欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>高一數(shù)學(xué)必修教案

      高一數(shù)學(xué)必修教案

      時(shí)間:2024-10-26 16:14:20 教案 我要投稿

      人教版高一數(shù)學(xué)必修教案

        作為一名教職工,通常需要用到教案來(lái)輔助教學(xué),教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。如何把教案做到重點(diǎn)突出呢?以下是小編整理的人教版高一數(shù)學(xué)必修教案,僅供參考,歡迎大家閱讀。

      人教版高一數(shù)學(xué)必修教案

      人教版高一數(shù)學(xué)必修教案1

        教學(xué)目的:

       。1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集;

       。2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;

        (3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對(duì)理解抽象概念的作用。

        教學(xué)重點(diǎn):

        集合的交集與并集、補(bǔ)集的概念;

        教學(xué)難點(diǎn):

        集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;

        【知識(shí)點(diǎn)】

        1、并集

        一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)

        記作:A∪B讀作:“A并B”

        即:A∪B={x|x∈A,或x∈B}

        Venn圖表示:

        第4 / 7頁(yè)

        A與B的所有元素來(lái)表示。 A與B的交集。

        2、交集

        一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。

        記作:A∩B讀作:“A交B”

        即:A∩B={x|∈A,且x∈B}

        交集的Venn圖表示

        說(shuō)明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的`集合。

        拓展:求下列各圖中集合A與B的并集與交集

        A

        說(shuō)明:當(dāng)兩個(gè)集合沒有公共元素時(shí),兩個(gè)集合的交集是空集,不能說(shuō)兩個(gè)集合沒有交集

        3、補(bǔ)集

        全集:一般地,如果一個(gè)集合含有我們所研究問題中所涉及的所有元素,那么就稱這個(gè)集合為全集(Universe),通常記作U。

        補(bǔ)集:對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集(complementary set),簡(jiǎn)稱為集合A的補(bǔ)集,

        記作:CUA

        即:CUA={x|x∈U且x∈A}

        第5 / 7頁(yè)

        補(bǔ)集的Venn圖表示

        說(shuō)明:補(bǔ)集的概念必須要有全集的限制

        4、求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分

        交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法。

        5、集合基本運(yùn)算的一些結(jié)論:

        A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

        A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

       。–UA)∪A=U,(CUA)∩A=?

        若A∩B=A,則A?B,反之也成立

        若A∪B=B,則A?B,反之也成立

        若x∈(A∩B),則x∈A且x∈B

        若x∈(A∪B),則x∈A,或x∈B

        ¤例題精講:

        【例1】設(shè)集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在數(shù)軸上表示出集合A、B。

        【例2】設(shè)A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:

       。1)A?(B?C);(2)A??A(B?C)。

        【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求實(shí)數(shù)m的取值范圍。

        XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求

        CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關(guān)系。

      人教版高一數(shù)學(xué)必修教案2

        教學(xué)目標(biāo)

        1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。

       。1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。

       。2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式。

        (3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng)。

        2、通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。

        3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。

        教學(xué)建議

       。1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等。

       。2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。

       。3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的`代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。

       。4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等。如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。

       。5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。

       。6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的。

      人教版高一數(shù)學(xué)必修教案3

        【教學(xué)目標(biāo)與解析】

        1、教學(xué)目標(biāo)

        (1)理解函數(shù)的概念;

        (2)了解區(qū)間的概念;

        2、目標(biāo)解析

        (1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

        (2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;

        【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

        【教學(xué)過程】

        問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的`規(guī)律是:h=130t-5t2.

        1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

        1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

        設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有的一個(gè)高度h與之對(duì)應(yīng)。

        問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。

        問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

        設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

        問題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?

        4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?

        4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?

        4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個(gè)函數(shù)相等的條件是什么?

      人教版高一數(shù)學(xué)必修教案4

        1、教材(教學(xué)內(nèi)容)

        本課時(shí)主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時(shí)的內(nèi)容具有承前啟后的重要作用:承前是因?yàn)榭梢杂煤瘮?shù)的定義來(lái)抽象和規(guī)范三角函數(shù)的定義,同時(shí)也可以類比研究函數(shù)的模式和方法來(lái)研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進(jìn)一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會(huì)三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會(huì)數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、

        2、設(shè)計(jì)理念

        本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識(shí)結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運(yùn)動(dòng)等具周期性規(guī)律運(yùn)動(dòng)可以建立函數(shù)模型來(lái)刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認(rèn)知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認(rèn)知結(jié)構(gòu),并運(yùn)用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認(rèn)識(shí)結(jié)構(gòu),從而達(dá)成教學(xué)目標(biāo)、

        3、教學(xué)目標(biāo)

        知識(shí)與技能目標(biāo):形成并掌握任意角三角函數(shù)的定義,并學(xué)會(huì)運(yùn)用這一定義,解決相關(guān)問題、

        過程與方法目標(biāo):體會(huì)數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、

        情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會(huì)閱讀數(shù)學(xué)教材,學(xué)會(huì)發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

        4、重點(diǎn)難點(diǎn)

        重點(diǎn):任意角三角函數(shù)的定義、

        難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的'滲透、

        5、學(xué)情分析

        學(xué)生已有的認(rèn)知結(jié)構(gòu):函數(shù)的概念、平面直角坐標(biāo)系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點(diǎn)的坐標(biāo)來(lái)表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認(rèn)知結(jié)構(gòu)、

        6、教法分析

        “問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動(dòng)學(xué)生的思維和學(xué)習(xí)活動(dòng),并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認(rèn)知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、

        7、學(xué)法分析

        本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來(lái)研究三角函數(shù)一些基本性質(zhì)和符號(hào)問題,從而使學(xué)生形成新的認(rèn)識(shí)結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)、

      人教版高一數(shù)學(xué)必修教案5

        教學(xué)目的:

        掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

        教學(xué)重點(diǎn):

        圓的'標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

        教學(xué)難點(diǎn):

        標(biāo)準(zhǔn)方程的靈活運(yùn)用

        教學(xué)過程:

        一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

        二、掌握知識(shí),鞏固練習(xí)

        練習(xí):

        1.說(shuō)出下列圓的方程

       、艌A心(3,-2)半徑為5

        ⑵圓心(0,3)半徑為3

        2.指出下列圓的圓心和半徑

       、牛▁-2)2+(y+3)2=3

       、苮2+y2=2

       、莤2+y2-6x+4y+12=0

        3.判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

        4.圓心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

        三、引伸提高,講解例題

        例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

        練習(xí):

        1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

        2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

        例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。

        例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

        四、小結(jié)練習(xí)P771,2,3,4

        五、作業(yè)P811,2,3,4

      人教版高一數(shù)學(xué)必修教案6

        教學(xué)目標(biāo):

        1、理解集合的概念和性質(zhì)。

        2、了解元素與集合的表示方法。

        3、熟記有關(guān)數(shù)集。

        4、培養(yǎng)學(xué)生認(rèn)識(shí)事物的能力。

        教學(xué)重點(diǎn):

        集合概念、性質(zhì)

        教學(xué)難點(diǎn):

        集合概念的理解

        教學(xué)過程:

        1、定義:

        集合:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合(集)。元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素。

        由此上述例中集合的.元素是什么?

        例(1)的元素為1、3、5、7,

        例(2)的元素為到兩定點(diǎn)距離等于兩定點(diǎn)間距離的點(diǎn),

        例(3)的元素為滿足不等式3x—2> x+3的實(shí)數(shù)x,

        例(4)的元素為所有直角三角形,

        例(5)為高一·六班全體男同學(xué)。

        一般用大括號(hào)表示集合,{?}如{我校的籃球隊(duì)員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??

        為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        (1)確定性;(2)互異性;(3)無(wú)序性。

        3、元素與集合的關(guān)系:隸屬關(guān)系

        元素與集合的關(guān)系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。

        集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)

        注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??

        元素通常用小寫的拉丁字母表示,如a、b、c、p、q??

        2、“∈”的開口方向,不能把a(bǔ)∈A顛倒過來(lái)寫。

        4

        注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0。

       。2)非負(fù)整數(shù)集內(nèi)排除0的集。記作NXX或N+ 。Q、Z、R等其它數(shù)集內(nèi)排除0

        的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成ZXX

        請(qǐng)回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關(guān)系。

      【高一數(shù)學(xué)必修教案】相關(guān)文章:

      高一數(shù)學(xué)必修1教案03-28

      高一數(shù)學(xué)必修4教學(xué)反思04-16

      高一數(shù)學(xué)必修1教學(xué)反思04-09

      高一必修一《雨巷》教案06-29

      高一數(shù)學(xué)必修1教學(xué)反思5篇04-11

      高中數(shù)學(xué)必修五教案10-17

      人教版新課標(biāo)高一語(yǔ)文必修名師教案11-06

      高中數(shù)學(xué)必修五教案優(yōu)秀02-08

      數(shù)學(xué)必修一說(shuō)課稿01-14