欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實用文>教案>二次根式教案

      二次根式教案

      時間:2024-08-19 09:53:47 教案 我要投稿

      二次根式教案集合八篇

        作為一位杰出的老師,總歸要編寫教案,教案有助于順利而有效地開展教學(xué)活動。寫教案需要注意哪些格式呢?下面是小編收集整理的二次根式教案8篇,歡迎大家借鑒與參考,希望對大家有所幫助。

      二次根式教案集合八篇

      二次根式教案 篇1

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的概念.

        2.內(nèi)容解析

        本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運算打基礎(chǔ).

        教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.

        本節(jié)課的教學(xué)重點是:了解二次根式的概念;

        二、目標(biāo)和目標(biāo)解析

        1.教學(xué)目標(biāo)

       。1)體會研究二次根式是實際的需要.

        (2)了解二次根式的概念.

        2. 教學(xué)目標(biāo)解析

       。1)學(xué)生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

        (2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

        三、教學(xué)問題診斷分析

        對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負性,”即被開方數(shù) ≥0是非負數(shù), 的算術(shù)平方根 ≥0也是非負數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷.

        本節(jié)課的教學(xué)難點為:理解二次根式的雙重非負性.

        四、教學(xué)過程設(shè)計

        1.創(chuàng)設(shè)情境,提出問題

        問題1你能用帶有根號的的式子填空嗎?

       。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

       。2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

       。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

        師生活動:學(xué)生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當(dāng)引導(dǎo)和評價.

        【設(shè)計意圖】讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

        問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

        師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術(shù)平方根.

        【設(shè)計意圖】為概括二次根式的概念作鋪墊.

        2.抽象概括,形成概念

        問題3 你能用一個式子表示一個非負數(shù)的算術(shù)平方根嗎?

        師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

        【設(shè)計意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

        追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?

        師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負數(shù)的`理由.

        【設(shè)計意圖】進一步加深學(xué)生對二次根式被開方數(shù)必須是非負數(shù)的理解.

        3.辨析概念,應(yīng)用鞏固

        例1 當(dāng) 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?

        師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負數(shù)的理解.

        例2 當(dāng) 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?

        師生活動:先讓學(xué)生獨立思考,再追問.

        【設(shè)計意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負數(shù)的理解.

        問題4 你能比較 與0的大小嗎?

        師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強化學(xué)生對二次根式本身為非負數(shù)的理解,

        【設(shè)計意圖】通過這一活動的設(shè)計,提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.

        4.綜合運用,鞏固提高

        練習(xí)1 完成教科書第3頁的練習(xí).

        練習(xí)2 當(dāng)x 是什么實數(shù)時,下列各式有意義.

       。1) ;(2) ;(3) ;(4) .

        【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

        【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

        5.總結(jié)反思

        教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.

       。1)本節(jié)課你學(xué)到了哪一類新的式子?

       。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

       。3)二次根式與算術(shù)平方根有什么關(guān)系?

        師生活動:教師引導(dǎo),學(xué)生小結(jié).

        【設(shè)計意圖】:學(xué)生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學(xué)習(xí)重點,掌握解題方法.

        6.布置作業(yè):

        教科書習(xí)題16.1第1,3,5, 7,10題.

        五、目標(biāo)檢測設(shè)計

        1. 下列各式中,一定是二次根式的是( )

        A. B. C. D.

        【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).

        2. 當(dāng) 時,二次根式 無意義.

        【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

        3.當(dāng) 時,二次根式 有最小值,其最小值是 .

        【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.

        4.對于 ,小紅根據(jù)被開方數(shù)是非負數(shù),得 出的取值范圍是 ≥ .小慧認為還應(yīng)考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

        【設(shè)計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

      二次根式教案 篇2

        目 標(biāo)

        1. 熟練地運用二次根式的性質(zhì)化簡二次根式;

        2. 會運用二次根式解決簡單的實際問題;

        3. 進一步體驗二次根式及其運算的實際意義和應(yīng)用價值。

        教學(xué)設(shè)想

        本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復(fù)雜。

        教 學(xué) 程序 與 策 略

        一、預(yù)習(xí)檢測

        1.解決節(jié)前問題:

        如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

        歸納:

        在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。

        二、合作交流:

        1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

        讓學(xué)生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的.長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運算?能化簡嗎?

        注意解題格式

        教 學(xué) 程 序 與 策 略

        三、鞏固練習(xí):

        完成課本P17、1,組長檢查反饋;

        四、拓展提高:

        1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

        師生共同分析解題思路,請學(xué)生寫出解題過程。

        五、課堂小結(jié):

        1.談一談:本節(jié)課你有什么收獲?

        2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題

        六、堂堂清

        1: 作業(yè)本(2)

        2:課本P17頁:第4、5題選做。

      二次根式教案 篇3

        【1】二次根式的加減教案

        教材分析:

        本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學(xué)生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學(xué)解決實際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

        學(xué)生分析:

        本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當(dāng)?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

        設(shè)計理念:

        新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學(xué)習(xí)。

        教學(xué)目標(biāo)知識與技能目標(biāo):

        會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

        過程與方法目標(biāo):

        通過類比整式加減法運算體驗二次根式加減法運算的'過程;學(xué)生經(jīng)歷由實際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

        情感態(tài)度與價值觀:

        通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗到成功的樂趣.

        重點、難點:重點:

        合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

        難點:

        二次根式加減法的實際應(yīng)用。

        關(guān)鍵問題 :

        了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

        教學(xué)方法:.

        1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵學(xué)生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

        2. 類比法:由實際問題導(dǎo)入二次根式加減運算;類比合并同類項合并同類二次根式。

        3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個別問題進行點撥指導(dǎo),實現(xiàn)全優(yōu)的教育效果。

        【2】二次根式的加減教案

        教學(xué)目標(biāo):

        1.知識目標(biāo):二次根式的加減法運算

        2.能力目標(biāo):能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

        3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

        重難點分析:

        重點:能熟練進行二次根式的加減運算。

        難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應(yīng)用。

        教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達到每個學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

        運用教具:小黑板等。

        教學(xué)過程:

      問題與情景

      師生活動

      設(shè)計目的

      活動一:

      情景引入,導(dǎo)學(xué)展示

      1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

      2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

      這道題是舊知識的回顧,老師可以找同學(xué)直接回答。對于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。

      問:什么樣的二次根式能進行加減運算,運算到那一步為止。

      由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。

      加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。

      引出二次根式加減法則。

      3. A、B層同學(xué)自主學(xué)習(xí)15頁例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

      例1.計算:

      (1) ;

      (2) - ;

      例2. 計算:

      1)

      2)

      例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

      活動二:分層練習(xí),合作互助

      1.下列計算是否正確?為什么?

      (1)

      (2) ;

      (3) 。

      2.計算:

      (1) ;

      (2)

      (3)

      (4)

      3.(見課本16頁)

      補充:

      活動三:分層檢測,反饋小結(jié)

      教材17頁習(xí)題:

      A層、 B層:2、3.

      C層1、2.

      小結(jié):

      這節(jié)課你學(xué)到了什么知識?你有什么收獲?

      作業(yè):課堂練習(xí)冊第5、6頁。

      自學(xué)的同時抽查部分同學(xué)在黑板上板書計算過程。抽2名C層同學(xué)在黑板上完成例1板書過程,學(xué)生在計算時若出現(xiàn)錯誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書過程,并做適當(dāng)?shù)?分析講解。

      此題是聯(lián)系實際的題目,需要學(xué)生先列式,再計算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問題要全面,不能漏掉任何一段鋼材。

      老師提示:

      1)解決問題的方案是否得當(dāng);2)考慮的問題是否全面。3)計算是否準(zhǔn)確。

      A層同學(xué)完成16頁練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。

      點撥:1)對 的化簡是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分數(shù)、字母時,是否能正確處理;

      3)運算法則的運用是否正確

      先測試,再小組內(nèi)互批,查找問題。學(xué)生反思本節(jié)課學(xué)到的知識,談自己的感受。

      小結(jié)時教師要關(guān)注:

      1)學(xué)生是否抓住本課的重點;

      2)對于常見錯誤的認識。

      把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個層次,教學(xué)中做到分層要求。

      學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過程,可以提高學(xué)生能力,同時有利于激發(fā)學(xué)生的探索知識的欲望。

      二次根式的加減運算融入實際問題中去,提高了學(xué)生的學(xué)習(xí)興趣和對數(shù)學(xué)知識的應(yīng)用意識和能力。

      小組成員互相檢查學(xué)生對于新的知識掌握的情況,鞏固學(xué)生剛掌握的知識能力。達到共同把關(guān)、合作互助的目的。

      培養(yǎng)學(xué)生的計算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

      對課堂的問題及時反饋,使學(xué)生熟練掌握新知識。

      每個學(xué)生對于知識的理解程度不同,學(xué)生回答時教師要多鼓勵學(xué)生。

      二次根式教案 篇4

        教學(xué)目標(biāo)

        1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

        2.熟練地進行二次根式的加、減、乘、除混合運算.

        教學(xué)重點和難點

        重點:含二次根式的式子的混合運算.

        難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

        教學(xué)過程設(shè)計

        一、復(fù)習(xí)

        1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

        指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

        2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

        指出:二次根式的.乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

        計算結(jié)果要把分母有理化.

        3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

        4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

        二、例題

        例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

        分析:

        (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

        (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

        (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

        x-2且x0.

        解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

        例3

        分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

        解 因為1-a>0,3-a0,所以

        a<1,|a-2|=2-a.

        (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

        這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

        問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

        分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

        注意:

        所以在化簡過程中,

        例6

        分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

        a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

        三、課堂練習(xí)

        1.選擇題:

        A.a(chǎn)2B.a(chǎn)2

        C.a(chǎn)2D.a(chǎn)<2

        A .x+2 B.-x-2

        C.-x+2D.x-2

        A.2x B.2a

        C.-2x D.-2a

        2.填空題:

        4.計算:

        四、小結(jié)

        1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

        2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

        3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

        4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

        五、作業(yè)

        1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

        2.把下列各式化成最簡二次根式:

      二次根式教案 篇5

        【教學(xué)目標(biāo)】

        1.運用法則

        進行二次根式的乘除運算;

        2.會用公式

        化簡二次根式。

        【教學(xué)重點】

        運用

        進行化簡或計算

        【教學(xué)難點】

        經(jīng)歷二次根式的乘除法則的探究過程

        【教學(xué)過程】

        一、情境創(chuàng)設(shè):

        1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?

        2.計算:

        二、探索活動:

        1.學(xué)生計算;

        2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?

        3.概括:

        得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。

        將上面的公式逆向運用可得:

        積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

        三、例題講解:

        1.計算:

        2.化簡:

        小結(jié):如何化簡二次根式?

        1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

        2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

        四、課堂練習(xí):

        (一).P62 練習(xí)1、2

        其中2中(5)

        注意:

        不是積的'形式,要因數(shù)分解為36×16=242.

        (二).P67 3 計算 (2)(4)

        補充練習(xí):

        1.(x>0,y>0)

        2.拓展與提高:

        化簡:1).(a>0,b>0)

        2).(y

        2.若,求m的取值范圍。

        ☆3.已知:,求的值。

        五、本課小結(jié)與作業(yè):

        小結(jié):二次根式的乘法法則

        作業(yè):

        1).課課練P9-10

        2).補充習(xí)題

      二次根式教案 篇6

        1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?

        2.學(xué)生觀察下面的例子,并計算:

        由學(xué)生總結(jié)上面兩個式的關(guān)系得:

        類似地,請每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:

       。ā0,b0)

        使學(xué)生回憶起二次根式乘法的運算方法的推導(dǎo)過程.

        類似地,請每個同學(xué)再舉一個例子,

        請學(xué)生們思考為什么b的取值范圍變小了?

        與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.

        對比二次根式的乘法推導(dǎo)出除法的運算方法

        增強學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.

        對學(xué)生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

        強化學(xué)生的解題格式一定要標(biāo)準(zhǔn).

        教學(xué)過程設(shè)計

        問題與情境師生行為設(shè)計意圖

        活動二自我檢測

        活動三挑戰(zhàn)逆向思維

        把反過來,就得到

        (≥0,b0)

        利用它就可以進行二次根式的化簡.

        例2化簡:

       。1)

       。2)(b≥0).

        解:(1)(2)練習(xí)2化簡:

        (1)(2)活動四談?wù)勀愕氖斋@

        1.商的算術(shù)平方根的.性質(zhì)(注意公式成立的條件).

        2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.

        找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計算,然后再找學(xué)生指出不足.

        二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

        找學(xué)生口述解題過程,教師將過程寫在黑板上.

        請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.

        請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

        為了更快地發(fā)現(xiàn)學(xué)生的錯誤之處,以便糾正.

        此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎(chǔ)理解并不難.

        讓學(xué)困生在自己做題時有一個參照.

        充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

      二次根式教案 篇7

        活動1、提出問題

        一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責(zé)人要準(zhǔn)備多少面積的草皮嗎?

        問題:10+20是什么運算?

        活動2、探究活動

        下列3個小題怎樣計算?

        問題:1)-還能繼續(xù)往下合并嗎?

        2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

        二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的.進行合并。

        活動3

        練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

        創(chuàng)設(shè)問題情景,引起學(xué)生思考。

        學(xué)生回答:這個運動場要準(zhǔn)備(10+20)平方米的草皮。

        教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。

        我們可以利用已學(xué)知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

        教師引導(dǎo)驗證:

        ①設(shè)=,類比合并同類項或面積法;

       、趯W(xué)生思考,得出先化簡,再合并的解題思路

        ③先化簡,再合并

        學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

        教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。

        提醒學(xué)生注意先化簡成最簡二次根式后再判斷。

      二次根式教案 篇8

        一、教學(xué)目標(biāo)

        1.了解二次根式的意義;

        2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

        3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

        4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

        5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

        二、教學(xué)重點和難點

        重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

        難點:確定二次根式中字母的取值范圍.

        三、教學(xué)方法

        啟發(fā)式、講練結(jié)合.

        四、教學(xué)過程

        (一)復(fù)習(xí)提問

        1.什么叫平方根、算術(shù)平方根?

        2.說出下列各式的意義,并計算:

        通過練習(xí)使學(xué)生進一步理解平方根、算術(shù)平方根的`概念.

        觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

        表示的是算術(shù)平方根.

        (二)引入新課

        我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

        新課:二次根式

        定義: 式子 叫做二次根式.

        對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

        (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

        若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

        (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

        根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

        例1 當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?

        分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當(dāng)a-10時,a+10又如當(dāng)0

        例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

        解:略.

        說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

        例3 當(dāng)字母取何值時,下列各式為二次根式:

        (1) (2) (3) (4)

        分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

        解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當(dāng)a、b為任意實數(shù)時, 是二次根式.

        (2)-3x0,x0,即x0時, 是二次根式.

        (3) ,且x0,x0,當(dāng)x0時, 是二次根式.

        (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時, 是二次根式.

        例4 下列各式是二次根式,求式子中的字母所滿足的條件:

        (1) ; (2) ; (3) ; (4)

        分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

        解:(1)由2a+30,得 .

        (2)由 ,得3a-10,解得 .

        (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

        (4)由-b20得b20,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

        (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

        1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術(shù)平方根的表達式.

        2.式子中,被開方數(shù)(式)必須大于等于零.

        (四)練習(xí)和作業(yè)

        練習(xí):

        1.判斷下列各式是否是二次根式

        分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

        2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

        五、作業(yè)

        教材P.172習(xí)題11.1;A組1;B組1.

        六、板書設(shè)計

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式的加減教案01-19

      二次根式教案優(yōu)秀06-26

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案匯總6篇05-07

      關(guān)于二次根式教案五篇05-08

      【推薦】二次根式教案4篇05-09