欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當前位置:好文網(wǎng)>實用文>教案>二次根式教案

      二次根式教案

      時間:2024-07-27 17:15:52 教案 我要投稿

      二次根式教案匯總6篇

        作為一位不辭辛勞的人民教師,就不得不需要編寫教案,借助教案可以有效提升自己的教學能力。那么你有了解過教案嗎?下面是小編為大家整理的二次根式教案6篇,歡迎大家分享。

      二次根式教案匯總6篇

      二次根式教案 篇1

        一、教學目標

        1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

        2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

        3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

        二、教學重點和難點

        1。重點:能夠把所給的二次根式,化成最簡二次根式。

        2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

        三、教學方法

        通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

        四、教學手段

        利用投影儀。

        五、教學過程

        (一)引入新課

        提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

        了。這樣會給解決實際問題帶來方便。

       。ǘ┬抡n

        由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

        這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

        總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的.二次根式,叫做最簡二次根式:

        1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

        2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

        例1 指出下列根式中的最簡二次根式,并說明為什么。

        分析:

        說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

        例2 把下列各式化成最簡二次根式:

        說明:引導學生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

        例3 把下列各式化簡成最簡二次根式:

        說明:

        1。引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

        2。要提問學生

        問題,通過這個小題使學生明確如何使用化簡中的條件。

        通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結(jié)應(yīng)該注意的問題。

        注意:

       、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

       、诋斠粋式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

        (三)小結(jié)

        1。滿足什么條件的根式是最簡二次根式。

        2。把一個二次根式化成最簡二次根式的主要方法。

       。ㄋ模┚毩

        1。指出下列各式中的最簡二次根式:

        2。把下列各式化成最簡二次根式:

        六、作業(yè)

        教材P。187習題11。4;A組1;B組1。

        七、板書設(shè)計

      二次根式教案 篇2

        活動1、提出問題

        一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?

        問題:10+20是什么運算?

        活動2、探究活動

        下列3個小題怎樣計算?

        問題:1)-還能繼續(xù)往下合并嗎?

        2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

        二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的'進行合并。

        活動3

        練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

        創(chuàng)設(shè)問題情景,引起學生思考。

        學生回答:這個運動場要準備(10+20)平方米的草皮。

        教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。

        我們可以利用已學知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

        教師引導驗證:

        ①設(shè)=,類比合并同類項或面積法;

       、趯W生思考,得出先化簡,再合并的解題思路

       、巯然啠俸喜

        學生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

        教師巡視、指導,學生完成、交流,師生評價。

        提醒學生注意先化簡成最簡二次根式后再判斷。

      二次根式教案 篇3

        第十六章 二次根式

        代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

        5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

        6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

        7.解:(1) . (2)寬:3 ;長:5 .

        8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

        9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

        10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的'符號,這也是化簡時最容易出錯的地方.

        解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

        本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

        在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

        在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

        練習(教材第4頁)

        1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

        2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

        習題16.1(教材第5頁)

        1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

        2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

        3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

        4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

        5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

        6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

        7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.

        8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

        9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

        10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

        如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

        〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

        解:由數(shù)軸可得:a+b<0,a-b>0,

        ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

        [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

        已知a,b,c為三角形的三條邊,則+= .

        〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

        [解題策略] 此類化簡問題要特別注意符號問題.

        化簡:.

        〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

        解:當x≥3時,=|x-3|=x-3;

        當x<3時,=|x-3|=-(x-3)=3-x.

        [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

        5

        O

        M

      二次根式教案 篇4

        一、內(nèi)容解析

        本節(jié)教材是在學生學習二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

        對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質(zhì).

        二、目標和目標解析

        1.教學目標

       。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

        (2)會運用二次根式的性質(zhì)進行二次根式的化簡;

       。3)了解代數(shù)式的概念.

        2.目標解析

       。1)學生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

        (2)學生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

       。3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

        三、教學問題診斷分析

        二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習題,讓學生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.

        本節(jié)課的教學難點為:二次根式性質(zhì)的靈活運用.

        四、教學過程設(shè)計

        1.探究性質(zhì)1

        問題1 你能解釋下列式子的含義嗎?

        師生活動:教師引導學生說出每一個式子的含義.

        【設(shè)計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的'平方.

        問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

        師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

        【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

        問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

        師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0).

        【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學生抽象概括的能力.

        例2 計算

       。1)

       。2)

        師生活動:學生獨立完成,集體訂正.

        【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學會靈活運用.

        2.探究性質(zhì)2

        問題4 你能解釋下列式子的含義嗎?

        師生活動:教師引導學生說出每一個式子的含義.

        【設(shè)計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

        問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

        師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結(jié)論的依據(jù).

        【設(shè)計意圖】學生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

        問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

        師生活動:引導學生歸納得出二次根式的性質(zhì): ( ≥0)

        【設(shè)計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學生抽象概括的能力.

        例3 計算

       。1)

       。2)

        師生活動:學生獨立完成,集體訂正.

        【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學會靈活運用.

        3.歸納代數(shù)式的概念

        問題7 回顧我們學過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?

        師生活動:學生概括式子的共同特征,得得出代數(shù)式的概念.

        【設(shè)計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.

        4.綜合運用

       。1)算一算:

        【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

        (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

        【設(shè)計意圖】通過此問題的設(shè)計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

       。3)談一談你對 與 的認識.

        【設(shè)計意圖】加深學生對二次根式性質(zhì)的理解.

        5.總結(jié)反思

        (1)你知道了二次根式的哪些性質(zhì)?

        (2)運用二次根式性質(zhì)進行化簡需要注意什么?

       。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

        (4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

        6.布置作業(yè):教科書習題16.1第2,4題.

      二次根式教案 篇5

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的除法法則及其逆用,最簡二次根式的概念。

        2.內(nèi)容解析

        二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎(chǔ).

        基于以上分析,確定本節(jié)課的教學重點:二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.

        二、目標和目標解析

        1.教學目標

        (1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

        (2)會進行簡單的二次根式的除法運算;

        (3) 理解最簡二次根式的概念.

        2.目標解析

        (1)學生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

        (2)學生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進行運算.

        (3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.

        三、教學問題診斷分析

        本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的`性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學中不能只是列舉題型,應(yīng)以各級各類習題為載體,引導學生把握運算過程,估計運算結(jié)果,明確運算方向.

        本節(jié)課的教學難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

        四、教學過程設(shè)計

        1.復習提問,探究規(guī)律

        問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

        師生活動 學生回答。

        【設(shè)計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.

        五、目標檢測設(shè)計

      二次根式教案 篇6

        教學目標

        1.使學生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

        2.熟練地進行二次根式的加、減、乘、除混合運算.

        教學重點和難點

        重點:含二次根式的式子的混合運算.

        難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

        教學過程設(shè)計

        一、復習

        1.請同學回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

        指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

        2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

        指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

        計算結(jié)果要把分母有理化.

        3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

        4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

        二、例題

        例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

        分析:

        (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

        (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

        (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

        x-2且x0.

        解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

        例3

        分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

        解 因為1-a>0,3-a0,所以

        a<1,|a-2|=2-a.

        (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

        這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

        問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的'式子如何化為完全平方式?

        分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

        注意:

        所以在化簡過程中,

        例6

        分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

        a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

        三、課堂練習

        1.選擇題:

        A.a(chǎn)2B.a(chǎn)2

        C.a(chǎn)2D.a(chǎn)<2

        A .x+2 B.-x-2

        C.-x+2D.x-2

        A.2x B.2a

        C.-2x D.-2a

        2.填空題:

        4.計算:

        四、小結(jié)

        1.本節(jié)課復習的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學們要深刻理解并牢固掌握.

        2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

        3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

        4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

        五、作業(yè)

        1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

        2.把下列各式化成最簡二次根式:

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式教案優(yōu)秀06-26

      二次根式的加減教案01-19

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(經(jīng)典3篇)06-05

      有關(guān)二次根式教案3篇05-06