圓柱的表面積教學(xué)反思集錦15篇
作為一位剛到崗的人民教師,課堂教學(xué)是重要的任務(wù)之一,寫教學(xué)反思能總結(jié)教學(xué)過程中的很多講課技巧,那么教學(xué)反思應(yīng)該怎么寫才合適呢?下面是小編收集整理的圓柱的表面積教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
圓柱的表面積教學(xué)反思1
數(shù)學(xué)課程標(biāo)準(zhǔn)指出,有效的數(shù)學(xué)活動(dòng)不能依賴模仿和記憶,動(dòng)手實(shí)踐, 自主探索,合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式.而且要倡導(dǎo)學(xué)生主動(dòng)參與,樂于探究,培養(yǎng)他們獲取新知識(shí)的能力.本節(jié)課一開始,我沒有直接告訴學(xué)生圓柱的特征,而是讓他們自己觀察,觸摸,與同學(xué)對(duì)比,拿尺子量各自手中的圓柱,在觀察,觸摸,對(duì)比,測量中得出圓柱的特征.特別是在教學(xué)圓柱的側(cè)面積時(shí),我沒有包辦代替,充分讓學(xué)生動(dòng)手實(shí)踐,操作,自己知道了圓柱側(cè)面展開可能會(huì)出現(xiàn)的圖形是長方形,正方形和平行四邊形,而且弄明白了展開圖形與圓柱各部分之間的關(guān)系,自己推導(dǎo)出了圓柱側(cè)面積的計(jì)算方法,思路清晰,算理透徹,真正成了學(xué)習(xí)的主人.可以說,整堂課的學(xué)習(xí)過程,我不是讓學(xué)生被動(dòng)地接受教材或教師給出現(xiàn)成的結(jié)論,而是通過合理的實(shí)踐活動(dòng),讓學(xué)生經(jīng)歷了知識(shí)的'再創(chuàng)造'過程.由于學(xué)生經(jīng)歷了不斷的'再創(chuàng)造',主動(dòng)地從事數(shù)學(xué)思考,理解,在理解的基礎(chǔ)上建構(gòu)數(shù)學(xué)知識(shí),所以整堂課的學(xué)習(xí)氣氛和教學(xué)效果取得了雙豐收.教師在本節(jié)課也真正體現(xiàn)《圓柱體的表面積》教學(xué)反思了組織者,合作者,引導(dǎo)者的身份。對(duì)于圓柱的側(cè)面積:重點(diǎn)在于圓柱的側(cè)面與長方形的轉(zhuǎn)化過程。如何把底面的周長、高與長方形的`長、寬對(duì)應(yīng)起來是關(guān)鍵。
在這節(jié)課中,我是用一張長方形的紙卷也一個(gè)圓柱體的管子,做演示。同學(xué)們都能理解,把側(cè)面打開就成了長方形,再換個(gè)角度,就能看到底圓周長=長方形的長,圓柱的高=長方形的寬。
對(duì)于表面積的處理,我先讓學(xué)生自己找找,什么是圓柱體的表面積。通過學(xué)生在書本中畫,小組討論得出:
圓柱體的表面積=側(cè)面積+兩個(gè)底面積。
本節(jié)課的教學(xué),學(xué)生學(xué)習(xí)興趣濃厚,學(xué)習(xí)積極主動(dòng),課堂上他們動(dòng)手操作,認(rèn)真觀察,獨(dú)立思考,互相討論,合作交流,終于發(fā)現(xiàn)了知識(shí),領(lǐng)悟了知識(shí),品嘗到了成功的喜悅,學(xué)生自始至終在自主學(xué)習(xí)中發(fā)展。
1.重視學(xué)習(xí)內(nèi)容的生活性。數(shù)學(xué)來源于生活,生活中到處有數(shù)學(xué)。從學(xué)生的生活實(shí)際,創(chuàng)設(shè)數(shù)學(xué)問題,這是激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣和調(diào)動(dòng)學(xué)生積極參與的有效方法。在教學(xué)的環(huán)節(jié)中,我創(chuàng)設(shè)了“八寶粥罐頭”的情景,從學(xué)生的已有知識(shí)出發(fā),讓學(xué)生邊看邊想邊說,復(fù)習(xí)了圓的面積和圓柱的特征。在突破側(cè)面積的計(jì)算方法這個(gè)難點(diǎn)時(shí),精心設(shè)疑:老師要制作一個(gè)圓柱形教具,請(qǐng)你幫助選擇合適的部件(兩個(gè)半徑是3厘米的圓和一些大小不同的長方形)。問題的提出使學(xué)生思維進(jìn)入了積極的狀態(tài):選擇哪一個(gè)長方形才會(huì)與兩個(gè)圓圍成圓柱呢,促使學(xué)生思考圓柱的側(cè)面與底面的關(guān)系。讓學(xué)生融入到學(xué)習(xí)氛圍中來。第二環(huán)節(jié)中,讓學(xué)生在熟悉的生活背景下,根據(jù)已掌握的數(shù)學(xué)知識(shí)大膽探索,培養(yǎng)了學(xué)生分析能力和創(chuàng)新意識(shí)。
2.重視學(xué)習(xí)主體的創(chuàng)造性。著名數(shù)學(xué)家、教育家波利亞指出:“學(xué)習(xí)任何知識(shí)的最佳途徑是自己去發(fā)現(xiàn)!币?yàn)檫@種發(fā)現(xiàn)理解最深,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)、和聯(lián)系。學(xué)生獨(dú)立思考,相互討論,辯論澄清的過程,就是自己發(fā)現(xiàn)或創(chuàng)造的過程。本節(jié)課中,首先以現(xiàn)實(shí)生活問題引入,根據(jù)學(xué)生原有的知識(shí)結(jié)構(gòu),從實(shí)際出發(fā),給學(xué)生充分的思考時(shí)間,對(duì)“選擇哪一個(gè)長方形才會(huì)與兩個(gè)圓圍成圓柱呢”進(jìn)行獨(dú)立探索、嘗試、討論、辯論,學(xué)生充分展示自己的思維過程,圓柱體的側(cè)面積就推導(dǎo)出來了。
3.重視學(xué)習(xí)過程的實(shí)踐性創(chuàng)建“生活課堂”,就要讓學(xué)生在自然真實(shí)的主體活動(dòng)中去“實(shí)踐”數(shù)學(xué)、在實(shí)踐中探索,在“實(shí)踐”中發(fā)現(xiàn)。在實(shí)踐中推出圓柱的側(cè)面積的計(jì)算,從而得知圓的表面積的計(jì)算方法,使學(xué)生在學(xué)習(xí)知識(shí)的過程中學(xué)會(huì)學(xué)習(xí),同時(shí),情感上得到滿足。實(shí)踐使我們體會(huì)到,創(chuàng)建“生活課堂”應(yīng)從學(xué)生的生活實(shí)際出發(fā),關(guān)注學(xué)生的情感體驗(yàn),調(diào)動(dòng)學(xué)生的生活積累,幫助他們架設(shè)并構(gòu)建新的平臺(tái),讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)問題,并激勵(lì)學(xué)生在實(shí)踐中探索解決問題的方法,從而提高學(xué)生整體素質(zhì),個(gè)性得以發(fā)展。
圓柱體的表面積的計(jì)算是在學(xué)習(xí)了圓柱特征的基礎(chǔ)上進(jìn)行教學(xué)的,這節(jié)課的主要內(nèi)容包括:圓柱的側(cè)面積、表面積的計(jì)算,以及用“進(jìn)一法”取近似值。.在新課的進(jìn)行中始終抓住重點(diǎn)難點(diǎn),教學(xué)思路清晰,引導(dǎo)學(xué)生大膽探索思考,獨(dú)立解決問題.教學(xué)中面向全體學(xué)生,做到精講多練,講練結(jié)合。讓學(xué)生自己發(fā)現(xiàn)問題自己解決問題,在有爭議的問題上教師能適時(shí)點(diǎn)撥學(xué)生自己去尋找正確的答案,使他們享受成功的喜悅,同時(shí)也把數(shù)學(xué)與生活緊密的聯(lián)系起來,從而培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
圓柱的表面積教學(xué)反思2
本課用課前預(yù)習(xí)課上小組內(nèi)交流匯報(bào)的教學(xué)方式組織教學(xué),課前布置了《圓柱的表面積》預(yù)習(xí)提綱 :
1、什么是圓柱的表面積?
2、沿著圓柱的高剪開圓柱的側(cè)面,側(cè)面展開圖是什么形狀?
3、怎樣求圓柱的側(cè)面積?
4、怎樣求圓柱的底面面積?
5、怎樣求圓柱的表面積?
課上學(xué)生很快討論出圓柱體表面積的計(jì)算方法。由于學(xué)生在之前的學(xué)習(xí)中已經(jīng)接觸了“化曲為直”的數(shù)學(xué)方法,所以把圓柱體的側(cè)面展開成長方形(或正方形)學(xué)生已經(jīng)能想象和深刻理解,并且通過想象和推理能夠明確展開的長方形的長(寬)就是圓柱體底面的周長,展開的長方形的寬(長)就是圓柱體的高,因此,學(xué)生對(duì)于怎樣求圓柱體的表面積能夠理解和初步掌握。
但是,通過學(xué)生嘗試計(jì)算圓柱體表面積的過程中,仍然存在許多問題,第一:學(xué)生對(duì)于圓柱體的表面積的計(jì)算方法雖然初步掌握但是很不熟練,具體表現(xiàn)在求圓的面積和圓的周長時(shí),特別容易出現(xiàn)混淆,原因就是對(duì)求圓的面積和圓的周長的計(jì)算辦法掌握欠熟練,特別是求圓的面積時(shí),部分學(xué)生總是忘記把半徑進(jìn)行平方,或者是直接用給出的直徑去平方,這都是對(duì)圓的面積計(jì)算辦法掌握不熟練的表現(xiàn);第二:學(xué)生的`計(jì)算能力和計(jì)算正確率都有待提高,由于在計(jì)算過程中出現(xiàn)了圓周率,又有半徑的平方的計(jì)算,所以很多學(xué)生的計(jì)算正確率很低。原因就是學(xué)生的口算能力、筆算能力都沒有形成技能,只掌握計(jì)算方法但不能熟練準(zhǔn)確的計(jì)算,這都是學(xué)生能夠準(zhǔn)確求出圓柱體表面積的障礙。
針對(duì)這種情況,我打算采取這樣的辦法:第一:強(qiáng)化學(xué)生對(duì)圓的面積和圓的周長、圓柱側(cè)面積的計(jì)算辦法。第二:在計(jì)算時(shí)提醒學(xué)生仔細(xì)認(rèn)真,出錯(cuò)時(shí)要找出出錯(cuò)的原因,對(duì)證改錯(cuò)。同時(shí)結(jié)合課前三分鐘計(jì)算的時(shí)間,加強(qiáng)學(xué)生的計(jì)算練習(xí)。
總之,讓學(xué)生熟練準(zhǔn)確的計(jì)算圓柱的表面積和側(cè)面積,可以為下一步學(xué)習(xí)和計(jì)算圓柱的體積掃清障礙。
圓柱的表面積教學(xué)反思3
在教學(xué)圓柱的表面積時(shí),由于學(xué)生已經(jīng)學(xué)習(xí)了長方體和正方體的表面積,而且上節(jié)課已經(jīng)制作過圓柱模型,所以學(xué)生對(duì)表面積含義的理解并不困難。因此在教學(xué)圓柱的表面積時(shí),我讓學(xué)生通過討論交流并觀察圓柱展開圖,很快就理解了圓柱的表面積是由一個(gè)曲面和兩個(gè)完全相同的圓圍成的。但在計(jì)算表面積時(shí),側(cè)面積的計(jì)算方法是本課中的教學(xué)難點(diǎn)。學(xué)生往往不能將圓柱的`底面半徑及圓柱的高,和圓柱側(cè)面的長寬建立起聯(lián)系,因此在教學(xué)時(shí)我加強(qiáng)了學(xué)生的操作活動(dòng),讓學(xué)生預(yù)先在展開后的圖形中標(biāo)明圓柱的底面和側(cè)面,以便把展開后的每個(gè)面與展開前的位置對(duì)應(yīng)起來但在計(jì)算時(shí)卻出現(xiàn)周長與面積混淆,所以我及時(shí)幫助學(xué)生理清解題思路,讓學(xué)生明確計(jì)算側(cè)面積的直接條件是底面周長和高;圓柱的底面是圓形,計(jì)算圓的面積的直接條件是半徑。而且要能熟練區(qū)分圓的周長和面積的計(jì)算公式。盡管如此學(xué)生在解決實(shí)際問題時(shí)還是問題很多,因?yàn)椴襟E較多,計(jì)算粗心不規(guī)范也影響了解題速度和準(zhǔn)確率,所以一節(jié)課下來,課堂容量不大,效率較低,看來在這個(gè)單元的教學(xué)中要結(jié)合學(xué)生實(shí)際再改進(jìn)教學(xué)方法,提高課堂教學(xué)效率。
圓柱的表面積教學(xué)反思4
圓柱體的表面積計(jì)算是一個(gè)難點(diǎn)。本堂課中學(xué)生雖然很明確的知道求圓柱體的表面積是求兩個(gè)底面積和一個(gè)側(cè)面積的面積和。但在實(shí)施過程中有一定的困難,有寫同學(xué)是因?yàn)閷?duì)其中的公式或意義沒有真正理解。不知道要求側(cè)面積先求什么,求了圓底面周長又和圓的面積混淆,列式計(jì)算時(shí)漏洞百出,甚至還有一部分同學(xué)因?yàn)橛?jì)算又導(dǎo)致前功盡棄。
接觸到一些實(shí)際問題的時(shí)候,由于學(xué)生的生活經(jīng)驗(yàn)和社會(huì)經(jīng)驗(yàn)都比較淺薄,從而對(duì)一物體的認(rèn)識(shí)不夠,不能完全準(zhǔn)確的來判斷求的物體是幾個(gè)面,分別是哪幾個(gè)面,還有實(shí)際中求表面積時(shí)采用的近似法椰油一定的不理解,需要通過反復(fù)練習(xí)才能達(dá)到一定的程度。
[圓柱的側(cè)面積和表面積]
沿著圓柱的一條母線把圓柱剪開后展開,圓柱的側(cè)面就由曲面轉(zhuǎn)化為平面,展開圖是一個(gè)矩形,矩形的長等于圓柱底面的周長c,矩形的寬等于圓柱的高h(yuǎn).這個(gè)矩形的面積就是圓柱的側(cè)面積.由此可知,圓柱的側(cè)面積等于底面的周長乘以高,即
S圓柱側(cè)=ch=2rh(r為圓柱底面的半徑)
圓柱的側(cè)面積與兩個(gè)底面圓面積的和,就是圓柱的表面積(也叫全面積).即
S圓柱表=S圓柱側(cè)+2S底=2r2
教學(xué)時(shí),要把圓柱的側(cè)面積和表面積區(qū)別開來.可用紙板做成圓柱模型,然后將側(cè)面展開,導(dǎo)出計(jì)算圓柱側(cè)面積和表面積的方法,并先概括成文字公式,再過渡到字母公式.
學(xué)生計(jì)算煙囪、水管、無蓋桶、封閉桶罐等用料面積時(shí),容易多算或少算底面積,靈活運(yùn)用公式比較困難.可以多觀察實(shí)物、模型,增加感性認(rèn)識(shí).也可以給出一些計(jì)算式子,要學(xué)生說明是求圓柱體的哪幾個(gè)面的面積.例如:S=2rh,是求( );S= 2r2,是求( ); S=2r2,是求( ).
《圓柱的'側(cè)面積和表面積》教學(xué)片段
在以往教學(xué)長方體、正方體的表面積時(shí),常常為學(xué)生在學(xué)習(xí)表面積后的變式練習(xí)中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪個(gè)面而頭疼。
我想,關(guān)于圓柱的表面積也會(huì)存在這樣的問題吧。為了防患于未然,我想,是不是在新課的教學(xué)中就為這些情況作了一些鋪墊呢?因此,在教學(xué)這一課時(shí),我先引導(dǎo)學(xué)生復(fù)習(xí)了圓柱體的特征,然后設(shè)計(jì)了如下問題:
求鉛筆涂漆部分的面積是求( )的面積;
壓路機(jī)滾動(dòng)一周壓過多大路面是求( )的面積;
求一個(gè)水桶用多少材料是求( )的面積;
求汽油桶用多少鐵皮是求( )的面積。
圓柱的表面積教學(xué)反思5
蘇霍姆林斯基曾指出:“在人們內(nèi)心深處都有一種根深蒂固的需要,這就希望自己是一個(gè)發(fā)現(xiàn)者。研究者,在兒童的精神世界中,這種需要特別強(qiáng)烈。”那么在實(shí)際教學(xué)中,如何給學(xué)生提供一個(gè)發(fā)現(xiàn)、研究、探索的機(jī)會(huì)就顯得尤為重要。這就必須在新的教學(xué)理念指導(dǎo)下,把生動(dòng)的課堂還給學(xué)生,給學(xué)生一個(gè)自主學(xué)習(xí)的機(jī)會(huì),下面就《圓柱的側(cè)面積與表面積》談?wù)勛约旱慕虒W(xué)體會(huì)。
一、創(chuàng)設(shè)問題的情景
在新授時(shí)我打破以前拿出一個(gè)圓柱放在桌上直接進(jìn)行側(cè)面積公式推導(dǎo)模式,而是提供給學(xué)生兩個(gè)空心紙圓柱,一個(gè)矮胖型,一個(gè)瘦高型,鼓勵(lì)學(xué)生大膽猜想,“誰的側(cè)面積大一些”。學(xué)生們看到兩個(gè)圓柱表現(xiàn)得非常積極,興趣十分濃厚,思維也很活躍。有的說:“我認(rèn)為矮胖型側(cè)面積較大!蔽揖妥穯査麨槭裁?他說:“矮胖型圓柱比較粗,我認(rèn)為圓柱側(cè)面積與它的粗細(xì)程度有關(guān)!庇械恼f:“我認(rèn)為瘦高型的圓柱側(cè)面積較大!蔽乙沧穯査麨槭裁?他說:“瘦高型圓柱比較高,我認(rèn)為圓柱側(cè)面積與他的高低有關(guān)!碑(dāng)然還有一部分認(rèn)為它們的側(cè)面積相等或無法判斷的,因?yàn)樗麄冋J(rèn)為圓柱的側(cè)面積與圓柱的粗細(xì)和高低都有關(guān)系,甚至還把小的那個(gè)圓柱放在大圓柱內(nèi),再把大圓柱底面捏起來讓我看。對(duì)子上面的回答我都沒有給予直接肯定或否定,關(guān)鍵是我認(rèn)為通過學(xué)生們對(duì)兩個(gè)圓柱的觀察都已認(rèn)識(shí)到了非常重要的兩點(diǎn),即圓柱側(cè)面積大小與圓柱粗細(xì)和高低有關(guān)。通過這樣創(chuàng)設(shè)情景設(shè)疑大大激發(fā)了學(xué)生的直覺思維,而不是像以前對(duì)照公式直接去講解。與此同時(shí)我再設(shè)一疑,這兩個(gè)圓柱到底誰的側(cè)面積大,你們能否通過動(dòng)手來證明呢?
二、動(dòng)手操作,實(shí)踐領(lǐng)悟
在允許學(xué)生想一切辦法證明自己的`猜測時(shí),學(xué)生們再一次表現(xiàn)了良好的學(xué)習(xí)興趣,個(gè)個(gè)動(dòng)手動(dòng)腦,有的沿高直往下剪,把圓柱側(cè)面剪開得到了一個(gè)長方形的展開圖;有的斜著剪下來得到一個(gè)平行四邊形;有的剪成各種不規(guī)則圖形;還有的剪成若干個(gè)三角形,梯形等等,體現(xiàn)了學(xué)生思維的多樣性,差異性。也使學(xué)生一下子明白其實(shí)求圓柱的側(cè)面積完全可以轉(zhuǎn)化為我們以前學(xué)過的圖形。既然圓柱的側(cè)面積可以轉(zhuǎn)化成這么多以前學(xué)過的圖形,那你們覺得把它轉(zhuǎn)化成哪一種來求更為合理呢?
三、討論交流,合作探索
因?yàn)槿魏沃R(shí)獲得的最佳途徑是自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深,也最容易掌握其中內(nèi)在規(guī)律、性質(zhì)聯(lián)系.在學(xué)生自己發(fā)現(xiàn)圓柱側(cè)面積可以轉(zhuǎn)化成何種圖形來求最簡單、合理.而且對(duì)于一些不能剪開的圓柱,如鐵圓柱、石圓柱、玻璃圓柱……,也發(fā)現(xiàn)了他們的底面積即長方形的長,圓柱的高即長方形的寬之間的對(duì)應(yīng)關(guān)系。求圓柱側(cè)面積只要用圓柱底面周長乘以高。通過這樣的討論交流不僅可以讓學(xué)生發(fā)現(xiàn),掌握?qǐng)A柱側(cè)面積計(jì)算公式,更進(jìn)一步認(rèn)識(shí)到長方形、平行四邊形與圓柱的內(nèi)在聯(lián)系,從而使學(xué)生思維也從具體形象走向抽象概括。
四、實(shí)踐應(yīng)用,發(fā)展能力
在學(xué)生自主發(fā)現(xiàn)圓柱側(cè)面積=底面周長×高后,我馬上給出題目:一個(gè)圓柱底面直徑0.3米,高2米,求它的側(cè)面積?讓學(xué)生獨(dú)立進(jìn)行解答。側(cè)面積會(huì)求了又如何求圓柱的表面積呢?獨(dú)立解決,一個(gè)圓柱高是15厘米,底面半徑5厘米,它的表面積是多少?最后我還啟發(fā)學(xué)生思考:學(xué)了這個(gè)公式,你能用它解決哪些實(shí)際問題?如有的學(xué)生提出圓柱側(cè)面包裝紙的用料問題,只需求一具側(cè)面;如制造一種圓柱形無蓋茶杯或水桶的表面積,只需計(jì)算一個(gè)底面加一個(gè)側(cè)面;再如圓柱形汽油桶表面積,就要求兩個(gè)底面和一個(gè)側(cè)面……這樣就拉近了所學(xué)數(shù)學(xué)知識(shí)與實(shí)際生活的聯(lián)系,從而也培養(yǎng)了學(xué)生的能力。
這節(jié)課在教學(xué)時(shí)我并沒有把大量時(shí)間放在如何講解側(cè)面積公式及其公式應(yīng)用上,而是讓學(xué)生大膽猜想,自主探索,也培養(yǎng)了他們?nèi)伺c人之間的交流合作,使他們的思維發(fā)生碰撞,充分發(fā)揮內(nèi)在潛能,從而有效地培養(yǎng)了學(xué)生主動(dòng)探索精神,動(dòng)手操作能力與創(chuàng)新精神。
圓柱的表面積教學(xué)反思6
圓柱的表面積教學(xué),關(guān)鍵在于通過圓柱的側(cè)面展開圖推導(dǎo)出圓柱的側(cè)面積公式。因此本節(jié)課的教學(xué),從始至終貫穿著以學(xué)生為主體,教師為主導(dǎo),訓(xùn)練思維為主線的原則,在各個(gè)環(huán)節(jié)中讓學(xué)生自己去解決,讓學(xué)生在動(dòng)手操作、合作探究中學(xué)習(xí)。
一、把握重點(diǎn),突破難點(diǎn),合理利用教材。
圓柱表面積這節(jié)課教學(xué)內(nèi)容主要包括:圓柱的側(cè)面積、表面積的計(jì)算,以及用進(jìn)一法取近似值。教材安排了三道例題,但在教學(xué)中,我將側(cè)面積計(jì)算方法的 推導(dǎo)作為教學(xué)難點(diǎn)來突破,將表面積的計(jì)算作為重點(diǎn)來教學(xué),將用近一法取似值作為一個(gè)知識(shí)點(diǎn)。再結(jié)合學(xué)生的實(shí)際,巧妙的把他們聯(lián)系成一個(gè)整體,做到收中 有放,放中有收。
二、直觀演示和實(shí)踐操作相結(jié)合。
在側(cè)面積和表面積的計(jì)算環(huán)節(jié)中,我首先讓學(xué)生看一看、摸一摸,自己觀察、發(fā)現(xiàn),形成圓柱表面積的表象。認(rèn)識(shí)到圓柱的表面積等于圓柱的側(cè)面積和兩個(gè)底面面積 之和。然后,在突破側(cè)面積的計(jì)算方法這個(gè)難點(diǎn)時(shí),讓學(xué)生自己展開圓柱體模型,觀察到側(cè)面展開是一個(gè)長方形。長方形的長就是圓柱的底面周長,長方形的寬就是 圓柱的高,從而根據(jù)長方形的面積公式自然推導(dǎo)出了圓柱側(cè)面積的計(jì)算公式,然后我又啟發(fā)學(xué)生:圓柱的側(cè)面展開圖除了長方形,還可能是什么圖形?發(fā)現(xiàn)、創(chuàng)新是 每個(gè)孩子的天性,在基本知識(shí)理解掌握之后,他們對(duì)于書本上沒有的方式方法有更高的興奮點(diǎn)與關(guān)注點(diǎn)。這時(shí)有的學(xué)生會(huì)說,沿高展開后還可能得到正方形,這是一 種特殊現(xiàn)象。借此我又讓學(xué)生自己進(jìn)行操作、嘗試,得出了與書上不一樣的結(jié)果。這樣做,不僅啟發(fā)了他們的思維,又培養(yǎng)了他們的創(chuàng)新意識(shí)。
三、習(xí)題設(shè)計(jì)。
在練習(xí)題的設(shè)計(jì)中,遵循了從易到難的`原則,在形式、難度、靈活性上都有體現(xiàn)。判斷題有利于學(xué)生對(duì)知識(shí)的理解;動(dòng)手測量并計(jì)算圓柱體實(shí)物表面積的題目,鍛煉了學(xué)生對(duì)知識(shí)的實(shí)際應(yīng)用能力,使學(xué)生感受到數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。
當(dāng)然,在這節(jié)課的教學(xué)中,還存在著一些不足。如:學(xué)生對(duì)圓周長和面積的計(jì)算不夠熟練;小組合作的初衷也是好的,但在實(shí)際教學(xué)中卻沒有達(dá)到預(yù)期的要求。在以后的教學(xué)中,我還應(yīng)該多吸取教訓(xùn),彌補(bǔ)自己的不足,用更好的教學(xué)方法進(jìn)行數(shù)學(xué)知識(shí)的教學(xué)。
圓柱的表面積教學(xué)反思7
教學(xué)《圓柱的表面積》重點(diǎn)在于通過圓柱的側(cè)面展開圖推導(dǎo)出圓柱的側(cè)面積計(jì)算公式,難點(diǎn)是靈活運(yùn)用側(cè)面積、表面積的有關(guān)知識(shí)解決實(shí)際問題。在本節(jié)課的教學(xué)中,我從始至終貫穿著“以學(xué)生為主體,教師為主導(dǎo),思維訓(xùn)練為主線”的原則,篩選了圓柱表面積的計(jì)算方法和靈活應(yīng)用為關(guān)鍵要素,搭建了多向度、多角度的學(xué)生合作平臺(tái),讓學(xué)生在玩中學(xué),學(xué)中玩,以游戲闖關(guān)的形式愉悅地完成本課教學(xué)。課下回顧整節(jié)課的教學(xué)同時(shí)又和同年組的老師進(jìn)行了交流,反思如下:
一、激情導(dǎo)課,激發(fā)學(xué)生的學(xué)習(xí)能動(dòng)性。
復(fù)習(xí)開始前,我問“同學(xué)們,老師今天把你們剛認(rèn)識(shí)的新朋友帶來了,你們猜,他是誰?”就在學(xué)生們的猜測下,我拿出了課前藏好的圓柱。我繼續(xù)發(fā)問“你們認(rèn)識(shí)它嗎,是怎樣認(rèn)識(shí)的?你們還想知道它的什么?”由此展開圓柱的表面展開圖。復(fù)習(xí)引入——提出長方體、正方體的表面積,導(dǎo)出圓柱的表面積的意義。
二、探究新知,搭建平臺(tái)經(jīng)歷知識(shí)形成的過程。
本課教學(xué)分為三部分:第一部分是教學(xué)圓柱表面積的概念和側(cè)面積的計(jì)算。探究新知時(shí),讓學(xué)生動(dòng)手操作、觀察、發(fā)現(xiàn),通過小組的討論、交流,呈現(xiàn)出不同圓柱的側(cè)面展開圖體現(xiàn)多向度、多角度的合作平臺(tái),從而進(jìn)一步明確圓柱側(cè)面沿高打開是長方形,長方形的長相當(dāng)于圓柱的底面周長,寬相當(dāng)于圓柱的高。由此導(dǎo)出圓柱的側(cè)面積的計(jì)算方法。在學(xué)生學(xué)會(huì)計(jì)算圓柱的側(cè)面積以后,設(shè)疑:你會(huì)計(jì)算這圓柱的表面積嗎?(第二部分開始)學(xué)生在充分練習(xí)鋪墊的基礎(chǔ)上,合理自然地就計(jì)算出了圓柱的表面積。在練習(xí)表面積的實(shí)際應(yīng)用時(shí),又很自然地進(jìn)行了“進(jìn)一法”的教學(xué)。最后一部分是練習(xí)階段,以生活中的圓柱物體為例求出所需要的材料,要求學(xué)生說出要計(jì)算哪幾個(gè)面,體現(xiàn)了“數(shù)學(xué)來源于生活,數(shù)學(xué)應(yīng)用于生活”的思想。
三、把握重、難點(diǎn),創(chuàng)造性的使用教材和教學(xué)資源。
“圓柱表面積”這節(jié)課教學(xué)內(nèi)容主要包括:圓柱的側(cè)面積、表面積的計(jì)算,以及用“進(jìn)一法”取近似值。教材安排了三道例題,但在教學(xué)中,我將側(cè)面積計(jì)算方法的推導(dǎo)作為教學(xué)難點(diǎn)來突破,將表面積的計(jì)算作為重點(diǎn)來教學(xué),將用“進(jìn)一法”取似值作為一個(gè)知識(shí)點(diǎn)。在突破側(cè)面積的計(jì)算方法這個(gè)難點(diǎn)時(shí),精心設(shè)疑:圓柱的側(cè)面是個(gè)曲面,怎樣計(jì)算它的面積呢?讓學(xué)生以小組為單位,用圓柱形紙筒進(jìn)行實(shí)際操作,最后探究出側(cè)面積的計(jì)算方法。在學(xué)生學(xué)會(huì)計(jì)算圓柱的底面積和側(cè)面積以后,設(shè)疑:你會(huì)計(jì)算這圓柱的表面積嗎?學(xué)生在充分練習(xí)鋪墊的基礎(chǔ)上,合理自然地就計(jì)算出了圓柱的表面積。在練習(xí)表面積的實(shí)際應(yīng)用時(shí)又體現(xiàn)了數(shù)學(xué)與生活的聯(lián)系。
四、教學(xué)方法:
直觀演示和實(shí)踐操作相結(jié)合,呈現(xiàn)梯度形態(tài)。 在側(cè)面積和表面積的計(jì)算環(huán)節(jié)中,我首先讓學(xué)生摸一摸,自己觀察、發(fā)現(xiàn),形成圓柱表面積的`表象。認(rèn)識(shí)到圓柱的表面積等于圓柱的側(cè)面積和兩個(gè)底面面積之和。教學(xué)側(cè)面積的計(jì)算方法時(shí),讓學(xué)生以小組為單位,通過觀察、操作推導(dǎo)出側(cè)面積的計(jì)算方法。調(diào)集多種要素讓學(xué)生親身實(shí)踐了,記憶一定就會(huì)更加深刻。這樣充分利用了學(xué)生現(xiàn)有的學(xué)具和準(zhǔn)備的圓柱體實(shí)物,讓學(xué)生自己去動(dòng)手、觀察,推導(dǎo)出了圓柱的表面積和側(cè)面積的計(jì)算公式,并運(yùn)用幻燈片輔助教學(xué),有利于學(xué)生對(duì)知識(shí)的理解及掌握。
當(dāng)然,在這節(jié)課的教學(xué)中,還存在著一些不足:
首先,實(shí)踐操作展示得不夠。在動(dòng)手探索圓柱側(cè)面積的計(jì)算方法時(shí),小部分同學(xué)的學(xué)具較小,展示時(shí)沒有達(dá)到預(yù)期的效果。。
其次,學(xué)生的計(jì)算能力有待加強(qiáng),在計(jì)算圓柱的側(cè)面積和表面積時(shí)顯得費(fèi)時(shí)費(fèi)力。
在以后的教學(xué)中,我還應(yīng)該多吸取經(jīng)驗(yàn),彌補(bǔ)自己的不足,提升自己的教學(xué)能力。
圓柱的表面積教學(xué)反思8
一節(jié)課講得再好,關(guān)鍵是學(xué)生學(xué)到了什么。
今天我在講圓柱的表面積時(shí),先是讓學(xué)生想像圓柱是由哪些部分構(gòu)成的,通過對(duì)圓柱結(jié)構(gòu)的了解,讓學(xué)生明白在計(jì)算圓柱表面積時(shí),我們一定要看清題目所提供的信息,如果是一個(gè)實(shí)物圖,這個(gè)還好些,我們只要根據(jù)題目所提供的實(shí)物圖進(jìn)行解答。如果題目所提供的信息是一個(gè)生活中的實(shí)物,我們在解決時(shí)就要結(jié)合實(shí)物實(shí)際情況進(jìn)行解析。如油桶的`制作它就是要算圓柱的側(cè)面積與兩個(gè)底的面積。再如水桶的制作,就不再是在側(cè)面積的基礎(chǔ)上加上兩個(gè)底面積,而是只要加上一個(gè)底面積即可。如給一個(gè)大廳里的圓柱子刷涂料,這是要算的面積則是這個(gè)圓柱的側(cè)面積。所以在講解時(shí),我放手讓學(xué)生從生活中找不同的圓柱體,從而讓學(xué)生了解生活,了解數(shù)學(xué)。本節(jié)課還有一個(gè)重點(diǎn),那就是讓學(xué)生明白圓柱體展開后,它的側(cè)面是一個(gè)長方形或一個(gè)正方形,一般而言,展開的長方形的長是與圓柱底面的周長是相等的,否則這個(gè)水桶就會(huì)漏水。這個(gè)知識(shí)點(diǎn)是本節(jié)課的重點(diǎn),同時(shí)也是學(xué)生以后作業(yè)中常出錯(cuò)的“閃光點(diǎn)”。所以本節(jié)課在教學(xué)過程中,我有意讓學(xué)生通過圓柱體進(jìn)行實(shí)際操作,讓學(xué)生從內(nèi)心深處明白,圓柱底面周長就是展開后長方形的長。
雖然今天學(xué)生作業(yè)只是套用公式,學(xué)生沒有什么失誤,但在拓展題,還是暴露出靈性不足。希望在以后練習(xí)中還需進(jìn)一步強(qiáng)化,從而達(dá)到熟能生巧的地步。
圓柱的表面積教學(xué)反思9
本節(jié)課的教學(xué)采用操作和演示,講解和嘗試練習(xí)相結(jié)合的方法,使新課與練習(xí)有機(jī)地融為一體,做到講與練,相結(jié)合。
1、把握重點(diǎn),突破難點(diǎn),合理利用教材
對(duì)于圓柱體側(cè)面面積計(jì)算公式的推導(dǎo),嚴(yán)格遵循主體性原則,讓學(xué)生動(dòng)手操作、觀察、發(fā)現(xiàn),促進(jìn)知識(shí)的遷移,使學(xué)生輕松地理解掌握?qǐng)A柱側(cè)面面積的計(jì)算方法,較好地突破難點(diǎn)。
2、直觀演示和實(shí)際操作相結(jié)合
通過直觀演示和實(shí)際操作,引導(dǎo)學(xué)生觀察、思考和探索圓柱體表面積的計(jì)算方法,鼓勵(lì)學(xué)生積極主動(dòng)地獲取新知。
3、講解與練習(xí)相結(jié)合
本節(jié)課,改變了傳統(tǒng)的.先講后練的教學(xué)模式,做到講、練結(jié)合,貫穿教學(xué)的始終,使練習(xí)隨著講解由易到難,層層深入。在練習(xí)表面積的實(shí)際應(yīng)用時(shí),又很自然地進(jìn)行了“進(jìn)一法”的教學(xué),使講、練,真正做到了有機(jī)結(jié)合,學(xué)生學(xué)習(xí)的知識(shí)是有效的、實(shí)用的,同時(shí)也激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)和運(yùn)用解決實(shí)際問題的興趣,培養(yǎng)了學(xué)生的應(yīng)用意識(shí)。
圓柱的表面積教學(xué)反思10
1、抓住特征,建立表象。
之前學(xué)生已經(jīng)學(xué)習(xí)了長方體和正方體的表面積,學(xué)生對(duì)表面積的概念并不陌生。
講授圓柱的表面積時(shí),重點(diǎn)是通過圓柱展開圖,讓學(xué)生理解圓柱的表面積是由一個(gè)曲面和兩個(gè)完全相同的圓圍成的,這樣真正建立圓柱的.表面積的表象。
2、抓住本質(zhì),理清思路。
圓柱的表面積包括一個(gè)側(cè)面和兩個(gè)底面。計(jì)算圓柱的側(cè)面積時(shí),要用圓柱的底面周長乘高,而圓柱的底面積則需用到圓的面積公式。在同一題里,周長公式與面積公式混淆也是計(jì)算圓柱表面積出錯(cuò)的原因之一。怎樣能更好地理清思路,靈活地進(jìn)行計(jì)算呢?我認(rèn)為,盡量將復(fù)雜的問題簡單化,以不變應(yīng)萬變。即圓柱的側(cè)面展開圖是一個(gè)長方形,計(jì)算側(cè)面積的直接條件是底面周長和高;圓柱的底面是圓形,計(jì)算圓的面積的直接條件是半徑。當(dāng)然,涉及解決具體的問題,我們就要聯(lián)系實(shí)際,具體問題具體對(duì)待。讓學(xué)生在明算理的基礎(chǔ)上掌握具體算法。
圓柱的表面積教學(xué)反思11
《新課標(biāo)》指出:在課堂教學(xué)中,要面向全體學(xué)生,為每一個(gè)學(xué)生的發(fā)展創(chuàng)造條件,讓優(yōu)秀學(xué)生不斷出現(xiàn),并且加快發(fā)展。讓后進(jìn)生也能跟上,并且在原有的基礎(chǔ)上有較大的提高,達(dá)到個(gè)人發(fā)展的較高水平。在這個(gè)學(xué)期,我也一直注重這方面的引導(dǎo),所以在探索圓柱側(cè)面積的.計(jì)算公式時(shí),有許多同學(xué)不知道該如何推導(dǎo)公式,針對(duì)這種情況,我尊重學(xué)生的差異,采取分層要求:a、不知道怎么求圓柱側(cè)面積的同學(xué),馬上開動(dòng)腦筋想想:能否將這個(gè)曲面轉(zhuǎn)化成我們以前學(xué)過的平面圖形。如果行,怎么轉(zhuǎn)化。b、知道怎么求圓柱側(cè)面積的同學(xué)呢?我又有另外的要求:你們看能不能再結(jié)合實(shí)驗(yàn)操作清晰地表述圓柱側(cè)面積計(jì)算方法的推導(dǎo)過程。
在這樣分層要求的情況下,每個(gè)學(xué)生的研究目標(biāo)都很明確。每個(gè)學(xué)生經(jīng)過獨(dú)立思考后,都有不同程度的發(fā)現(xiàn),這樣就促使小組交流活動(dòng)有效進(jìn)行。
圓柱的表面積教學(xué)反思12
一、在復(fù)習(xí)引入環(huán)節(jié),我首先通過復(fù)習(xí)圓的周長和面積的計(jì)算,為下面的計(jì)算圓柱的側(cè)面積和表面積打下基礎(chǔ);復(fù)習(xí)圓柱的特征為后面?zhèn)让娣e和表面積的公式推導(dǎo)做好鋪墊。
二、在側(cè)面積和表面積的計(jì)算環(huán)節(jié)中,我首先讓學(xué)生看一看、摸一摸,自己觀察、發(fā)現(xiàn),形成圓柱表面積的表象。認(rèn)識(shí)到圓柱的表面積等于圓柱的側(cè)面積和兩個(gè)底面面積的和。然后,在突破側(cè)面積的計(jì)算方法這個(gè)難點(diǎn)時(shí),讓學(xué)生自己展開圓柱體模型,觀察到側(cè)面展開是一個(gè)長方形。長方形的長就是圓柱的'底面周長,長方形的寬就是圓柱的高,從而根據(jù)長方形的面積公式自然推導(dǎo)出了圓柱側(cè)面積的計(jì)算公式,在這一環(huán)節(jié)中,培養(yǎng)了學(xué)生的觀察、分析能力,同時(shí)也培養(yǎng)了學(xué)生的合作意識(shí)。
三、在練習(xí)題的設(shè)計(jì)中,遵循了從易到難的原則,在形式、難度、靈活性上都有體現(xiàn)。判斷題有利于學(xué)生對(duì)知識(shí)的理解;動(dòng)手測量并計(jì)算圓柱體實(shí)物表面積的題目,鍛煉了學(xué)生對(duì)知識(shí)的實(shí)際應(yīng)用能力,使學(xué)生感受到數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。
四、在教學(xué)方法上,充分利用了學(xué)生現(xiàn)有的學(xué)具和準(zhǔn)備的圓柱體實(shí)物,讓學(xué)生自己去動(dòng)手、觀察,推導(dǎo)出了圓柱的表面積和側(cè)面積的計(jì)算公式。
在這節(jié)課的教學(xué)中,還存在著一些不足:
1、實(shí)踐操作展示得不夠。在動(dòng)手探索圓柱側(cè)面積的計(jì)算方法時(shí),大部分學(xué)生聯(lián)系上節(jié)課的經(jīng)驗(yàn)說出看法,而沒有實(shí)際操作,我也沒有讓他們展示推導(dǎo)的過程,加深印象,只是讓他們說一說,導(dǎo)致一部分學(xué)困生只能聽聽而已;
2、學(xué)生對(duì)圓周長和面積的計(jì)算不夠熟練,所以,在計(jì)算圓柱的側(cè)面積和表面積時(shí)顯得費(fèi)時(shí)費(fèi)力;
3、部分學(xué)生對(duì)生活問題中的圓柱表面積(不是三個(gè)面的)理解上有欠缺。
本節(jié)課的教學(xué)主要讓學(xué)生明確圓柱體表面積的計(jì)算方法,并能夠在練習(xí)中靈用公式進(jìn)行計(jì)算。針對(duì)本課的教學(xué)設(shè)計(jì),主要做到以下幾點(diǎn):
1、把握重點(diǎn),突破難點(diǎn),合理利用教材。
對(duì)于圓柱體側(cè)面面積計(jì)算公式的推導(dǎo),嚴(yán)格遵循學(xué)生主體性原則,讓學(xué)生在動(dòng)于操作、觀察發(fā)現(xiàn)中促進(jìn)知識(shí)的遷移,讓學(xué)生輕松地理解掌握?qǐng)A柱側(cè)面面積的計(jì)算方法,以此來較好地突破難點(diǎn)。
2、直觀演示和實(shí)際操作相結(jié)合,通過直觀演示和實(shí)際操作,引導(dǎo)學(xué)生觀察、思考和探索圓柱體表面積的計(jì)算方法,鼓勵(lì)學(xué)生積極主動(dòng)地獲取新知。
3、講解與練習(xí)相結(jié)合。
本節(jié)課,改變了傳統(tǒng)的先講后練的教學(xué)模式,使講、練結(jié)合貫穿教學(xué)的始終,讓練習(xí)隨著講解由易到難,層層深入。在練習(xí)表面積的實(shí)際應(yīng)用時(shí),又很自然地進(jìn)了“進(jìn)一法”的教學(xué),使講、練真正做到了有機(jī)結(jié)合,使學(xué)生學(xué)習(xí)的知識(shí)是有效的、實(shí)用的,同時(shí)也能激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)和運(yùn)用知識(shí)解決實(shí)際問題的興趣,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。
圓柱的表面積教學(xué)反思13
《數(shù)學(xué)課程標(biāo)準(zhǔn)》的基本理念指出:“教師要向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。”
1、在教學(xué)中,我設(shè)計(jì)了具有趣味性、挑戰(zhàn)性、探索性和有一定的`現(xiàn)實(shí)意義的教學(xué)情境――計(jì)算飲料罐的商標(biāo)紙面積,學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行了小組合作,他們分工明確,在愉快的勞動(dòng)中獲得了對(duì)知識(shí)的理解,并在不知不覺當(dāng)中使用了S=ch這個(gè)公式。
2、教學(xué)過程中,學(xué)生通過自己觀察、觸摸,體驗(yàn)感知圓柱的特征、圓柱的表面積包括哪些部分;并通過動(dòng)手裁剪實(shí)驗(yàn),與小組成員共同探究圓柱側(cè)面積與表面積的計(jì)算方法,通過不斷的測量與計(jì)算,構(gòu)建起知識(shí)的框架。學(xué)生對(duì)這些計(jì)算的方法有了豐富的情感、態(tài)度和實(shí)踐經(jīng)驗(yàn)支撐的“活學(xué)活用”。
3、計(jì)算煩瑣,對(duì)于學(xué)生而言是有一定難度的,學(xué)生們的計(jì)算正確率確實(shí)很低,因此解答圓柱體的表面積其實(shí)是對(duì)學(xué)生綜合應(yīng)用所學(xué)面積公式的一大考驗(yàn)。
圓柱的表面積教學(xué)反思14
《圓柱的表面積》這節(jié)課是我從教以來上的第一節(jié)市級(jí)公開課,若干年后改用蘇教版教材,又在市級(jí)六年級(jí)新教材培訓(xùn)時(shí)上了這節(jié)課!皥A柱的表面積”是學(xué)生學(xué)習(xí)的難點(diǎn)。難點(diǎn)在于:理解難,圓柱的側(cè)面是一個(gè)曲面,探索側(cè)面積的計(jì)算過程,有一個(gè)“化曲為直”的過程;易混淆,在計(jì)算圓柱的表面積時(shí)涉及到圓柱的側(cè)面積、底面積以及圓的周長與面積等概念,學(xué)生容易混淆;計(jì)算難,無論是圓的周長和面積計(jì)算中都涉及圓周率。這學(xué)期再一次教學(xué)圓柱的表面積,我深入鉆研教材,并對(duì)以往的教學(xué)經(jīng)驗(yàn)進(jìn)行了整理,注重了知識(shí)的系統(tǒng)化教學(xué),取得了較好的教學(xué)效果。
一、化曲為直溝通聯(lián)系。
課前布置預(yù)習(xí)作業(yè),找一貼有商標(biāo)紙的椰子汁罐,沿高剪開你有什么發(fā)現(xiàn),然后給罐的上下底面剪兩個(gè)底面給貼上。課上由一張長方形紙卷成圓柱,平面到立體,而后由圓柱展開成一個(gè)長方形,立體到平面。滲透了“化直為曲”“化曲為直”的思想。學(xué)生碰到圓柱側(cè)面積問題時(shí)自然能運(yùn)用,交流時(shí),說沿著側(cè)面上的一條高剪開,把側(cè)面展開,成為一個(gè)長方形。讓學(xué)生觀察后說出:展開后的長方形與圓柱側(cè)面積的關(guān)系。兩者面積相等,長方形的長等于圓柱的底面周長,長方形的寬等于圓柱的高,因?yàn)殚L方形的面積=長×寬,所以圓柱的側(cè)面積=底面周長×高。通過“展”、“圍”的幾次操作,讓學(xué)生切實(shí)建立這兩者之間的聯(lián)系。
二“生活課堂”建立表象
本節(jié)課中,現(xiàn)實(shí)生活問題的解決,根據(jù)學(xué)生原有的知識(shí)結(jié)構(gòu),從實(shí)際出發(fā),給學(xué)生充分的思考時(shí)間,對(duì)問題進(jìn)行獨(dú)立探索嘗試、同桌討論交流,學(xué)生充分展示自己的思維過程,圓柱體的側(cè)面積就推導(dǎo)出來了。創(chuàng)建“生活課堂”,就要讓學(xué)生在自然真實(shí)的主體活動(dòng)中去“實(shí)踐”數(shù)學(xué)、在實(shí)踐中探索,在“實(shí)踐”中發(fā)現(xiàn)。實(shí)踐使我們體會(huì)到,創(chuàng)建“生活課堂”應(yīng)從學(xué)生的生活實(shí)際出發(fā),關(guān)注學(xué)生的情感體驗(yàn),調(diào)動(dòng)學(xué)生的`生活積累,幫助他們架設(shè)并構(gòu)建新的平臺(tái),讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)問題,并激勵(lì)學(xué)生在實(shí)踐中探索解決問題的方法,從而提高學(xué)生整體素質(zhì),個(gè)性得以發(fā)展。
三、抓住本質(zhì),理清思路。
本堂課中探究并掌握?qǐng)A柱側(cè)面積和表面積的計(jì)算方法,能正確運(yùn)用公式計(jì)算圓柱的側(cè)面積和表面積相關(guān)的一些簡單實(shí)際問題。根據(jù)以往經(jīng)驗(yàn),在實(shí)施過程中有一定的困難,有的同學(xué)是因?yàn)閷?duì)其中的公式或意義沒有真正理解,不知道要求側(cè)面積先求什么,求了圓底面周長又和圓的面積混淆,而且圓的周長和面積公式已有所遺忘,列式計(jì)算時(shí)漏洞百出,計(jì)算的難度又導(dǎo)致一部分學(xué)生前功盡棄。所以在上這節(jié)課之前,我利用時(shí)間幫助學(xué)生把圓的周長和面積公式復(fù)習(xí)到熟練程度,側(cè)面積的計(jì)算學(xué)生自然沒困難。為幫助學(xué)生理清思路,表面積的計(jì)算分三步去進(jìn)行,側(cè)面積、底面積、側(cè)面積加上兩個(gè)底面積就是表面積。課上遇到計(jì)算比較繁瑣的將數(shù)字改簡單易算的,這節(jié)課的容量大,我覺得不必在計(jì)算上花費(fèi)大量的時(shí)間。
實(shí)踐下來,通過學(xué)生的作業(yè)反饋中,發(fā)現(xiàn)絕大部分算式列得都正確的,幾個(gè)公式搞的還是清楚的,但是小數(shù)乘法由于3.14和帶0整數(shù)的參與,有些錯(cuò)誤。接下來的練習(xí)課中綜合的表面積題中要繼續(xù)加強(qiáng)。
圓柱的表面積教學(xué)反思15
圓柱的表面積是學(xué)生學(xué)習(xí)的難點(diǎn)。難點(diǎn)在于:理解難,圓柱的側(cè)面是一個(gè)曲面,探索側(cè)面積的計(jì)算過程,有一個(gè)化曲為直的過程;易混淆,在計(jì)算圓柱的表面積時(shí)涉及到圓柱的側(cè)面積、底面積以及圓的周長與面積等概念,學(xué)生容易混淆;計(jì)算難,無論是圓的周長和面積計(jì)算中都涉及圓周率;經(jīng)驗(yàn)少,類似煙囪、通風(fēng)管、水桶之類,很多學(xué)生由于缺少生活經(jīng)驗(yàn),不能靈活運(yùn)用知識(shí)去解決問題。如何有效組織教學(xué),談?wù)勛约旱拇譁\的看法。
一、在操作中建立表現(xiàn)。
學(xué)生已經(jīng)學(xué)習(xí)了長方體和正方體的表面積,對(duì)表面積的概念并不陌生。在教學(xué)圓柱的表面積時(shí),我先讓學(xué)生自己制作圓柱體、在動(dòng)手做一做的過程中理解圓柱的表面積是由一個(gè)曲面和兩個(gè)完全相同的圓圍成的,從而真正建立圓柱側(cè)面的表象。
二、化曲為直溝通聯(lián)系。
課前布置預(yù)習(xí)作業(yè),找一貼有商標(biāo)紙的圓柱實(shí)物,沿高剪開你有什么發(fā)現(xiàn)。課上學(xué)生交流,沿著側(cè)面上的一條高剪開,把側(cè)面展開,成為一個(gè)長方形。我在圓柱的教具上包一張長方形紙,然后張開,在黑板上畫上教具的直觀圖,長方形紙的圖(1:1)。讓學(xué)生觀察后說出:長方形與圓柱底面的關(guān)系。兩者面積相等,長方形的長等于圓柱的底面周長,長方形的寬等于圓柱的高,因?yàn)殚L方形的面積=長寬,所以圓柱的側(cè)面積=底面周長高。通過展、圍的`幾次操作,讓學(xué)生切實(shí)建立這兩者之間的聯(lián)系。
三、抓住本質(zhì),理清思路。
本堂課中學(xué)生雖然很明確的知道求圓柱體的表面積是求兩個(gè)底面積和一個(gè)側(cè)面積的面積和。但在實(shí)施過程中有一定的困難,有的同學(xué)是因?yàn)閷?duì)其中的公式或意義沒有真正理解,不知道要求側(cè)面積先求什么,求了圓底面周長又和圓的面積混淆,而且圓的周長和面積公式已有所遺忘,列式計(jì)算時(shí)漏洞百出,計(jì)算的難度又導(dǎo)致一部分學(xué)生前功盡棄。所以在解決問題時(shí),我要求學(xué)生寫出每一步求的是什么,用了哪一個(gè)公式,幫助學(xué)生理清思路。遇到計(jì)算比較繁瑣的提供計(jì)算結(jié)果,我覺得不必在計(jì)算上花費(fèi)大量的時(shí)間。
當(dāng)然,學(xué)生接觸到一些實(shí)際問題的時(shí)候,由于生活經(jīng)驗(yàn)和社會(huì)經(jīng)驗(yàn)都比較淺薄,對(duì)一些物體的認(rèn)識(shí)不夠,不能完全準(zhǔn)確的來判斷求的物體是幾個(gè)面,分別是哪幾個(gè)面,還有實(shí)際中求表面積時(shí)采用的近似法一定的不理解,需要通過反復(fù)練習(xí)才能達(dá)到一定的程度。另外我認(rèn)為在教材的編排上也有一定的問題,五年級(jí)時(shí)學(xué)了圓的知識(shí),過了差不多一年再來運(yùn)用,根據(jù)學(xué)生遺忘曲線規(guī)律,大部分學(xué)生對(duì)圓的周長和面積公式比較生疏,雖然通過新授前的基礎(chǔ)訓(xùn)練可以喚起學(xué)生的記憶,但畢竟要能熟練地用于側(cè)面積和表面積的計(jì)算,無形中增加了學(xué)生解題的難度。原來教材的編排相對(duì)來說更有系統(tǒng)性,學(xué)習(xí)間隔的時(shí)間不長,可以在知識(shí)的運(yùn)用過程中相互鞏固內(nèi)化。
【圓柱的表面積教學(xué)反思】相關(guān)文章:
《圓柱的表面積》教學(xué)反思06-29
圓柱的表面積教學(xué)反思05-14
“圓柱的表面積”教學(xué)反思04-05
圓柱的表面積教學(xué)反思06-20
《圓柱的表面積》教學(xué)反思12-27
《圓柱的表面積》教學(xué)反思04-17
《圓柱的表面積》數(shù)學(xué)教學(xué)反思08-09
“圓柱的表面積”教學(xué)反思15篇04-14
圓柱的表面積教學(xué)反思15篇01-04