欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當前位置:好文網(wǎng)>實用文>教案>二次根式教案

      二次根式教案

      時間:2024-09-16 07:26:10 教案 我要投稿

      二次根式教案模板匯總六篇

        作為一位不辭辛勞的人民教師,時常需要用到教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編收集整理的二次根式教案6篇,歡迎大家借鑒與參考,希望對大家有所幫助。

      二次根式教案模板匯總六篇

      二次根式教案 篇1

        一、教學目標

        1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

        2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

        3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應用。

        二、教學重點和難點

        1。重點:能夠把所給的二次根式,化成最簡二次根式。

        2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

        三、教學方法

        通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結歸納化簡二次根式的方法。

        四、教學手段

        利用投影儀。

        五、教學過程

       。ㄒ唬┮胄抡n

        提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

        了。這樣會給解決實際問題帶來方便。

        (二)新課

        由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

        這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

        總結滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

        1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

        2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

        例1 指出下列根式中的最簡二次根式,并說明為什么。

        分析:

        說明:這里可以向學生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結果也都是最簡二次根式。

        例2 把下列各式化成最簡二次根式:

        說明:引導學生觀察例2題中二次根式的'特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

        例3 把下列各式化簡成最簡二次根式:

        說明:

        1。引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結這類題化簡的方法,先利用商的算術平方根的性質把它寫成分式的形式,然后利用分母有理化化簡。

        2。要提問學生

        問題,通過這個小題使學生明確如何使用化簡中的條件。

        通過例2、例3總結把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結應該注意的問題。

        注意:

       、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

       、诋斠粋式子的分母中含有二次根式時,一般應該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

       。ㄈ┬〗Y

        1。滿足什么條件的根式是最簡二次根式。

        2。把一個二次根式化成最簡二次根式的主要方法。

       。ㄋ模┚毩

        1。指出下列各式中的最簡二次根式:

        2。把下列各式化成最簡二次根式:

        六、作業(yè)

        教材P。187習題11。4;A組1;B組1。

        七、板書設計

      二次根式教案 篇2

        教學目的:

        1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;

        2、會求二次根式的代數(shù)的值;

        3、進一步提高學生的綜合運算能力。

        教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

        教學難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值

        教學過程:

        一、二次根式的混合運算

        例1 計算:

        分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

        (2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的計算。

        練習1:P206 / 8--① P207 / 1①②

        例2 計算

        問:計算思路是什么?

        答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。

        二、求代數(shù)式的.值。 注意兩點:

        (1)如果已知條件為含二次根式的式子,先把它化簡;

        (2)如果代數(shù)式是含二次根式的式子,應先把代數(shù)式化簡,再求值。

        例3 已知,求的值。

        分析:多項式可轉化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽恪

        例4 已知,求的值。

        觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。

        答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。

        三、小結

        1、對于二次根式的混合混合運算。應根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結果要化為最簡二次根式。

        2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。

        3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

        四、作業(yè)

        P206 / 7 P206 / 8---②③

      二次根式教案 篇3

        【教學目標】

        1.運用法則

        進行二次根式的乘除運算;

        2.會用公式

        化簡二次根式。

        【教學重點】

        運用

        進行化簡或計算

        【教學難點】

        經(jīng)歷二次根式的乘除法則的探究過程

        【教學過程】

        一、情境創(chuàng)設:

        1.復習舊知:什么是二次根式?已學過二次根式的哪些性質?

        2.計算:

        二、探索活動:

        1.學生計算;

        2.觀察上式及其運算結果,看看其中有什么規(guī)律?

        3.概括:

        得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。

        將上面的.公式逆向運用可得:

        積的算術平方根,等于積中各因式的算術平方根的積。

        三、例題講解:

        1.計算:

        2.化簡:

        小結:如何化簡二次根式?

        1.(關鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

        2.P62結果中,被開方數(shù)應不含能開得盡方的因數(shù)或因式。

        四、課堂練習:

        (一).P62 練習1、2

        其中2中(5)

        注意:

        不是積的形式,要因數(shù)分解為36×16=242.

        (二).P67 3 計算 (2)(4)

        補充練習:

        1.(x>0,y>0)

        2.拓展與提高:

        化簡:1).(a>0,b>0)

        2).(y

        2.若,求m的取值范圍。

        ☆3.已知:,求的值。

        五、本課小結與作業(yè):

        小結:二次根式的乘法法則

        作業(yè):

        1).課課練P9-10

        2).補充習題

      二次根式教案 篇4

        【 學習目標 】

        1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應用它解決相關問題。

        2、過程與方法:進一步體會分類討論的數(shù)學思想。

        3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數(shù)學的樂趣。

        【 學習重難點 】

        1、重點:準確理解二次根式的概念,并能進行簡單的計算。

        2、難點:準確理解二次根式的雙重非負性。

        【 學習內(nèi)容 】課本第2— 3頁

        【 學習流程 】

        一、 課前準備(預習學案見附件1)

        學生在家中認真閱讀理解課本中相關內(nèi)容的知識,并根據(jù)自己的理解完成預習學案。

        二、 課堂教學

        (一)合作學習階段。

        教師出示課堂教學目標及引導材料,各學習小組結合本節(jié)課學習目標,根據(jù)課堂引導材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結,并記錄合作學習中碰到的問題。組內(nèi)各成員根據(jù)課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

        (二)集體講授階段。(15分鐘左右)

        1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

        2. 教師對合作學習中存在的普遍的.不能解決的問題進行集體講解。

        3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

        (三)當堂檢測階段

        為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

        (注:合作學習階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調整次序或交叉進行)

        三、 課后作業(yè)(課后作業(yè)見附件2)

        教師發(fā)放根據(jù)本節(jié)課所學內(nèi)容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。

        四、板書設計

        課題:二次根式(1)

        二次根式概念 例題 例題

        二次根式性質

        反思:

      二次根式教案 篇5

        活動1、提出問題

        一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的'草皮嗎?

        問題:10+20是什么運算?

        活動2、探究活動

        下列3個小題怎樣計算?

        問題:1)-還能繼續(xù)往下合并嗎?

        2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

        二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。

        活動3

        練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

        創(chuàng)設問題情景,引起學生思考。

        學生回答:這個運動場要準備(10+20)平方米的草皮。

        教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。

        我們可以利用已學知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結果。

        教師引導驗證:

       、僭O=,類比合并同類項或面積法;

        ②學生思考,得出先化簡,再合并的解題思路

        ③先化簡,再合并

        學生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

        教師巡視、指導,學生完成、交流,師生評價。

        提醒學生注意先化簡成最簡二次根式后再判斷。

      二次根式教案 篇6

        教學目的

        1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

        2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

        教學重點

        最簡二次根式的定義。

        教學難點

        一個二次根式化成最簡二次根式的方法。

        教學過程

        一、復習引入

        1.把下列各根式化簡,并說出化簡的根據(jù):

        2.引導學生觀察考慮:

        化簡前后的根式,被開方數(shù)有什么不同?

        化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

        3.啟發(fā)學生回答:

        二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

        二、講解新課

        1.總結學生回答的內(nèi)容后,給出最簡二次根式定義:

        滿足下列兩個條件的二次根式叫做最簡二次根式:

        (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

        (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

        最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。

        2.練習:

        下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

        3.例題:

        例1 把下列各式化成最簡二次根式:

        例2 把下列各式化成最簡二次根式:

        4.總結

        把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?

        當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的'性質,把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。

        當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的性質化去分母。

        此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

        三、鞏固練習

        1.把下列各式化成最簡二次根式:

        2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

      【二次根式教案】相關文章:

      二次根式教案05-22

      二次根式優(yōu)秀教案03-14

      二次根式教案優(yōu)秀06-26

      二次根式的加減教案01-19

      二次根式教案[熱]07-10

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案15篇02-27

      二次根式教案合集10篇04-04

      有關二次根式教案4篇04-03

      二次根式教案匯總5篇04-05