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.

        8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

        9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

        10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

        如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

        〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

        解:由數(shù)軸可得:a+b<0,a-b>0,

        ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

        [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

        已知a,b,c為三角形的三條邊,則+= .

        〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

        [解題策略] 此類化簡問題要特別注意符號問題.

        化簡:.

        〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

        解:當x≥3時,=|x-3|=x-3;

        當x<3時,=|x-3|=-(x-3)=3-x.

        [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

        5

        O

        M

      二次根式教案 篇7

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的除法法則及其逆用,最簡二次根式的概念。

        2.內(nèi)容解析

        二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎(chǔ).

        基于以上分析,確定本節(jié)課的教學重點:二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.

        二、目標和目標解析

        1.教學目標

        (1)利用歸納類比的方法得出二次根式的除法法則和商的.算術(shù)平方根的性質(zhì);

        (2)會進行簡單的二次根式的除法運算;

        (3) 理解最簡二次根式的概念.

        2.目標解析

        (1)學生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

        (2)學生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進行運算.

        (3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.

        三、教學問題診斷分析

        本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學中不能只是列舉題型,應(yīng)以各級各類習題為載體,引導學生把握運算過程,估計運算結(jié)果,明確運算方向.

        本節(jié)課的教學難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

        四、教學過程設(shè)計

        1.復習提問,探究規(guī)律

        問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

        師生活動 學生回答。

        【設(shè)計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.

        五、目標檢測設(shè)計

      二次根式教案 篇8

        一、教學目標

        1.理解分母有理化與除法的關(guān)系.

        2.掌握二次根式的分母有理化.

        3.通過二次根式的分母有理化,培養(yǎng)學生的運算能力.

        4.通過學習分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學思想

        二、教學設(shè)計

        小結(jié)、歸納、提高

        三、重點、難點解決辦法

        1.教學重點:分母有理化.

        2.教學難點:分母有理化的技巧.

        四、課時安排

        1課時

        五、教具學具準備

        投影儀、膠片、多媒體

        六、師生互動活動設(shè)計

        復習小結(jié),歸納整理,應(yīng)用提高,以學生活動為主

        七、教學過程

        【復習提問】

        二次根式混合運算的步驟、運算順序、互為有理化因式.

        例1 說出下列算式的運算步驟和順序:

       。1) (先乘除,后加減).

       。2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).

       。3)辨別有理化因式:

        有理化因式: 與 , 與 , 與 …

        不是有理化因式: 與 , 與 …

        化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

        例如:等式子的.化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

        引入新課題.

        【引入新課】

        化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

        例2 把下列各式的分母有理化:

       。1) ; (2) ; (3)

        解:略.

        注:通過例題的講解,使學生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

      二次根式教案 篇9

        教學目標

        1.使學生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

        2.熟練地進行二次根式的加、減、乘、除混合運算.

        教學重點和難點

        重點:含二次根式的式子的混合運算.

        難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

        教學過程設(shè)計

        一、復習

        1.請同學回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

        指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

        2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

        指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

        計算結(jié)果要把分母有理化.

        3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

        4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

        二、例題

        例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

        分析:

        (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

        (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

        (4)題的分子是二次根式,分母是含x的'單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

        x-2且x0.

        解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

        例3

        分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

        解 因為1-a>0,3-a0,所以

        a<1,|a-2|=2-a.

        (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

        這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

        問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

        分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

        注意:

        所以在化簡過程中,

        例6

        分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

        a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

        三、課堂練習

        1.選擇題:

        A.a(chǎn)2B.a(chǎn)2

        C.a(chǎn)2D.a(chǎn)<2

        A .x+2 B.-x-2

        C.-x+2D.x-2

        A.2x B.2a

        C.-2x D.-2a

        2.填空題:

        4.計算:

        四、小結(jié)

        1.本節(jié)課復習的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學們要深刻理解并牢固掌握.

        2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

        3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

        4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

        五、作業(yè)

        1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

        2.把下列各式化成最簡二次根式:

      二次根式教案 篇10

        1.教學目標

        (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會進行簡單的二次根式的乘法運算;

        (2)會用公式化簡二次根式.

        2.目標解析

        (1)學生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內(nèi)容;

        (2)學生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.

        教學問題診斷分析

        本節(jié)課的學習中,學生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關(guān),由于該內(nèi)容與以前學過的實數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯(lián)系性上下力氣.,培養(yǎng)學生良好的運算習慣.

        在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

        本節(jié)課的教學難點為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.

        教學過程設(shè)計

        1.復習引入,探究新知

        我們前面已經(jīng)學習了二次根式的概念和性質(zhì),本節(jié)課開始我們要學習二次根式的乘除.本節(jié)課先學習二次根式的乘法.

        問題1 什么叫二次根式?二次根式有哪些性質(zhì)?

        師生活動 學生回答。

        【設(shè)計意圖】乘法運算和二次根式的化簡需要用到二次根式的'性質(zhì).

        問題2 教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

        師生活動 學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內(nèi)容.

        【設(shè)計意圖】學生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學生用數(shù)學語言和文字分別描述法則,以培養(yǎng)學生的符號意識.

        2.觀察比較,理解法則

        問題3 簡單的根式運算.

        師生活動 學生動手操作,教師檢驗.

        問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?

        師生活動 學生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

        【設(shè)計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力.

        3.例題示范,學會應(yīng)用

        例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

        師生活動 提問:你是怎么理解例(1)的?

        如果學生回答不完善,再追問:這個問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?

        師生合作回答上述問題.對于根式運算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.

        再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

        【設(shè)計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進行二次根式的化簡.

        例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

        師生活動 學生計算,教師檢驗.

        (1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

        (2)二次根式的乘法運算類似于整式的乘法運算,交換律、結(jié)合律都是適用的.對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進行運算;

        (3)例(3)的運算是選學內(nèi)容.讓學有余力的學生學到“根號下為字母的二次根式”的運算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

        【設(shè)計意圖】引導學生及時總結(jié),強調(diào)利用運算律進行運算,利用乘法公式簡化運算.讓學生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關(guān)于整式運算的公式和方法也適用.

        教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.

        4.鞏固概念,學以致用

        練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.

        【設(shè)計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.

        5.歸納小結(jié),反思提高

        師生共同回顧本節(jié)課所學內(nèi)容,并請學生回答以下問題:

        (1)你能說明二次根式的乘法法則是如何得出的嗎?

        (2)你能說明乘法法則逆用的意義嗎?

        (3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

        6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.

        五、目標檢測設(shè)計

        1.下列各式中,一定能成立的是( )

        A.二次根式的乘除 B.二次根式的乘除

        C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進行二次根式的乘法運算的基礎(chǔ).

        2.化簡二次根式的乘除 ______________________________。

        【設(shè)計意圖】二次根式是特殊的實數(shù),實數(shù)的相關(guān)運算法則也適用于二次根式.

        3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是(  )

        A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式.

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式的加減教案01-19

      二次根式教案優(yōu)秀06-26

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案匯總6篇05-07

      關(guān)于二次根式教案五篇05-08

      【推薦】二次根式教案4篇05-09