欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當前位置:好文網>實用文>教學反思>《乘法分配律》教學反思

      《乘法分配律》教學反思

      時間:2023-03-14 08:39:20 教學反思 我要投稿

      《乘法分配律》教學反思(合集15篇)

        作為一名優(yōu)秀的教師,我們都希望有一流的課堂教學能力,通過教學反思能很快的發(fā)現(xiàn)自己的講課缺點,優(yōu)秀的教學反思都具備一些什么特點呢?以下是小編精心整理的《乘法分配律》教學反思,僅供參考,希望能夠幫助到大家。

      《乘法分配律》教學反思(合集15篇)

      《乘法分配律》教學反思1

        乘法分配律是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律。如何教學能使學生較好的理解乘法分配律的內涵,并能正確的運用定律進行簡便運算呢?我做了一下幾點嘗試。

        上課教師先出示:(1)8×(125+11)(2)(100+1)×23

        老師和同學們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。

        結果教師又快又對,學生都很奇怪,教師順勢導入:同學們都特別想知道在比賽過程中,學生用計算器都沒有老師口算得快的原因嗎?是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。

        這樣的導入讓學生充滿了求知的欲望,激發(fā)了學習的熱情。

        出示例題后,學生獨立解答,然后教師出示思考問題,學生自主探究。

        1、這兩種方法有什么不同?兩個算式的結果如何?用什么符號連接?

        2、那么等號連接的`這兩個算式有什么特點和聯(lián)系呢?請同學們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發(fā)現(xiàn)左邊括號外的那個數(shù),寫到右邊都要乘兩次。

        生B:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。

        整個教學過程通過學生觀察、比較、分析理解乘法分配律的'含義,教師引導學生概括出乘法分配律的內容。

        在本課的練習設計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習的形式多樣,課本上的填空題解決以后,設計了判斷題和練習題,把學生易出錯的問題提前預設好,而且通過練習讓學生明白乘法分配律也可以兩個數(shù)的差,也可以是三個數(shù)的和,使學生對乘法分配律的內容得到進一步完整,也為后面利用乘法分配律進行簡算打下伏筆。為了讓學生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學生運用今天所學知識進行計算,學生非常有興趣,在練習中培養(yǎng)了學生分析、推理、概括的思維能力。

        總之,在本堂課中新的教學理念有所體現(xiàn),是一節(jié)本色的數(shù)學課堂。但在具體的操作中還缺乏成熟的思考,自主探究環(huán)節(jié)對問題的設計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設計順序有些出入,感覺效果沒有預想的好,上課時對于教案的熟悉程度還有待加強。

      《乘法分配律》教學反思2

        《乘法分配律》是四年級第七單元的內容,在此之前,學生上個學期已經學過了加法交換律和結合律、乘法交換律和結合律,同時這個學期第四單元混合運算中也運用了學過的運算律進行簡便的計算,上課之前,我以為學生對這一部分的知識并不陌生,所以就簡單地設計了復習,回顧學過的運算律,再讓學生發(fā)現(xiàn)運算律在簡便計算中的運用,接著就出示了上課的例題,讓學生從例題中尋找乘法分配律的影子,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授。通過鞏固練習讓學生認識乘法分配律在計算和實際生活問題中的運用。上課之前,我以為學生會跟著我的思路走,會很順利的上完整節(jié)課。但上完課,我發(fā)現(xiàn)我自己的課堂出現(xiàn)了很多的問題,總結了一下,我感覺自己在很多方面做得很不到位。

        開始的時候,學生回顧運算律的時候出現(xiàn)了小的問題,讓我有一點束手無策,導致后面的復習題忘記出示,課堂環(huán)節(jié)被遺漏。

        教學新課的時候,學生的列式不是我想要的算式的形式,我就直接寫出我想要的算式的形式了,其實這個時候可以用乘法交換律變成我想要的.形式,同時,我也在想,知識應該是靈活的,我也應該寫出學生說出的那種形式,因為這是學生自己列出來的式子,他自己肯定能理解的,但課上我的做法就有點急于求成,有點生搬硬套了。

        小組討論的時候也出現(xiàn)了很多的問題,本來我認為這節(jié)課學生應該很快地發(fā)現(xiàn)等式兩邊的特點的,也能很快地說出它們的共同點的,但上課的時候,小組討論中我發(fā)現(xiàn),學生根本不知道該如何發(fā)現(xiàn)這些算式的共同點,即使有些同學發(fā)現(xiàn)了一些特點也不知道該如何表達出來,課后反思了,我發(fā)現(xiàn)自己的問題設計的不好,學生不能明白地知道該從哪里入手,是比較數(shù)字上面的關系,還是觀察式子上的關系,還是看符號上的關系,所以導致學生不知道該怎么說,還有一點重要的原因是我在討論之前比較例題中的等式的時候沒有清楚地講到讓學生觀察等式的運算順序,導致學生不會說。另一方面,對于將等式抽象成一個字母表示的式子本身不是什么難事,但還要講出抽象的過程,對于四年級的學生有一點難度,學生能感覺出來就是這樣寫,但說的有理有據(jù)真的很困難。所以在我們的教學中,我們要考慮到學生的認知水平,讓學生說出他應該有的想法就很好了,以后的教學中我們應盡量讓學生進行小組討論說出自己的想法,同時也要注意小組討論的程度問題,提出適合學生的、有效的問題是很有必要的。

        練習中,要更多地關注學生的能力發(fā)展,要讓學生說出自己的想法,把每一題的設計意圖理解清楚,根據(jù)題意正確地進行計算,并掌握做題的方法。

        一節(jié)課下來發(fā)現(xiàn)自己出現(xiàn)了很多很多的問題,希望在以后的教學中能慢慢地減少這樣問題的出現(xiàn)。

      《乘法分配律》教學反思3

        《探索與發(fā)現(xiàn)(三)乘法分配律》教學反思

        東新四小學 王唯

        教學內容:

        小學四年級數(shù)學(上)《探索與發(fā)現(xiàn)(三)》乘法分配律》教材第48頁

        教學目標:

        1、經歷探索的過程,發(fā)現(xiàn)乘法分配律,并能用字母表示。

        2、會用乘法分配律進行一些簡便計算。

        教學重點:理解乘法分配律的特點。

        教學難點:乘法分配律的正確應用。

        教學過程:

        一、復習回顧

       。ǔ鍪菊n件1)計算

        35×2×5=35×(2×)

       。60×25)×4=65×(×4)

       。125×5)×8=(125×)×5

       。3×4)×5 × 6=(×)×(×)

        師:上節(jié)課,經過同學們的探索,我們發(fā)現(xiàn)了乘法交換律和結合律,并會應用這些定律進行簡便計算,今天咱們繼續(xù)探索,看看我們又會發(fā)現(xiàn)什么規(guī)律。讓我們一起走上探索之路。

        二、探究發(fā)現(xiàn)

        (出現(xiàn)課件2)

        師:大家看,工人叔叔正在貼瓷磚呢,看到這幅圖,你發(fā)現(xiàn)了哪些數(shù)學信息?

        生:我發(fā)現(xiàn)有兩個叔叔在貼瓷磚

        生:我發(fā)現(xiàn)一個叔叔貼了4列,每列貼9塊,另一個叔叔貼了6列,每列貼了9塊。

        師:你最想知道什么問題?

        生:我想知道工人叔叔一共貼了多少塊瓷磚?(按鼠標出示問題) 師:你能估計出工人叔叔一共貼了多少塊瓷磚嗎?

        生:我估計大約有100塊瓷磚

        生:我估計大約有90塊瓷磚。

        師:請同學們用自己喜歡的方法來計算瓷磚究竟有多少塊。(學生做,小組討論,教師巡視)

        師:誰來向大家介紹一下自己的做法?

        生:6×9+4×9(板書)

        =54+36

        =90

        分別算出正面和側面貼的塊數(shù),再相加,就是貼的`總塊數(shù)。

        生:(6+4)×9(板書)

        = 10×9

        =90(塊)

        因為每列都是9塊,所以我先算出一共有多少列,再用列數(shù)去乘每列的塊數(shù),就是一共貼瓷磚的塊數(shù)。

        師:同學們的計算方法都很好,請同學們仔細觀察兩種算法,你能發(fā)現(xiàn)什么?

        生:我發(fā)現(xiàn)計算方法不同,但結果卻是一樣的。

        6×9+4×9 = (6+4)×9(板書)

        師:請同學們仔細觀察上面兩道算式的特點,你能再舉一些這樣類似的例子嗎?

        (學生舉例,教師板書)

        師:這幾們同學舉的例子符合要求嗎?請在小組中驗證一下。 (小組匯報)

        小組1:符合要求,因為每組中兩個算式都是相等的。

        小組2:在每組的兩個算式中,一個是兩個數(shù)的和去乘一個數(shù),另一個是用這兩個數(shù)分別是去乘同一個數(shù),再相加,符合要求。

       。ò鍟茫竭B接算式)

        師:比較等號左右兩邊的算式,從它們的特點和結果相等中你能發(fā)現(xiàn)什么規(guī)律,小組再討論一下。

        小組1:我們小組發(fā)現(xiàn),只要符合上面題目要求的算式,結果都是一樣的。

        小組2:我們小組發(fā)現(xiàn),兩個不同的數(shù)分別去和同一個數(shù)相乘,然后再相加,可以先把這兩個數(shù)相加再一起去乘第三個數(shù),結果不變。 結論(課件2):師:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。這叫做 乘 法 分 配 律。它是我們學習的關于乘法的第三個定律。

        師:大家齊讀一遍。

        師:和同桌說一說自己對乘法分配律的理解。

        師:上節(jié)課我們學習了用字母來表示乘法交換律和結合律,現(xiàn)在你能用字母的形式表示出乘法分配律嗎?用a,b,c分別表示這三個數(shù),試著寫一寫吧。

       。╝+b)×c=a×c+b×c

        師:這叫做乘法分配律

        三、鞏固練習:

        1、計算

       。80+4)×25 34×72+34×28

        師:觀察算式特點,看是否符合要求,能否應用乘法分配律使計算簡便。

        2、判斷正誤

        ( 25 + 7 )×4 = 25 ×4 ×7×4 ( )

        35×9 + 35

        = 35×( 9 + 1 )

        = 350 - - - - ( )

        3、填一填

       。12+40)×3=× 3 +×3

        15×(40 + 8) = 15×+ 15×

        78×20+22×20=(+ )×20

        四、總結

        師:說說這節(jié)課你有什么收獲?

        師:今天同學們通過自己的探索,發(fā)現(xiàn)了乘法分配律,你們真的很棒。乘法分配律是一條很重要的運算定律。應用乘法分配律既能使一些計算簡便,也能幫助我們解決生活中的一些數(shù)學問題,在我們的生活和學習中應用非常廣泛。同學們要在理解的基礎上牢牢記住它,希望它永遠成為你的好朋友,伴你生活、成長。

        [板書設計]

        探索與發(fā)現(xiàn)(三)

        -----乘法分配律

       。╝+b)×c=a×c+b×c

        6×9+4×9 =(6+4)×9

       。40+4)×25 = 40×25+4×25

        (64+36)×42 = 42×64+42×36

      《乘法分配律》教學反思4

        《新課程標準》把以“學生發(fā)展為本”作為新課程的基本理念。提出“有效的數(shù)學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式”。然而,這些新的教學理念在實際的課堂教學中如何體現(xiàn)呢?

        幾年來,我在轉變學生的學習方式方面進行了積極探索。下面,就“乘法分配律”一教學片斷,談談自己對如何轉變學生學習方式的。

        師:(出示課件)樹勛中心小學購買舞蹈服裝,每件上衣65元,每條褲子35元,購買12套衣服一共要多少元?(能用不同的方法幫助他們算算嗎?)

        師:每個算式的結果都是1200元,那么這兩個算式有什么關系?

        師:剛才我們是通過計算發(fā)現(xiàn)兩個算式相等的,大家能根據(jù)題意說說兩個算式為什么相等嗎?

       。ㄟ^了一會兒,有幾個同學舉起了小手,教師指名回答。)

        生:我們小組認為:我們知道一件上衣和一條褲子合起來叫一套衣服,就是65元和35元的和,買12套衣服的價錢就是12個65元和12個35元的和;每件上衣65元,12件上衣的價錢就是12個65元,每條褲子35元,12條褲子就是12個35元,合起來也是12套衣服的價錢,所以(65+35)×12=65×12+35×12。

        師:哪位同學聽懂了他說的意思?請用簡單的語言說一遍。

        生:12個65加12個35等于12個65與35的和。

        師:照這樣,你能再寫出幾組這樣的等式嗎?(學生獨立思考。)

        生3:(12+18)×15=12×15+18×15。

        師:同學們仔細觀察,對比上面的等式左右兩邊的式子有什么特征?你從中發(fā)現(xiàn)什么規(guī)律?小組內的同學可以互相商量、討論。

        生1:我們小組發(fā)現(xiàn):等號左邊的式子不是兩個數(shù)的和乘一個數(shù)就是一個數(shù)乘兩個數(shù)的和,等右左邊的式子都是括號內的兩個數(shù)與括號外的那個數(shù)相乘,最后把兩個積相加起來。

        生2:我們小組從乘法的意義理解發(fā)現(xiàn):比如(15+25)×8=()×8+()×8。因為15和25的和等于40,左邊的式子可以理解為40個8,右邊的式子可以理解為15個8加25個8一共是40個8,所以40個8等于15個8加25個8。

        師;同學們剛才觀察非常仔細,都代表本組講出了你們發(fā)現(xiàn)的規(guī)律。

        師:像(65+35)×12=65×12+35×12這樣的等式,你能寫出多少個?

        師:你們能不能像乘法交換律和乘法結合律那樣也用一個字母式子來表示呢?

        生1:我用的字母式子是(a+b)×c=a×c+b×c。

        生2:我用的字母式子是c×(a+b)=c×a+c×b。

        師:你們真棒!你們發(fā)現(xiàn)的“兩個數(shù)的和與一個數(shù)相乘,可以用兩個加數(shù)分別與這個數(shù)相乘,再把兩個積相加,結果不變!笔浅朔ㄟ\算中的一條定律,叫乘法分配律。乘法分配律常表示為(a+b)×c=a×c+b×c。

        師:現(xiàn)在讓大家用上面的字母式子記住乘法分配律,你們可以嗎?

        以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境――為樹勛中心小學購買舞蹈服裝。通過兩種算式的比較,喚醒了學生已有的知識經驗,使學生初步感知乘法分配律。讓學生始終處于主動探索知識的最佳狀態(tài),促使學生對原有知識進行更新、深化、突破、超越。

        發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律。這樣學生經歷了“觀察、初步發(fā)現(xiàn)、舉例驗證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。不僅要讓學生獲得了數(shù)學基礎知識和基本技能,而且讓學生學習科學探究的方法,以培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。

        建構主義強調,學習不是簡單地讓學習者占有別人的知識,而是學習者主動地建構自己的知識經驗,形成自己的見解。在學習過程中學習者不僅要不斷監(jiān)視自己對知識的理解程度,判斷自己的進展與目標的差距,采取各種增進和幫助思考的策略,而且還要不斷地反思自己的學習過程。由于數(shù)學對象的抽象性、數(shù)學活動的'探索性決定了小學生不可能一次性地直接把握數(shù)學活動的本質,必須要經過多次的反復思考、深入研究和自我調整才可能洞察數(shù)學活動的本質特征。就小學數(shù)學課堂教學而言,反思的內容主要有:對自己的思考過程進行反思,對解題思路、分析過程、運算過程、語言的表述進行反思,對所涉及的數(shù)學思想方法反思等。在數(shù)學活動中,當學生在探索過程中遇到障礙或出現(xiàn)錯誤時,教師可以提出一些針對性的、具有啟發(fā)性的問題引導學生主動地反思探索過程;當數(shù)學活動結束后,要引導學生反思整個探索過程和所獲得結論的合理性,以獲得成功的體驗。在“乘法分配律”教學中,我先向學生我先讓學生根據(jù)提供的問題,用不同的方法解決,從而發(fā)現(xiàn)(65+35)×12=65×12+35×12這個等式,讓學生觀察,是讓學生初步感知這個規(guī)律。同時也體現(xiàn)了教學的差異性,給沒有發(fā)現(xiàn)規(guī)律的同學以再次發(fā)現(xiàn)的機會。然后照樣子寫出幾組這樣的等式,引導學生再觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律、并用不同的方法來表示這個規(guī)律,來加深學生的數(shù)學體驗。又如,學習了“乘法分配律”后,教師可讓學生反思:“乘法分配律”是怎樣總結出來的?從中你受到了什么啟發(fā)?什么知識與“乘法分配律”有聯(lián)系?學了“乘法分配律”后有什么用?這樣既豐富了學生的數(shù)學體驗,又提高了學生的“反思”的意識和能力。

        本課中注意引導了學生在數(shù)學活動中體驗數(shù)學,在數(shù)學中感悟數(shù)學,實現(xiàn)了運算律的抽象化與外化運用的認知飛躍,同時也體驗到了學習數(shù)學的樂趣。

      《乘法分配律》教學反思5

        乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數(shù)學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。

        教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學生經歷觀察、分析、比較和根據(jù)的過程。能使學生在合作交流的`過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。

        在教學時,我是按照如上的步驟進行教學的?墒窃谖乙龑W生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析?梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠寫出來。

        我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經發(fā)現(xiàn)我們班上的學生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現(xiàn)了問題。這些都要一一地去分析。

        乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經過了第四題的練習時也是一樣。

        今天教學了運算律――乘法分配律,對于例題的解決,學生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計算得出計算結果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結自己的發(fā)現(xiàn),學生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把AxC+BxC改寫成(A+B)xC的正確率要比把(A+B)xC改寫成AxC+BxC的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74x(21+1)和74x21+74部分學生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74x21+74x1再運用乘法分配律變形成74x(21+1),學生理解后我補充77x99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了AxB+B=□(□○□)和AxB+B=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48x3+48x2來計算,卻不能靈活運用所學知識列成(3+2)x48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。

      《乘法分配律》教學反思6

        乘法分配律是小學階段學生比較難理解與敘述的運算定律,但的確又非常重要、運用廣泛。在本節(jié)教學過程的設計上我采用了讓孩子通過“聯(lián)系實際、感知建模;分類整理,生成模型;發(fā)現(xiàn)規(guī)律,舉例驗證;表示規(guī)律,建構模型;概括規(guī)律,完善模型;應用規(guī)律,感受模型”的探索過程,完成本節(jié)的教學任務。

        在教學過程中,以突破乘法分配律的教學重點和難點為切入點,對本節(jié)課知識的學習起到了舉足輕重的作用。根據(jù)自己的教學教訓,在平常的教學中,總是發(fā)現(xiàn)學生在學習完乘法分配律之后容易出現(xiàn)(a+b)×c=a×c+b的現(xiàn)象仔細研究其原因,其實是學生學的記的只是乘法分配律的外在形式,對公式只不過是表面膚淺的忘記,而沒有真正理解乘法分配律內在的數(shù)學意義。因此,我就打破通過觀察 發(fā)現(xiàn) 猜想 驗證 概括的傳統(tǒng)教學思路,除了在外在形式上認識規(guī)律(教材意圖),又從乘法的意義入手,使學生進一步從算式意義方面得出了(a+b)×c=a×b+b×c這樣確鑿無疑的結論。讓學生對乘法分配律的理解不再只是停留在外在的“形”,而是又進入“質”的深化。這種教學建立在學生認知規(guī)律的基礎之上,實現(xiàn)了有效的.建立模型突破了本節(jié)的第一個難點。從課后作業(yè)可以看出,這種教學效果明顯好于以前。

        在突破本節(jié)第二個難點:乘法分配律容易跟乘法結合律混淆的現(xiàn)象時。敢于挑戰(zhàn)自我,不再泛泛地講兩個規(guī)律的區(qū)別與聯(lián)系,而采用反式教學寫出25×(4×8)=25×4+25×8的現(xiàn)象,讓學生既懂得乘法結合律和分配律的區(qū)別,又找到了乘法分配律概念的重點。

        在本節(jié)課的練習設計上,力求有針對性、有坡度的知識延伸,出示擴展型的練習,對分配律的概念加以升華。

        這些方面,只是我對自己原來的教學在反思與對比中覺得是對我而言較為進步的一點點。但是,在實際的課堂操作中,整個教學過程也出現(xiàn)了許多不盡人意的地方。

        比如:課堂上由于緊強導致只顧自己思路,而忘了對學生的回答或知識的恰當與否做出及時評定。還有,恐怕在規(guī)定時間內完不成任務,而把“總結”與“拓展”放錯了位置;學生參與的積極性沒有預想中那么高,可能與我相對缺乏激勵性語言有關等等問題。

        深入思考,覺得還是自己的業(yè)務不夠熟練,駕馭課堂能力低下而造成的。因此,我想:今后要從以下幾方面努力:

        一、深入鉆研,在挖掘教材上下功夫。

        二、多聽課,學習別人長處,多查閱資料學習,提高自己的業(yè)務水平。

        最重要的是更新教學理念,在教學思路的“創(chuàng)新”上狠下功夫,讓學生看到的天天都是“新”老師,甚至忘記“傳統(tǒng)”形象,這是我最高的追求目標。

      《乘法分配律》教學反思7

        曾經真的以為自己是一個很負責任的人:我愛我的學生,我愛我的數(shù)學教學,甚至可以為了我的學生與數(shù)學教學,放棄我個人的休息時間,為的只是我愛的學生能愛上我教的數(shù)學,能把數(shù)學學得很出色。然而為什么總是事與愿違,成效“背叛”了設想,作業(yè)“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學期最大的`感受,到底問題出在哪里呢?當我回想起教學中一點一滴的瑣事,老師們交流時的經驗之談,再重新翻閱起一些理論書刊時,我似乎意識到自己其實早已經“背叛”了數(shù)學教學。

        “哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的回答又正中我的下懷,這不正是我所期望的答案嗎?說實話,開公開課我就喜歡像他這樣的學生,積極舉手發(fā)言,而且一步一步被我“引進”來,突出所謂的教學重點,攻克預設的教學難點,最后解決相應的問題,“看上去很美”,真的,經過我的“引導”,他能“自主探索”,尋求規(guī)律,最后消除疑問,這不是一件看上去很“完美”的事嗎?

        可是……“怎么又錯了!”我真是納悶,上課如此“高效”的人,怎么作業(yè)就這么慘不忍睹?題目稍一拐彎,就轉不過來了,曾經我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進行簡便運算》后,經過反思與請教,我終于發(fā)現(xiàn)我錯了。

      《乘法分配律》教學反思8

        乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,如何使學生掌握得更好,記得更牢?我想學生自己獲得的知識要比灌輸?shù)脕淼挠浀酶巍R虼宋以谝婚_始設計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,從而自己概括出乘法分配律。我是這樣設計:

        一、讓學生從生活實例去理解乘法分配律

        一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)椋?+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。

        通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。

        如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會

        借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。

        二、突破乘法分配律的教學難點

        讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。

        相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的',等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?

        學生主動去設計、解決,調動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。

        在學生已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。

        當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。

        乘法分配律教學反思是必要的,所以老師們一定也要好好地去對待。不斷的反思,才可以促進不斷的進步。以上面的文章,希望與各位同行們共同進步。

      《乘法分配律》教學反思9

        《乘法分配律》是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……

        1、關注學生已有的知識經驗。以學生身邊熟悉的情境為教學的`切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境,喚醒了學生已有的知識經驗,使學生初步感知乘法分配律。

        2、展示知識的發(fā)生過程,引導學生積極主動探究。讓學生根據(jù)提供的問題,用不同的方法解決,引導學生觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律。不僅讓學生獲得了數(shù)學基礎知識和基本技能,而且培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。

        3、出示乘法分配律的幾種不同的形式讓學生進行練習。

        通過這一系列的教學措施,一節(jié)課下來,總體感覺良好——覺得同學們掌握得還不錯。于是,我布置了讓學生們完成練習冊中《乘法分配律》這一課的習題。

        當我批改練習時我傻了眼,學生的作業(yè)大多是中,少部分得良和差(我的作業(yè)批改評定標準),為什么會是這樣的結果,我進行反思,發(fā)現(xiàn)是講時,例題出示的不多,當時學生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學生就很容易受到干擾,結果是張冠李戴,錯得讓我涕笑皆非。而為了讓學生把這個知識點掌握牢固,我整整又用了兩節(jié)課。

        通過這個知識點的教學,我發(fā)現(xiàn)數(shù)學不多練是不行的。在學生理解之后,必須對其進行及時、有效的練習才可以使知識掌握的更加牢固。

      《乘法分配律》教學反思10

        首先結合學生熟悉的問題情境,幫助學生體會運算定律的現(xiàn)實背景。接著設計“懸念”,拋出四組題目,把學生引到“兩算式的結果相等”的情況中來。先請學生猜想,而后驗證,再請學生編題,讓每一個學生都不由自主地參與到研究中來。在編題過程中,很多學生都交出了正確的“答卷”,增強了他們學習的自信心和繼續(xù)研究的.欲望。接著,請同學在生活中尋找驗證的方法,以四人小組為研究單位,學生的思維活動一下子活躍起來,紛紛探究其中的奧秘。小組討論的方式,更促使學生之間進行思維交流,激發(fā)學生希望獲得成功的動機。通過實踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內化。這樣做,學生學得積極、學得主動、學得快樂,自己動手編題、自己動腦探索,從數(shù)量關系變化的多次類比中悟出規(guī)律,“扶”得少,學生創(chuàng)造得多,學生學會的不僅僅是一條規(guī)律,更重要的是,學生學會了自主自動,學會了進行合作,學會了獨立思考,學生學得輕松,學得主動。

        通過這節(jié)課的教學我感受到:認真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內涵更有廣度和深度,也為培養(yǎng)和發(fā)展學生思維的靈活性,提供了更廣闊的空間。

      《乘法分配律》教學反思11

        本節(jié)課的教學我主要以幾何直觀為切入點,引導學生通過畫一畫,算一算等學習活動,小組合作,共同經歷乘法分配的探究過程,借助圖形探知、理解乘法分配律。

        試講過后與大家的感覺一樣,學生對設計草莓大棚的這個話題不是特別感興趣,接受工作室友們提出的寶貴意見后,想把情境創(chuàng)設改為設計學校的操場。由于學校里孩子們數(shù)量每年都在增加,孩子們喜歡的小操場越來越擠,想要擴建這個長方形的小操場,怎么辦呢?這個話題與孩子們的生活息息相關,應該比上一次設計的話題更容易引起他們的關注。

        本節(jié)課設計一始,所需的計算方法與原來學過的計算長方形面積有關。長方形的面積長乘寬,即使個別學生忘記也很容易喚醒。我鼓勵學生大膽去猜想,在計算之前先要在頭腦中勾勒出長方形的模樣,激發(fā)學生在畫圖中梳理題中的數(shù)學信息。接下來的三次探究過程,先是教師設定長方形增加的長,再次是學生自己設定長度,再到后來自己設定三個量,給學生充分的想象和發(fā)揮空間,發(fā)揮學生主體的主動作用,即使學生在研究中遇到困難,有小組合作交流討論環(huán)節(jié)也使學生之間有了互相學習和提高的過程。

        學生在已有的知識經驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在得出結論的過程中,有的同學用到了文字說明,也有同學是符號表示,還有的是字母表示,無論出現(xiàn)得出的哪種結論,老師都予以肯定和表揚,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。

        在學生展示匯報的過程中,雖然字母表示的方法更清晰,大家更喜歡,但課后覺得能用文字表述其實是更難的一件事,對這樣的孩子應該在課堂上再多給學生一些鼓勵與肯定,學生的學習興趣會更濃,他們學到的東西可能也會更多。

        孩子們自己填寫的數(shù)字各不相同,在不同的計算方法和有不同的計算結果中,使學生感受到大量在實例計算后,大膽地完成了由猜想到驗證的過程。猜想是科學發(fā)現(xiàn)的前奏。學生的學習活動中不能沒有猜想,否則,主體性探究活動便缺少了內在的動力,自主學習的過程也成了失去目標的無意義操作。接下來的舉例就成了驗證猜想的必需,無論猜想的結論是“是”還是“非”,學生的思維一直是活躍著的',對學生都是有意義的。這個過程是教會學生學習與掌握探索方法的過程,是培養(yǎng)學生學習品格的過程。

        在研究的過程中,如何利用小組合作資源,把研究中遇到困難的,興趣保持不下去的同學的積極性再調動一下就更好了。

        課堂學習的過程,一切以師生間,生生間建立的平等交流這個平臺才得以順得完成,教學過程是師生共創(chuàng)共生的過程,師生成為共同建構學習的參與者。在上述的教學活動中,教師讓學生充分經歷學習過程,調動學生學習的熱情:想象――猜想――舉例――驗證,在欣賞學生的“閃光”處給學生“點撥”。師生在課堂交流中才得以共同成長。

      《乘法分配律》教學反思12

        乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。它的教學重點是讓學生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。所以本堂課我通過口算、讀算式、寫類似算式等多種方式讓學生去感知乘法分配律,最后由學生總結出乘法分配律概念。本堂課我感到比較滿意的地方,就是把課堂的主體權交給了學生,學生們都很主動積極的參與到學習中來,可是不足之處頗多。

        1、在要求同學們去總結出乘法分配律的概念時老師沒有很好的引導,導致同學對乘法分配律特點的認識比較模糊。

        結合學生的.掌握情況我覺得教學此內容需要注意以下幾點:

        1、區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習。乘法結合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?

        2、學生進行一題多解的練習,經歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結合律與乘法分配律的理解。

        3、多練。針對典型題目多次進行練習。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103—65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。

        《乘法分配律》教學反思11

        乘法分配律是一節(jié)概念課,是在學生已經掌握了加法運算定律以及乘法交換律、乘法結合律的基礎上進行教學的。在本單元運算定律中,是最難理解的,學生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進行簡便計算。

        在課堂上,創(chuàng)設了植樹活動的情境,求一共有多少名同學參加了植樹活動。在課堂中,鼓勵學生獨立思考,能用兩種方法解答出來,然后讓學生對比兩種算法初步讓學生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。

        在學生理解了乘法分配律后,運用變式練習加深對乘法分配律意義的理解,讓學生不僅知道兩個數(shù)的和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習讓學生深入理解乘法分配律的意義。

        通過學習,一些學生已掌握,但也有一些學生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應用。還有一些學生容易把乘法分配律和乘法結合律弄混淆。

        所以在復習鞏固時,要加強乘法結合律與乘法分配律的對比,讓學生對這兩個運算定律的結構更清晰。還要加強對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應用運算定律進行簡便計算。

      《乘法分配律》教學反思13

        1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵

        教學中通過解決“濟青高速公路全長多少千米”這一問題,結合具體的生活情景,得到了(110+90)x2=110x2+90x2”這一結果,教學中只注重了等式的外形特點,即兩個數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法意義的角度理解,即左邊表示200個2,右邊也表示200個2。所以(110+90)x2=110x2+90x2。

        2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習

        乘法結合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的.和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算是個有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?

        3、讓學生進行一題多解的練習,經歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結合律與乘法分配律的理解

        如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8)等。101×89①豎式計算;②(100+1)×89;③101×(80+9)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行簡算,乘法結合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當?shù)乃惴ǖ哪康摹?/p>

        4、多練

        針對典型題目多次進行練習。練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如68×25+68+68×74,32×125×25等。

      《乘法分配律》教學反思14

        《乘法分配律》是一節(jié)比較抽象的概念課,是學生們學習了加法交換律和結合律,以及乘法的交換律和結合律的基礎上進行教學的。本節(jié)課的教學重點是乘法分配律的特點和應用。開始導入我是利用小學教學熱身賽展開的教學。9×37+9×63和9×(37+63)。左右兩排學生做不同的題,讓學生認識到這兩道題難易程度的不同,用的時間也是不同的,體現(xiàn)了用括號的必要性和簡便性,通過學生總結說特點引導他們猜想,然后對猜想進行驗證,得出結論,并應用到實際中,培養(yǎng)學生們學以致用的好習慣。

        上周去濱州聽課,學到了“猜測-舉例驗證-總結-應用”的教學模式,充分體現(xiàn)了新課標的探究性學習,并在本課教學中得到了很好的利用,不完全歸納法,也在本課中用所應用。但是在引入時應該讓學生們把這兩個算式的特點和聯(lián)系理解透徹了,學生們會很快的猜想出這條規(guī)律,整節(jié)課講速度有些慢,導致了幾個經典的練習題沒有處理,創(chuàng)設情境激發(fā)學生的求知欲來導入新課,會收到更好的效果。

       。80+4)×25=80×25+4×25此題的處理,我感到比較欣慰。當發(fā)現(xiàn)學生們(80+4)×25=80×25+4時,我靈機一動在黑板上寫下了這個錯誤的`算式,讓和我做的一樣的同學舉手,大約有5、6個同學高興地舉起手,還有一個同學得意地說“剛才我還以為做錯了呢?”看到這種情景我接著說:“不舉手的同學你們想說點什么嗎?”此句話給了這些沒有舉手的同學的信心,他們迫不及待地說出了正確的解法。這道題學生們非常容易做錯,這樣的處理會使學生加深印象,提高做題的準確率。

      《乘法分配律》教學反思15

        在乘法分配律的教學中,如果只求形式把握不求實質理解,一方面從認識的角度看是不嚴謹?shù)模ㄐ问缴系牟煌耆珰w納不一定得出真理),另一方面很容易造成學生不求甚解、囫圇吞棗的不良認知習慣。如果滿足于從形式上掌握乘法分配律,對于學生的后續(xù)發(fā)展也極為不利。因此,在教學時先出示了這樣一道例題:一件茄克衫65元,一條褲子35元。王老師買5件茄克衫和5條褲子,一共要花多少元?學生用了兩種解答方法即:(65+35)×5=65×5+35×5。借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。

        相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破教學難點,我設計了一系列的練習。

        1、在□里填數(shù),○里填運算符號:如(25+45)×4=□○□○□○□……

        2、在相等的一組算式后面打“√”:如16×7+24×7(16+24)×7□……

        在這一組題目中教者重點評析了最后一道題:40×50+50×9040×(50+90)□。先讓學生說說著一題為什么不能打√,再根據(jù)乘法分配律的特征,分別寫出與左右算式相等的式子。通過練習學生對乘法分配律有了進一步的認識,又讓學生照上面的樣子寫出的幾個這樣的`等式,最后歸納出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。

        實際上課堂時學生對于能否找到反例的活動很感興趣,可以嘗試讓學生也提幾個反例,經過討論逐個否決,在這樣的過程中,學生的等式變形能力能夠得到很大提高,有益于加深對乘法分配律的認識。

      【《乘法分配律》教學反思】相關文章:

      乘法分配律教學反思02-12

      《乘法分配律》教學反思02-15

      《乘法分配律》教學反思精選15篇03-17

      《乘法分配律》教學反思(15篇)03-05

      乘法分配律教學反思15篇03-18

      乘法分配律教學反思(15篇)03-26

      《乘法分配律》教學反思15篇03-04

      乘法分配律教學反思(通用15篇)04-13

      《乘法分配律》教學反思(匯編15篇)03-26

      《乘法分配律》教學反思集錦15篇03-30