欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>高中數(shù)學(xué)必修五教案

      高中數(shù)學(xué)必修五教案

      時(shí)間:2023-10-17 13:41:13 教案 我要投稿
      • 相關(guān)推薦

      高中數(shù)學(xué)必修五教案

        作為一名教學(xué)工作者,常常需要準(zhǔn)備教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么教案應(yīng)該怎么寫才合適呢?以下是小編整理的高中數(shù)學(xué)必修五教案,僅供參考,大家一起來看看吧。

      高中數(shù)學(xué)必修五教案

      高中數(shù)學(xué)必修五教案1

        教學(xué)目的:掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

        教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

        教學(xué)難點(diǎn):標(biāo)準(zhǔn)方程的靈活運(yùn)用

        教學(xué)過程:

        一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

        二、掌握知識,鞏固練習(xí)

        練習(xí):

       、闭f出下列圓的方程

       、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3

        ⒉指出下列圓的圓心和半徑

       、牛▁-2)2+(y+3)2=3

        ⑵x2+y2=2

       、莤2+y2-6x+4y+12=0

       、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系

       、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的'方程

        三、引伸提高,講解例題

        例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

        練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

        2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

        例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長度。

        例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

        四、小結(jié)練習(xí)P771,2,3,4

        五、作業(yè)P811,2,3,4

      高中數(shù)學(xué)必修五教案2

        教材分析

        本節(jié)課重在探究等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)及簡單的應(yīng)用。教學(xué)中注重公式的形成過程及數(shù)學(xué)思想方法的滲透,并揭示公式的結(jié)構(gòu)特征和內(nèi)在聯(lián)系.就知識的應(yīng)用價(jià)值來看,它是從大量數(shù)學(xué)問題和現(xiàn)實(shí)問題中抽象出來的模型,在公式推導(dǎo)中所蘊(yùn)含的數(shù)學(xué)思想方法在各種數(shù)列求和問題中有著廣泛的應(yīng)用.就內(nèi)容的人文價(jià)值上看,它的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納、猜想,有助于培養(yǎng)學(xué)生的創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生數(shù)學(xué)的思考問題的良好載體.

        教學(xué)目標(biāo)

        知識與技能: 掌握等比數(shù)列的'前n項(xiàng)和公式以及推導(dǎo)方法;會用等比數(shù)列的前n項(xiàng)和公式解決有關(guān)等比數(shù)列的一些簡單問題.

        過程與方法: 經(jīng)歷等比數(shù)列前n 項(xiàng)和的推導(dǎo)過程,總結(jié)數(shù)列求和方法,體會數(shù)學(xué)中的思想方法.

        情感態(tài)度與價(jià)值觀:通過教材中的實(shí)際引例,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性及學(xué)習(xí)數(shù)學(xué)的主動(dòng)性.

        教學(xué)重點(diǎn)

        等比數(shù)列的前n項(xiàng)和公式推導(dǎo)及公式的簡單應(yīng)用

        教學(xué)難點(diǎn)

        等比數(shù)列的前n項(xiàng)和公式推導(dǎo)過程和思想方法

        教學(xué)過程

        Ⅰ、課題導(dǎo)入

        [創(chuàng)設(shè)情境]

        [提出問題] “國王對國際象棋的發(fā)明者的獎(jiǎng)勵(lì)”的故事

       、颉⒅v授新課

        [分析問題]如果把各格所放的麥粒數(shù)看成是一個(gè)數(shù)列,我們可以得到一個(gè)等比數(shù)列,它的首項(xiàng)是1,公比是2,求第一個(gè)格子到第64個(gè)格子各格所放的麥粒數(shù)總合就是求這個(gè)等比數(shù)列的前64項(xiàng)的和。下面我們先來推導(dǎo)等比數(shù)列的前n項(xiàng)和公式。

      高中數(shù)學(xué)必修五教案3

        教學(xué)目標(biāo)

        1.數(shù)列求和的綜合應(yīng)用

        教學(xué)重難點(diǎn)

        2.數(shù)列求和的綜合應(yīng)用

        教學(xué)過程

        典例分析

        3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,

        (1)求{an}的通項(xiàng)公式

        (2)求{|an|}的前n項(xiàng)和Tn

        4.等差數(shù)列{an}的公差為,S100=145,則a1+a3 + a5 + …+a99=

        5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=

        6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

        (1)求{an}的通項(xiàng)公式

        (2)令bn=anxn ,求數(shù)列{bn}前n項(xiàng)和公式

        7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)

        8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10= S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的最大值

        .已知數(shù)列{an},an∈N,Sn= (an+2)2

        (1)求證{an}是等差數(shù)列

        (2)若bn= an-30 ,求數(shù)列{bn}前n項(xiàng)的最小值

        0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

        (1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

        (2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.

        11 .購買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個(gè)月第1次付款,再過1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)

        12 .某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的

        函數(shù)關(guān)系式是f(t)=

        銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是

        g(t)= -t/3 +109/3 (0≤t≤100)

        求這種商品的日銷售額的最大值

        注:對于分段函數(shù)型的應(yīng)用題,應(yīng)注意對變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過比較,確定最大值

        高中數(shù)學(xué)必修五復(fù)習(xí)知識點(diǎn)

        1、棱柱

        棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

        棱柱的性質(zhì)

        (1)側(cè)棱都相等,側(cè)面是平行四邊形

        (2)兩個(gè)底面與平行于底面的截面是全等的多邊形

        (3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形

        2、棱錐

        棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

        棱錐的性質(zhì):

        (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

        (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

        3、正棱錐

        正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

        正棱錐的性質(zhì):

        (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

        (2)多個(gè)特殊的直角三角形

        a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

        b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的`射影為底面三角形的垂心。

        高中數(shù)學(xué)學(xué)習(xí)方法

        一)、課內(nèi)重視聽講,課后及時(shí)復(fù)習(xí)。

        新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點(diǎn)、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。

        二)、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。

        要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。

        三)、調(diào)整心態(tài),正確對待考試。

        首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

        在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。

        由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點(diǎn),使自己進(jìn)入數(shù)學(xué)的廣闊天地中去。

      高中數(shù)學(xué)必修五教案4

        教學(xué)目標(biāo)

        A、知識目標(biāo):

        掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。

        B、能力目標(biāo):

       。1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

        (2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。

       。3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。

        C、情感目標(biāo):(數(shù)學(xué)文化價(jià)值)

       。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

        (2)通過公式的運(yùn)用,樹立學(xué)生"大眾教學(xué)"的思想意識。

       。3)通過生動(dòng)具體的現(xiàn)實(shí)問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛數(shù)學(xué)的情感。

        教學(xué)重點(diǎn):

        等差數(shù)列前n項(xiàng)和的`公式。

        教學(xué)難點(diǎn):

        等差數(shù)列前n項(xiàng)和的公式的靈活運(yùn)用。

        教學(xué)方法:

        啟發(fā)、討論、引導(dǎo)式。

        教具:

        現(xiàn)代教育多媒體技術(shù)。

        教學(xué)過程

        一、創(chuàng)設(shè)情景,導(dǎo)入新課。

        師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項(xiàng)和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時(shí),一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計(jì)算出來的呢?如果大家也懂得那樣巧妙計(jì)算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

        例1,計(jì)算:1+2+3+4+5+6+7+8+9+10。

        這道題除了累加計(jì)算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。

        二、教授新課(嘗試推導(dǎo))

        師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項(xiàng)和Sn計(jì)算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。

        上面(I)、(II)兩個(gè)式子稱為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。

        師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時(shí)希望大家在學(xué)習(xí)中做一個(gè)有心人,去發(fā)現(xiàn)更多的性質(zhì),主動(dòng)積極地去學(xué)習(xí)。

      【高中數(shù)學(xué)必修五教案】相關(guān)文章:

      必修五語文《談中國詩》教案05-02

      高中數(shù)學(xué)必修三教學(xué)計(jì)劃08-26

      湘教版地理必修二教案11-23

      人教版生物必修一教案04-25

      高中必修三教案01-16

      高中化學(xué)必修教案03-01

      高中數(shù)學(xué)教案11-08

      蘇教版必修三《肖邦故園》教案03-08

      高中化學(xué)必修一教案02-17