- 乘法分配律教學(xué)反思 推薦度:
- 相關(guān)推薦
《乘法分配律》教學(xué)反思精選15篇
作為一名人民老師,課堂教學(xué)是重要的任務(wù)之一,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,教學(xué)反思應(yīng)該怎么寫才好呢?以下是小編精心整理的《乘法分配律》教學(xué)反思,希望能夠幫助到大家。
《乘法分配律》教學(xué)反思1
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設(shè)計本教案的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動過程中實現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合自己所教案例,對本節(jié)課教學(xué)策略進行以下幾點簡要分析:
一、教師要深入了解各層次學(xué)生思維實際,提供充分的信息,為各層次學(xué)生參與探索學(xué)習(xí)活動創(chuàng)造條件,沒有學(xué)生主體的主動參與,不會有學(xué)生主體的'主動發(fā)展,教師若不了解學(xué)生實際,一下子把學(xué)習(xí)目標(biāo)定得很高,勢必會造成部分學(xué)生高不可攀而坐等觀望,失去信心浪費寶貴的學(xué)習(xí)時間。以往教學(xué)該課時都是以計算引入,有復(fù)習(xí)舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進生活,開始學(xué)習(xí)新知。這樣所設(shè)的起點較低,學(xué)生比較容易接受。
二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。學(xué)生能自由發(fā)揮,對所學(xué)內(nèi)容很感興趣,氣氛熱烈。到通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上得到的結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。
三、總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,老師都予以肯定和表揚,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
四、在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運用時問題較多等。
《乘法分配律》教學(xué)反思2
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律并能初步應(yīng)用這些定律進行一些簡便計算的基礎(chǔ)上進行教學(xué)的。乘法分配律是本單元教學(xué)的一個重點,也是本單元內(nèi)容的難點,因為乘法分配律不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
上課時,我以輕松愉快的閑聊方式出示我們身邊最熟悉的教學(xué)資源,以教室地面引出長方形面積的計算,兩種方法解決問題,得出算式:(8+6)×2=8×2+6×2,從上面的觀察與分析中,你能發(fā)現(xiàn)什么規(guī)律?通過觀察算式,尋找規(guī)律。讓學(xué)生在討論中初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不是急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗證。學(xué)生興趣濃厚,這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗證猜測的能力。
這堂課由具體到抽象,大多需要學(xué)生體驗得來,上下來感覺很好,學(xué)生很投入,似乎都掌握了,可在練習(xí)時還是發(fā)現(xiàn)了一些問題。如:學(xué)生在學(xué)習(xí)時知道“分別”的'意思,也提醒大家注意,但在實際運用中,還是出現(xiàn)了漏乘的現(xiàn)象。針對這一現(xiàn)象我認為在練習(xí)課時要加以改進。注重從學(xué)生的實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗中學(xué)習(xí)知識。乘法分配律在乘法的運算定律中是一個比較難理解的定律,通過這一節(jié)課的學(xué)習(xí),學(xué)生對乘法分配律的大致規(guī)律能理解,也能靈活運用,但是要求用語言來歸納或用字母表示乘法分配律的規(guī)律,有部分學(xué)生就感到很為難了。感覺他們只能意會不能言傳。課本中關(guān)于乘法分配律只有一個求跳繩根數(shù)的例題,但是練習(xí)中有關(guān)乘法分配律的運用卻靈活而多變,學(xué)生們應(yīng)用起來有些不知所措,針對這種現(xiàn)狀,我把乘法分配律的運用進行了歸類,分別取個名字,讓學(xué)生能針對不同的題目能靈活應(yīng)用。
乘法分配律大致上有這樣三類:
一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要進行平均分配,都要和8相乘。不能只把其中一個數(shù)字與8相乘,這樣不公平,稱不上是平均分配法,學(xué)生印象很深刻,開始還有部分學(xué)生只選擇一個數(shù)與8相乘,歸納方法后學(xué)生都能正確應(yīng)用了。
二、提取公因數(shù)法。如:25*40+25*60=25*(40+60)解題關(guān)鍵:找準(zhǔn)兩個乘法式子中公有的因數(shù),提取出公因數(shù)后,剩下的另一個數(shù)字該相加還是該相減,看符號就能確定了。
三、拆分法。如:102*45=(100+2)*45=100*45+2*45這類題的關(guān)鍵在于觀察那個數(shù)字最接近整百數(shù),將它拆分成整百數(shù)加一個數(shù)或者整百數(shù)減去一個數(shù),再應(yīng)用乘法的分配率進行簡算。有了歸類,學(xué)生再見到題目就能依據(jù)數(shù)字或運算符號的特征熟練進行乘法分配律的簡算了。
《乘法分配律》教學(xué)反思3
教材分析:
乘法分配律是北師大版小學(xué)數(shù)學(xué)四年級上冊第三單元最后一節(jié)的教學(xué)內(nèi)容。本課是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進行一些簡便計算的基礎(chǔ)上進行學(xué)習(xí)的。乘法分配律是本單元教學(xué)的一個重點,也是本單元內(nèi)容的難點,教材是按照發(fā)現(xiàn)問題--提出假設(shè)--舉例驗證--歸納結(jié)論等層次進行的。然而乘法分配律又不是單一的乘法運算,還涉及到加法的運算,是學(xué)生學(xué)習(xí)的難點。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。
1.上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了訂校服的教學(xué)情境,使學(xué)生解決非常熟悉的生活問題、
2.在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。
3.本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高?赡芘c我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。
4.以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣
教學(xué)反思:
乘法分配律是第三單元的`一個難點。在理解、掌握和運用上都有一定難度。因此如何上好這一課,讓學(xué)生真正地理解乘法分配律,并在理解的基礎(chǔ)上運用好它?我覺得要注重形式上的認識,更要注重意義上的理解。因為單從形式上去記住乘法分配律是有局限性的,以后在運用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學(xué)生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學(xué)生都能輕松運用乘法分配律。
北師大版的教材注重學(xué)生的探索活動,在探索中讓學(xué)生自己去發(fā)現(xiàn)的規(guī)律,才能讓他們真正地理解。本課是“探索與發(fā)現(xiàn)”的第三節(jié)課了,學(xué)生已經(jīng)有了一定的探索能力。因此本課的設(shè)計完全圍繞著學(xué)生的自主活動在進行。
總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去發(fā)現(xiàn)規(guī)律,驗證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。
在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運用時問題較多等。
《乘法分配律》教學(xué)反思4
1、乘法分配律既要注重它的外形結(jié)構(gòu)特點,更要注重其內(nèi)涵。
乘法分配率的結(jié)構(gòu)特點,即兩數(shù)的和乘一個數(shù)(先加后乘)=兩個積的和(先乘后加),使學(xué)生從表象上進行初步感知。從而理解(4+2)×25=4×25+2×25是相等的,即左邊表示6個25,右邊也表示6個25,所以(4+2)×25=4×25+2×25。
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習(xí)。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進行一些對比練習(xí)。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應(yīng)用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學(xué)生進行一題多解的`練習(xí),加深學(xué)生對乘法結(jié)合律與乘法分配律的理解。
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①豎式計算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對不同的解題方法,引導(dǎo)學(xué)生進行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行計算的條件是不一樣的。乘法結(jié)合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。
《乘法分配律》教學(xué)反思5
《乘法分配律》一課是四年級上冊第四單元的教學(xué)內(nèi)容,它相對于加法交換律、結(jié)合律,乘法交換律和結(jié)合律來說會比較抽象,學(xué)生較難于理解。因此把本課的教學(xué)重點定位為“探索并發(fā)現(xiàn)乘法分配律,理解乘法分配律的意義”,讓學(xué)生經(jīng)歷“觀察算式——仿寫算式——解釋規(guī)律——應(yīng)用規(guī)律”的過程。
一、比賽導(dǎo)入 激發(fā)探究欲望
課前創(chuàng)設(shè)比賽情境:老師能很快說出下面幾道題的得數(shù),你信嗎?不信的同學(xué)敢跟我比一比嗎?(出示: 28×70+72×70 (125+10)×8 34×101)在我既對又快的說出結(jié)果時,孩子們都很驚訝,于是我因勢利導(dǎo):剛才的比賽老師算得快,是因為老師有一個取勝的秘訣,它可以使計算簡便,你們想知道嗎?學(xué)完這節(jié)課,你就能發(fā)現(xiàn)其中的秘密。學(xué)生個個躍躍欲試,瞬間充滿探究的欲望,很好地激發(fā)了學(xué)生學(xué)習(xí)的興趣。
二、自主探索 發(fā)現(xiàn)規(guī)律
在解決“一共貼了多少塊磁磚?”中,學(xué)生列出了四個算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在讓學(xué)生觀察四個算式之后,先引導(dǎo)學(xué)生將四個算式進行分類并說明分類的標(biāo)準(zhǔn)。通過這個環(huán)節(jié),學(xué)生對于相等的兩個算式的特征有了進一步的了解,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,是因為它們的數(shù)字都一樣,都是由3、5、10組成或是由4、6、8組成的,了解乘法分配律中有3個數(shù);如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的,則從中明白一邊都是兩個積相加,另一邊則是兩個數(shù)的和與一個數(shù)相乘。通過這個分類活動,讓學(xué)生自主發(fā)現(xiàn)規(guī)律,為理解乘法分配律做了很好的鋪墊。接著再讓學(xué)生仿寫算式,總結(jié)規(guī)律并解釋規(guī)律,最后再應(yīng)用規(guī)律揭示課前比賽中老師獲勝的奧秘。
三、錯因分析 防患未然
以往的教學(xué)經(jīng)驗告訴我,學(xué)生對于乘法分配律的運用經(jīng)常出錯,也很容易與結(jié)合律混在一起。為了防患于未然,在教學(xué)中創(chuàng)設(shè)了“小馬虎這樣做,你同意嗎?
(1)(6+30)×7 = 7×6+7×30
(2) 25×(4+60)= 25×4+60
(3) 16×5×8 = 16×5+16×8
(4) 15×3+15×7 = (15+15)×(3+7)”讓學(xué)生進行分析、判斷并修正。特別是第3題,讓學(xué)生對比乘法分配律和乘法結(jié)合律的'數(shù)學(xué)模型,找出其中的區(qū)別,加以比較,從而發(fā)現(xiàn)模型左邊乘法結(jié)合律是兩個數(shù)的積,而乘法分配律是兩個數(shù)的和,而模型右邊乘法結(jié)合律是連乘的形式,而乘法分配律是兩個積相加的形式。這樣對比,加深對乘法分配律模型的認識和對其意義的理解。分析錯因后,還不忘讓學(xué)生說說:“你想對小馬虎說什么?”來提醒告誡學(xué)生,除了要養(yǎng)成認真細心的習(xí)慣外,還要運用好乘法分配律,注意分配律與結(jié)合律的區(qū)別,將錯誤扼制在搖籃里。
不足之處:雖然學(xué)生對于乘法分配律的理解比較到位,較好地達成了教學(xué)目標(biāo),但如能進行適時拓展,讓學(xué)生通過“兩個數(shù)的和與一個數(shù)相乘來聯(lián)想到兩個數(shù)的差與一個數(shù)相乘,兩個數(shù)的和除以一個數(shù)及兩個數(shù)的差除以一個數(shù)是否都可以應(yīng)用乘法分配律這個數(shù)學(xué)模型?”會使課堂更豐滿,更有深度。
《乘法分配律》教學(xué)反思6
《乘法分配律的運用》教學(xué)設(shè)計及反思
教學(xué)目標(biāo)
(一)使學(xué)生學(xué)會用乘法分配律進行簡算,提高計算能力.
(二)培養(yǎng)學(xué)生靈活運用乘法運算定律進行計算的習(xí)慣.
教學(xué)重點和難點
能比較熟練地應(yīng)用運算定律進行簡算是教學(xué)的重點;反向應(yīng)用乘法分配律是學(xué)習(xí)的難點. 教學(xué)過程設(shè)計
(一)復(fù)習(xí)準(zhǔn)備
1.口算:
(二)學(xué)習(xí)新課
我們已經(jīng)學(xué)過乘法分配律,今天繼續(xù)研究怎樣應(yīng)用乘法分配律使計算簡便.(板書:乘法分配律的應(yīng)用)
1.創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)積極性.
出示102×( ).
請同學(xué)任意填上一個兩位數(shù),老師可以迅速說出它的得數(shù),而不用筆算.
2.教學(xué)例6:用簡便方法計算.
(1)計算102×43.
這是一道兩位數(shù)乘三位數(shù)的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應(yīng)用運算定律進行簡算?
經(jīng)過討論后,可能出現(xiàn)兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進行計算;一種是把原式改寫成102×(40+3).不要簡單的否定,可以讓學(xué)生用兩種方法都做一
做,對比一下,找出哪種方法簡便.
在此基礎(chǔ)上引導(dǎo)學(xué)生觀察這類題目的特點,以及怎樣應(yīng)用乘法分配律,從而使學(xué)生明確:“兩個數(shù)相乘,把其中一個比較接近整十、整百、整千的數(shù)改寫成一個整十、整百、整千的數(shù)與一個數(shù)的和,再應(yīng)用乘法分配律可以使計算簡便.
(2)計算102×24.
訂正時說明怎樣簡算的?根據(jù)是什么.
(3)計算9×37+9×63.
啟發(fā)提問:
①這類題目的結(jié)構(gòu)形式是怎樣的?有什么特點?
、诟鶕(jù)乘法分配律,可以把原式改寫成什么形式?這樣算為什么簡便?
在學(xué)生充分討論的基礎(chǔ)上,師板書:
提問:這題能簡算嗎?什么地方錯了?應(yīng)怎樣改?
啟發(fā)學(xué)生明確:題里兩個乘式?jīng)]有相同的因數(shù).應(yīng)該有一個相同的因數(shù),另外兩個因數(shù)加起來應(yīng)是能湊成整十、整百、整千的數(shù).
2.根據(jù)乘法分配律把相等的式子用“=”連接起來.
討論:2,3兩題為什么不相等?要使等號兩邊式子相等、符合乘法分配律的形式,應(yīng)該改哪個地方?
在討論基礎(chǔ)上得出:
第2題,如果左邊算式不變,右邊算式應(yīng)改為35×12+45×12,使兩個加數(shù)分別與同一個數(shù)相乘;如果右邊算式不變,兩個積里有相同的因數(shù)45,把相同的因數(shù)提到括號外面,兩個不同的.因數(shù)就是兩個加數(shù),改為(35+12)×45.
第3題右邊兩個積里相同的因數(shù)是4,不同的因數(shù)是11和25,應(yīng)改為(11+25)×4.因此
要特別注意:括號里的每一個加數(shù)都要同括號外面的數(shù)相乘;反過來,必須是兩個積里有相同的因數(shù),才能把相同的因數(shù)提到括號外面.而三個數(shù)連乘則是可以改變運算順序,它是乘法結(jié)合律.必須要掌握這兩個運算定律的區(qū)別.
(四)作業(yè)
練習(xí)十四第5~10題.
教學(xué)反思:本節(jié)課從學(xué)生實際出發(fā),創(chuàng)設(shè)了具體的生活情境,引導(dǎo)學(xué)生開展觀察、猜想、舉例驗證、交流等活動,從激活學(xué)生已有的知識經(jīng)驗和探究欲望入手,引導(dǎo)學(xué)生主動參與數(shù)學(xué)的學(xué)習(xí)過程,從而發(fā)展學(xué)生數(shù)學(xué)思維數(shù)學(xué)能力,在學(xué)習(xí)過程中學(xué)會學(xué)習(xí),學(xué)會與人交流合作。新理念還體現(xiàn)不夠,學(xué)生的積極性沒有充分調(diào)動起來。
《乘法分配律》教學(xué)反思7
教材提供了這樣一個主體圖:春季里,同學(xué)們開展植樹活動,一共有25個小組,每組里4人負責(zé)挖坑、種樹,2人負責(zé)抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學(xué)生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現(xiàn),兩個算式可以用=連接,即25(4+2)=254+252,從而通過比較等號兩邊兩個算式的不同與相同,概括出乘法分配律。當(dāng)我在一個班按照此教學(xué)設(shè)計教學(xué)后,我發(fā)現(xiàn)效果并不理想,表現(xiàn)有兩點:
、儆行⿲W(xué)生只是機械的記憶了乘法分配律的公式,例如看到3544不能想到3540+354;
、谟捎跊]有真正理解乘法分配律的內(nèi)涵,所以完全不能理解其逆應(yīng)用以及當(dāng)兩個數(shù)的`差乘一個數(shù)時應(yīng)用乘法分配律。如:他們認為6464+3664(64+36)64;265(105-5)=265105-2655。
針對此情況,我重新設(shè)計了教案。增加了一個問題:負責(zé)挖坑、種樹的同學(xué)比負責(zé)抬水、澆水的同學(xué)多多少人?這樣學(xué)生又列出另外兩個算式,通過計算后用等號連接: 25(4-2)=254-252,接下來,我引導(dǎo)學(xué)生觀察、對比兩組算式,充分地去發(fā)現(xiàn)相同點與不同點。這樣一來,促使了學(xué)生去尋找事物之間的聯(lián)系,抓住本質(zhì),尋找共同點,促進交流,順利地實現(xiàn)了自我構(gòu)建和知識創(chuàng)造。學(xué)生的發(fā)現(xiàn)自然也就更豐富、更有深度了:無論是兩個數(shù)的和還是兩個數(shù)的差去乘一位數(shù),都可以先把他們與這個數(shù)分別相乘,再相加或者再相減。此外,我還引導(dǎo)學(xué)生從右到左的觀察等式,嘗試用乘法的意義去理解乘法分配律,即:4個25加2個25就等于(4+2)個25,4個25減2個25就等于(4-2)個25,這樣幫助學(xué)生突破乘法分配律逆應(yīng)用這個教學(xué)難點。
我通過對兩個班不同的教學(xué)設(shè)計,感受到:認真鉆研教材,多動心思,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。
《乘法分配律》教學(xué)反思8
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解和敘述的定律。因此在本節(jié)課教學(xué)設(shè)計上,我結(jié)合新課標(biāo)的一些基本理念和本地區(qū)的具體情況,注重從學(xué)生的實際出發(fā),把數(shù)學(xué)知識和實際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗中學(xué)習(xí)知識。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的!睌(shù)學(xué)教育家波利亞曾經(jīng)說過:“數(shù)學(xué)教師的首要責(zé)任是盡其一切可能,來發(fā)展學(xué)生解決問題的能力。”而我們過去的教學(xué)往往比較重視解決書上的數(shù)學(xué)問題,學(xué)生一旦遇到實際問題就束手無策。因此,在上課的一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了一個肯德基餐廳用餐的情境,使學(xué)生置身于非常熟悉的生活情境中,極大地激發(fā)了學(xué)生的學(xué)習(xí)欲望。學(xué)生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學(xué)生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學(xué)生的猜想能力,又培養(yǎng)了學(xué)生驗證猜想的能力。學(xué)生通過自主探索去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,主體性得到了充分的發(fā)揮。
與此同時,我還十分注重合作與交流,多向互動。倡導(dǎo)課堂教學(xué)的動態(tài)生成是新課程標(biāo)準(zhǔn)的重要理念。在數(shù)學(xué)學(xué)習(xí)中,每個學(xué)生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)中都得到發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動,特別是通過學(xué)生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu)。學(xué)生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維,學(xué)生也學(xué)得積極主動。
應(yīng)用規(guī)律,解決實際問題是數(shù)學(xué)學(xué)習(xí)的目的所在。在練習(xí)題型的設(shè)計上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的'梯度和廣度。使學(xué)生逐步加深認識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點,靈活地運用所學(xué)知識進行簡便運算和拓展練習(xí)。不僅要求學(xué)生會順向應(yīng)用乘法分配律,而且還要求學(xué)生會反向應(yīng)用。通過正反應(yīng)用的練習(xí),加深學(xué)生對乘法分配律的理解。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用。學(xué)生通過自己的努力以及和同學(xué)的交流合作,解題速度和準(zhǔn)確性都很理想。只有這樣才能真正提高學(xué)生的計算能力。
本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高?赡芘c我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。但學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣。另外,在回答問題時,個別學(xué)生的語言不夠流利、準(zhǔn)確。對乘法分配律的敘述稍顯羅嗦,不夠堅定、自信。在這方面有待今后加強訓(xùn)練和提高
《乘法分配律》教學(xué)反思9
1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵
教學(xué)中通過解決“濟青高速公路全長多少千米”這一問題,結(jié)合具體的生活情景,得到了(110+90)x2=110x2+90x2”這一結(jié)果,教學(xué)中只注重了等式的外形特點,即兩個數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的'理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法意義的角度理解,即左邊表示200個2,右邊也表示200個2。所以(110+90)x2=110x2+90x2。
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習(xí)
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進行一些對比練習(xí)。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算是個有什么特征和區(qū)別?符合什么運算定律的特征?應(yīng)用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學(xué)生進行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8)等。101×89①豎式計算;②(100+1)×89;③101×(80+9)等。對不同的解題方法,引導(dǎo)學(xué)生進行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行簡算,乘法結(jié)合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學(xué)生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
4、多練
針對典型題目多次進行練習(xí)。練習(xí)時注意練習(xí)量和練習(xí)時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習(xí)一次,再到1周練習(xí)一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習(xí),對優(yōu)生提出掌握的要求。如68×25+68+68×74,32×125×25等。
《乘法分配律》教學(xué)反思10
乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。它的教學(xué)重點是讓學(xué)生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。所以本堂課我通過口算、讀算式、寫類似算式等多種方式讓學(xué)生去感知乘法分配律,最后由學(xué)生總結(jié)出乘法分配律概念。本堂課我感到比較滿意的地方,就是把課堂的主體權(quán)交給了學(xué)生,學(xué)生們都很主動積極的參與到學(xué)習(xí)中來,可是不足之處頗多。
一、本課堂我的教學(xué)程序是:先讓學(xué)生獨學(xué)“學(xué)一學(xué)”部分的'6個問題,第1、2個問題根據(jù)情景圖上所給的信息估算并列出算式:(4+2)×25和4×25+2×25;第3個問題讓學(xué)生觀察這兩個算式的特點;第4個問題根據(jù)你的發(fā)現(xiàn)完成填空。25×(40+4)=25×()+25×()、65×17+35×17=(+)×()(意圖是讓學(xué)生體驗乘法分配律);第5個問題試著舉出類似的例子;第6個問題試一試:你可以用a、b、c分別表示三個數(shù),寫出你的發(fā)現(xiàn)嗎?(a+b)×c=()×()+()×()。獨學(xué)完六個問題后,學(xué)生通過群學(xué)和小組在全班的展示,進一步達成學(xué)習(xí)目標(biāo)。接下來,通過練習(xí)檢測學(xué)生對乘法分配律的理解和應(yīng)用。最后通過兩道練習(xí)題對所學(xué)內(nèi)容進行了延伸。((1)28×18-8×28、(2)25×99)
二、不足之處:
1、在要求同學(xué)們?nèi)タ偨Y(jié)出乘法分配律的概念時老師沒有很好的引導(dǎo),導(dǎo)致同學(xué)對乘法分配律特點的認識比較模糊。
2、在學(xué)生總結(jié)出乘法分配律的概念時,我只是一筆帶過的把乘法分配律通過課件再展示給學(xué)生們看了一遍,沒有反復(fù)強調(diào)乘法分配律的特點,導(dǎo)致學(xué)生沒有較好的掌握乘法分配律。
3、課堂用語不夠簡潔。
三、結(jié)合學(xué)生的掌握情況我覺得教學(xué)此內(nèi)容需要注意以下幾點:
1、區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習(xí)。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出現(xiàn)錯誤。為了學(xué)生更好地掌握可以多進行一些對比練習(xí)。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習(xí)中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應(yīng)用運算定律可以使計算簡便嗎?為什么要這樣算?
2、學(xué)生進行一題多解的練習(xí),經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學(xué)生對乘法結(jié)合律與乘法分配律的理解。
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①豎式計算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對不同的解題方法,引導(dǎo)學(xué)生進行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行間算的條件是不一樣的。乘法結(jié)合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學(xué)生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當(dāng)?shù)乃惴ǖ哪康摹?/p>
3、多練。
針對典型題目多次進行練習(xí)。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習(xí),對優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
《乘法分配律》教學(xué)反思11
首先結(jié)合學(xué)生熟悉的問題情境,幫助學(xué)生體會運算定律的現(xiàn)實背景。接著設(shè)計“懸念”,拋出四組題目,把學(xué)生引到“兩算式的結(jié)果相等”的情況中來。先請學(xué)生猜想,而后驗證,再請學(xué)生編題,讓每一個學(xué)生都不由自主地參與到研究中來。在編題過程中,很多學(xué)生都交出了正確的“答卷”,增強了他們學(xué)習(xí)的.自信心和繼續(xù)研究的欲望。接著,請同學(xué)在生活中尋找驗證的方法,以四人小組為研究單位,學(xué)生的思維活動一下子活躍起來,紛紛探究其中的奧秘。小組討論的方式,更促使學(xué)生之間進行思維交流,激發(fā)學(xué)生希望獲得成功的動機。通過實踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內(nèi)化。這樣做,學(xué)生學(xué)得積極、學(xué)得主動、學(xué)得快樂,自己動手編題、自己動腦探索,從數(shù)量關(guān)系變化的多次類比中悟出規(guī)律,“扶”得少,學(xué)生創(chuàng)造得多,學(xué)生學(xué)會的不僅僅是一條規(guī)律,更重要的是,學(xué)生學(xué)會了自主自動,學(xué)會了進行合作,學(xué)會了獨立思考,學(xué)生學(xué)得輕松,學(xué)得主動。
通過這節(jié)課的教學(xué)我感受到:認真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。
《乘法分配律》教學(xué)反思12
《乘法分配律》是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點。故而,對于乘法分配律的教學(xué),我沒有把重點放在數(shù)學(xué)語言的表達上,而是把重點放在讓學(xué)生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
1、關(guān)注學(xué)生已有的知識經(jīng)驗。以學(xué)生身邊熟悉的情境為教學(xué)的切入點,激發(fā)學(xué)生主動學(xué)習(xí)的需要,為學(xué)生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學(xué)習(xí)情境,喚醒了學(xué)生已有的`知識經(jīng)驗,使學(xué)生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導(dǎo)學(xué)生積極主動探究。讓學(xué)生根據(jù)提供的問題,用不同的方法解決,引導(dǎo)學(xué)生觀察,讓學(xué)生說明自己發(fā)現(xiàn)的規(guī)律。不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力。
3、出示乘法分配律的幾種不同的形式讓學(xué)生進行練習(xí)。
通過這一系列的教學(xué)措施,一節(jié)課下來,總體感覺良好——覺得同學(xué)們掌握得還不錯。于是,我布置了讓學(xué)生們完成練習(xí)冊中《乘法分配律》這一課的習(xí)題。
當(dāng)我批改練習(xí)時我傻了眼,學(xué)生的作業(yè)大多是中,少部分得良和差(我的作業(yè)批改評定標(biāo)準(zhǔn)),為什么會是這樣的結(jié)果,我進行反思,發(fā)現(xiàn)是講時,例題出示的不多,當(dāng)時學(xué)生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學(xué)生就很容易受到干擾,結(jié)果是張冠李戴,錯得讓我涕笑皆非。而為了讓學(xué)生把這個知識點掌握牢固,我整整又用了兩節(jié)課。
通過這個知識點的教學(xué),我發(fā)現(xiàn)數(shù)學(xué)不多練是不行的。在學(xué)生理解之后,必須對其進行及時、有效的練習(xí)才可以使知識掌握的更加牢固。
《乘法分配律》教學(xué)反思13
在教學(xué)本課之前,我安排了這樣的預(yù)習(xí)作業(yè):將左右兩邊相等的算式用線連起來(共五組),我故意安排了兩組不相等的,居然大部分同學(xué)都上當(dāng)了,說明他們對乘法分配律的認識僅僅停留在表面,沒有認識到其實質(zhì)。
在教學(xué)例題時我特別加強了“分別乘”的指導(dǎo),不但結(jié)合實例讓學(xué)生明白為何要分別乘再相加,而且用一些形象的箭頭讓學(xué)生感受分別乘的過程;而在學(xué)生探究了例題和試一試后,讓他們通過比較,體會在利用乘法分配律進行簡便計算時要根據(jù)具體情況選擇:有時合起來乘容易,有時分別乘更容易,要靈活運用。
但是,今天的課堂作業(yè)讓我十分失望,我本以為“分別乘”的指導(dǎo)比較到位,但還是有一些同學(xué)出現(xiàn)15×(20+3)=15×20+3這樣的錯誤,并且有兩名學(xué)生在解決實際問題中列出了(18+22)×15的算式后,還將它用乘法分配律展開計算,結(jié)果計算錯誤百出,如何讓學(xué)生靈活地運用所學(xué)的知識,我還得進一步地學(xué)習(xí)研究。
本節(jié)課主要應(yīng)用乘法分配律進行簡便計算,培養(yǎng)學(xué)生靈活合理地進行計算的意識和能力。課的一開始,我就復(fù)習(xí)乘法分配律,抓住其特點:合起來乘轉(zhuǎn)化成分別乘再加起來或者分別乘轉(zhuǎn)化成合起來乘。接著通過例題和試一試的'教學(xué),中間結(jié)合類型分別練習(xí)相應(yīng)的題目,再通過比較讓學(xué)生明白這兩組題:有的時候是合起來乘簡便,有的時候是分別乘簡便,要根據(jù)具體的題目來選擇。對于后面的練習(xí),我注意引導(dǎo)學(xué)生比較和辨析,使學(xué)生較深刻地理解適合用乘法分配律進行簡便計算的題目的結(jié)構(gòu)形式,培養(yǎng)學(xué)生的審題能力,從而使學(xué)生更好地運用乘法分配律進行簡便計算。
《乘法分配律》教學(xué)反思14
今天靜下心來觀看了省賽課中葛老師執(zhí)教的《乘法分配律》一課。她巧妙引領(lǐng)。葛老師非常自然的借助孩子們喜愛的農(nóng)場游戲,引入問題“誰能幫老師算算一共有多少菜?你能列出綜合算式嗎?先求什么,后求什么?”一方面教師問題的指向性簡練明確可以引導(dǎo)學(xué)生列出綜合算式,另一方面借助情景能有效的幫助學(xué)生理解算式的道理,明確意義。更為巧妙的是此情景內(nèi)容豐富可以列出不同的算式:
2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4為后面的“觀察、分類和探究”做好鋪墊。
大膽放手。在第一個“求菜”的情境中,是在教師的引導(dǎo)下學(xué)生順利完成了學(xué)習(xí)的過程,然而后面的“求花”和“求果樹”就是放手讓學(xué)生自己探究了,很自然的激發(fā)了學(xué)生的探究欲望,分別列出了兩組算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4。
這樣在學(xué)生喜愛的農(nóng)場情景中,巧妙的引發(fā)出六道算式,為進一步的觀察和探究埋下了伏筆。
得出6個算式后,葛老師再次拋出問題:“這六個算式讓你分分類,你打算分幾類?理由是什么?”然后葛老師又引導(dǎo)學(xué)生同桌先討論,然后集體匯報,于無形中讓學(xué)生經(jīng)歷了各個層面的探究活動。讓學(xué)生觀察——猜想——舉例驗證——,和從“特例”進行驗證等一系列的活動,最后歸納出一普遍性的.規(guī)律。
當(dāng)結(jié)論得出后,葛老師并不是將字母表示進行簡單的灌輸,而是巧妙的借助點子圖將用字母表示乘法分配律的過程變?yōu)橐蛐瓒O(shè),從而呼之欲出。最后教師還通過乘法的意義加深學(xué)生對乘法分配律的理解,并且教師還通過兩組以前學(xué)過的兩位數(shù)乘一位數(shù)和兩位數(shù)乘兩位數(shù)來打通乘法分配律與以前知識的聯(lián)系。
總之,本節(jié)課在學(xué)習(xí)方式上自主學(xué)習(xí)與合作探究并存,在思維發(fā)展上,教師引導(dǎo)與放手相結(jié)合,整個學(xué)習(xí)過程,因需而設(shè),充滿了探究。
《乘法分配律》教學(xué)反思15
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學(xué)生而言,難度偏大,如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識要比灌輸?shù)脕淼挠浀酶巍?/p>
因此我在一開始設(shè)計了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進生活,開始學(xué)習(xí)新知。在教學(xué)過程中有坡度的讓學(xué)生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計:
一、讓學(xué)生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責(zé)挖坑和種樹,4人負責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學(xué)生理解帶來的困難。
通過引入解決問題讓學(xué)生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機會
借助對同一實際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。這是生活中遇到過的`,學(xué)生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學(xué)難點
讓學(xué)生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點。為了突破這個教學(xué)難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責(zé),人負責(zé)。一共有多少同學(xué)參加這次植樹活動?
學(xué)生主動去設(shè)計、解決,調(diào)動學(xué)生的積極性。讓學(xué)生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗。
當(dāng)然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
【《乘法分配律》教學(xué)反思】相關(guān)文章:
乘法分配律教學(xué)反思02-12
《乘法分配律》教學(xué)反思02-15
《乘法分配律》教學(xué)反思15篇03-04
乘法分配律教學(xué)反思(15篇)03-26
乘法分配律教學(xué)反思15篇03-18