欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>二次根式優(yōu)秀教案

      二次根式優(yōu)秀教案

      時(shí)間:2023-03-14 16:00:45 教案 我要投稿
      • 相關(guān)推薦

      二次根式優(yōu)秀教案

        作為一位兢兢業(yè)業(yè)的人民教師,總歸要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。我們?cè)撛趺慈懡贪改?下面是小編精心整理的二次根式?yōu)秀教案,僅供參考,希望能夠幫助到大家。

      二次根式優(yōu)秀教案

      二次根式優(yōu)秀教案1

        一、內(nèi)容和內(nèi)容解析

        1、內(nèi)容

        二次根式的除法法則及其逆用,最簡(jiǎn)二次根式的概念。

        2、內(nèi)容解析

        二次根式除法法則及商的算術(shù)平方根的探究,最簡(jiǎn)二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡(jiǎn)二次根式,是加減運(yùn)算的基礎(chǔ)。

        基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡(jiǎn)二次根式。

        二、目標(biāo)和目標(biāo)解析

        1、教學(xué)目標(biāo)

        (1)利用歸納類比的.方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

        (2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;

        (3) 理解最簡(jiǎn)二次根式的概念。

        2、目標(biāo)解析

        (1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

       。2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對(duì)簡(jiǎn)單的二次根式進(jìn)行運(yùn)算。

       。3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡(jiǎn)二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡(jiǎn)二次根式。

        三、教學(xué)問題診斷分析

        本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

        本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

        四、教學(xué)過程設(shè)計(jì)

        1、復(fù)習(xí)提問,探究規(guī)律

        問題1 二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?

        師生活動(dòng) 學(xué)生回答。

        【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則。

      二次根式優(yōu)秀教案2

        教法:

        1、引導(dǎo)發(fā)現(xiàn)法:通過教師精心設(shè)計(jì)的問題鏈,使學(xué)生產(chǎn)生認(rèn)知沖突,感悟新知,建立分式的模型,引導(dǎo)學(xué)生觀察、類比、參與問題討論,使感性認(rèn)識(shí)上升為理性認(rèn)識(shí),充分體現(xiàn)了教師主導(dǎo)和學(xué)生主體的作用,對(duì)實(shí)現(xiàn)教學(xué)目標(biāo)起了重要的作用;

        2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。

        學(xué)法:

        1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。

        2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。

        3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。

        4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。

        知識(shí)點(diǎn)

        上節(jié)課我們認(rèn)識(shí)了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學(xué)習(xí)。

        二、展示目標(biāo),自主學(xué)習(xí):

        自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁(yè)——4頁(yè)內(nèi)容,完成下列任務(wù):

        1、請(qǐng)比較與0的大小,你得到的結(jié)論是:________________________。

        2、完成3頁(yè)“探究”中的填空,你得到的結(jié)論是____________________。

        3、看例2是怎樣利用性質(zhì)進(jìn)行計(jì)算的'。

        4、完成4頁(yè)“探究”中的填空,你得到的結(jié)論是:____________________。

        5 、看懂例3,有困難可與同伴交流或問老師。

        課時(shí)作業(yè)

        教師節(jié)要到了,為了表示對(duì)老師的敬意,小明做了兩張大小不同的正方形壁畫準(zhǔn)備送給老師,其中一張面積為800 cm2,另一張面積為450 cm2,他想如果再用金彩帶把壁畫的邊鑲上會(huì)更漂亮,他現(xiàn)在有1.2 m長(zhǎng)的金彩帶,請(qǐng)你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買多長(zhǎng)的金彩帶?(≈1.414,結(jié)果保留整數(shù))

      二次根式優(yōu)秀教案3

        活動(dòng)1、提出問題

        一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

        問題:10+20是什么運(yùn)算?

        活動(dòng)2、探究活動(dòng)

        下列3個(gè)小題怎樣計(jì)算?

        問題:1)-還能繼續(xù)往下合并嗎?

        2)看來二次根式有的能合并,有的不能合并,通過對(duì)以上幾個(gè)題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

        二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開方數(shù)相同的`進(jìn)行合并。

        活動(dòng)3

        練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

        創(chuàng)設(shè)問題情景,引起學(xué)生思考。

        學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。

        教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。

        我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

        教師引導(dǎo)驗(yàn)證:

        ①設(shè)=,類比合并同類項(xiàng)或面積法;

       、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路

       、巯然(jiǎn),再合并

        學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開方數(shù)相同的能合并。

        教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。

        提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。

      二次根式優(yōu)秀教案4

        教學(xué)目的:

        1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡(jiǎn)和計(jì)算二次根式;

        2、會(huì)求二次根式的代數(shù)的值;

        3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

        教學(xué)重點(diǎn):

        在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡(jiǎn)二次根式

        教學(xué)難點(diǎn):

        正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

        教學(xué)過程:

        一、二次根式的混合運(yùn)算

        例1 計(jì)算:

        分析:(1)題是二次根式的。加減運(yùn)算,可先把前三個(gè)二次根式化最簡(jiǎn)二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

        (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號(hào)內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計(jì)算。

        練習(xí)1:P206 / 8--① P207 / 1①②

        例2 計(jì)算

        問:計(jì)算思路是什么?

        答:先把第一人的括號(hào)內(nèi)的式子通分,把第二個(gè)括號(hào)內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。

        二、求代數(shù)式的值。 注意兩點(diǎn):

        (1)如果已知條件為含二次根式的式子,先把它化簡(jiǎn);

       。2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡(jiǎn),再求值。

        例3 已知,求的值。

        分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的.式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母。可使計(jì)算簡(jiǎn)便。

        例4 已知,求的值。

        觀察代數(shù)式的特點(diǎn),請(qǐng)說出求這個(gè)代數(shù)式的值的思路。

        答:所求的代數(shù)式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號(hào),可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡(jiǎn)后,再求值。

        三、小結(jié)

        1、對(duì)于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡(jiǎn)二次根式。

        2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡(jiǎn),然后再求值。

        3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡(jiǎn)捷。

        四、作業(yè)

        P206 / 7 P206 / 8---②③

      二次根式優(yōu)秀教案5

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的概念。

        2.內(nèi)容解析

        本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念。 它不僅是對(duì)前面所學(xué)知識(shí)的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ)。

        教材先設(shè)置了三個(gè)實(shí)際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義。 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對(duì)二次根式的定義的理解。

        本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

        二、目標(biāo)和目標(biāo)解析

        1、教學(xué)目標(biāo)

       。1)體會(huì)研究二次根式是實(shí)際的需要.

       。2)了解二次根式的概念.

        2、 教學(xué)目標(biāo)解析

        (1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會(huì)研究二次根式的必要性.

        (2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會(huì)求二次根式中被開方數(shù)字母的取值范圍.

        三、教學(xué)問題診斷分析

        對(duì)于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù)。教學(xué)時(shí)注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷。

        本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性。

        四、教學(xué)過程設(shè)計(jì)

        1.創(chuàng)設(shè)情境,提出問題

        問題1你能用帶有根號(hào)的的式子填空嗎?

        (1)面積為3 的正方形的邊長(zhǎng)為_______,面積為S 的正方形的邊長(zhǎng)為_______.

       。2)一個(gè)長(zhǎng)方形圍欄,長(zhǎng)是寬的2 倍,面積為130?,則它的寬為______.

        (3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

        師生活動(dòng):學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評(píng)價(jià)。

        【設(shè)計(jì)意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會(huì)研究二次根式的必要性.

        問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

        師生活動(dòng):教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的.非負(fù)數(shù))的算術(shù)平方根.

        【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊.

        2.抽象概括,形成概念

        問題3 你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?

        師生活動(dòng):學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號(hào).

        【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

        追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

        師生活動(dòng):教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.

        【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.

        3.辨析概念,應(yīng)用鞏固

        例1 當(dāng) 時(shí)怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義?

        師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對(duì)二次根式的被開方數(shù)為非負(fù)數(shù)的理解.

        例2 當(dāng) 是怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義? 呢?

        師生活動(dòng):先讓學(xué)生獨(dú)立思考,再追問.

        【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對(duì)二次根式被開方數(shù)為非負(fù)數(shù)的理解.

        問題4 你能比較 與0的大小嗎?

        師生活動(dòng):通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對(duì)二次根式本身為非負(fù)數(shù)的理解,

        【設(shè)計(jì)意圖】通過這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生分類討論和歸納概括的能力。

        4.綜合運(yùn)用,鞏固提高

        練習(xí)1 完成教科書第3頁(yè)的練習(xí)。

        練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時(shí),下列各式有意義。

       。1) ;(2) ;(3) ;(4) 。

        【設(shè)計(jì)意圖】 辨析二次根式的概念,確定二次根式有意義的條件。

        【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維。

        5.總結(jié)反思

        教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答以下問題。

       。1)本節(jié)課你學(xué)到了哪一類新的式子?

        (2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

       。3)二次根式與算術(shù)平方根有什么關(guān)系?

        師生活動(dòng):教師引導(dǎo),學(xué)生小結(jié)。

        【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長(zhǎng)補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法。

        6.布置作業(yè):

        教科書習(xí)題16.1第1,3,5, 7,10題.

        五、目標(biāo)檢測(cè)設(shè)計(jì)

        1、 下列各式中,一定是二次根式的是( )

        A. B. C. D.

        【設(shè)計(jì)意圖】考查對(duì)二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).

        2、 當(dāng) 時(shí),二次根式 無意義.

        【設(shè)計(jì)意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

        3、當(dāng) 時(shí),二次根式 有最小值,其最小值是 .

        【設(shè)計(jì)意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運(yùn)用.

        4、對(duì)于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.

        【設(shè)計(jì)意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮.

      【二次根式優(yōu)秀教案】相關(guān)文章:

      二次根式教案優(yōu)秀06-26

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案11-10

      二次根式的加減教案01-19

      二次根式教案[熱]07-10

      二次根式教案15篇02-27

      關(guān)于二次根式教案三篇10-22

      有關(guān)二次根式教案3篇10-16

      二次根式教案匯總6篇10-17