- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 相關(guān)推薦
二次根式教案匯總5篇
作為一名人民教師,很有必要精心設(shè)計一份教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。怎樣寫教案才更能起到其作用呢?以下是小編整理的二次根式教案5篇,僅供參考,希望能夠幫助到大家。
二次根式教案 篇1
一、教學(xué)目標(biāo)
1。使學(xué)生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。
2。使學(xué)生掌握化簡一個二次根式成最簡二次根式的方法。
3。使學(xué)生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。
二、教學(xué)重點和難點
1。重點:能夠把所給的二次根式,化成最簡二次根式。
2。難點:正確運用化一個二次根式成為最簡二次根式的方法。
三、教學(xué)方法
通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。
四、教學(xué)手段
利用投影儀。
五、教學(xué)過程
。ㄒ唬┮胄抡n
提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?
了。這樣會給解決實際問題帶來方便。
。ǘ┬抡n
由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)
這兩個二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。
總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:
1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。
2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。
例1 指出下列根式中的最簡二次根式,并說明為什么。
分析:
說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。
例2 把下列各式化成最簡二次根式:
說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。
例3 把下列各式化簡成最簡二次根式:
說明:
1。引導(dǎo)學(xué)生觀察例題3中二次根式的`特點,即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。
2。要提問學(xué)生
問題,通過這個小題使學(xué)生明確如何使用化簡中的條件。
通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。
注意:
、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。
、诋(dāng)一個式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。
。ㄈ┬〗Y(jié)
1。滿足什么條件的根式是最簡二次根式。
2。把一個二次根式化成最簡二次根式的主要方法。
。ㄋ模┚毩(xí)
1。指出下列各式中的最簡二次根式:
2。把下列各式化成最簡二次根式:
六、作業(yè)
教材P。187習(xí)題11。4;A組1;B組1。
七、板書設(shè)計
二次根式教案 篇2
活動1、提出問題
一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問題:10+20是什么運算?
活動2、探究活動
下列3個小題怎樣計算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的`不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進(jìn)行合并。
活動3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問題情景,引起學(xué)生思考。
學(xué)生回答:這個運動場要準(zhǔn)備(10+20)平方米的草皮。
教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運算。
我們可以利用已學(xué)知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗證:
、僭O(shè)=,類比合并同類項或面積法;
②學(xué)生思考,得出先化簡,再合并的解題思路
③先化簡,再合并
學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。
提醒學(xué)生注意先化簡成最簡二次根式后再判斷。
二次根式教案 篇3
一、內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
。2)會運用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
。3)了解代數(shù)式的概念.
2.目標(biāo)解析
。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);
。2)學(xué)生能靈活運用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
(3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點,得出代數(shù)式的概念.
三、教學(xué)問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.
本節(jié)課的教學(xué)難點為:二次根式性質(zhì)的靈活運用.
四、教學(xué)過程設(shè)計
1.探究性質(zhì)1
問題1 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負(fù)數(shù)的算術(shù)平方根的平方.
問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的.能力.
例2 計算
。1)
。2)
師生活動:學(xué)生獨立完成,集體訂正.
【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運用.
2.探究性質(zhì)2
問題4 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.
問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計算
。1)
。2)
師生活動:學(xué)生獨立完成,集體訂正.
【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運用.
3.歸納代數(shù)式的概念
問題7 回顧我們學(xué)過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?
師生活動:學(xué)生概括式子的共同特征,得得出代數(shù)式的概念.
【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運用
。1)算一算:
【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.
。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時, 等于多少?當(dāng) 時, 又等于多少?
【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
(3)談一談你對 與 的認(rèn)識.
【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.
5.總結(jié)反思
。1)你知道了二次根式的哪些性質(zhì)?
。2)運用二次根式性質(zhì)進(jìn)行化簡需要注意什么?
。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?
。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識.
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
二次根式教案 篇4
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的概念.
2.內(nèi)容解析
本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運算打基礎(chǔ).
教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.
本節(jié)課的教學(xué)重點是:了解二次根式的概念;
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)體會研究二次根式是實際的需要.
。2)了解二次根式的概念.
2. 教學(xué)目標(biāo)解析
。1)學(xué)生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.
。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.
三、教學(xué)問題診斷分析
對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.
本節(jié)課的教學(xué)難點為:理解二次根式的雙重非負(fù)性.
四、教學(xué)過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題1你能用帶有根號的的式子填空嗎?
。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.
(2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.
。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.
師生活動:學(xué)生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價.
【設(shè)計意圖】讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.
問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?
師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.
【設(shè)計意圖】為概括二次根式的概念作鋪墊.
2.抽象概括,形成概念
問題3 你能用一個式子表示一個非負(fù)數(shù)的算術(shù)平方根嗎?
師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.
【設(shè)計意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.
追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?
師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的`理由.
【設(shè)計意圖】進(jìn)一步加深學(xué)生對二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.
3.辨析概念,應(yīng)用鞏固
例1 當(dāng) 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?
師生活動:引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負(fù)數(shù)的理解.
例2 當(dāng) 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?
師生活動:先讓學(xué)生獨立思考,再追問.
【設(shè)計意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解.
問題4 你能比較 與0的大小嗎?
師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對二次根式本身為非負(fù)數(shù)的理解,
【設(shè)計意圖】通過這一活動的設(shè)計,提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.
4.綜合運用,鞏固提高
練習(xí)1 完成教科書第3頁的練習(xí).
練習(xí)2 當(dāng)x 是什么實數(shù)時,下列各式有意義.
。1) ;(2) ;(3) ;(4) .
【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.
【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
5.總結(jié)反思
教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.
。1)本節(jié)課你學(xué)到了哪一類新的式子?
(2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?
(3)二次根式與算術(shù)平方根有什么關(guān)系?
師生活動:教師引導(dǎo),學(xué)生小結(jié).
【設(shè)計意圖】:學(xué)生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學(xué)習(xí)重點,掌握解題方法.
6.布置作業(yè):
教科書習(xí)題16.1第1,3,5, 7,10題.
五、目標(biāo)檢測設(shè)計
1. 下列各式中,一定是二次根式的是( )
A. B. C. D.
【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).
2. 當(dāng) 時,二次根式 無意義.
【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.
3.當(dāng) 時,二次根式 有最小值,其最小值是 .
【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運用.
4.對于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.
【設(shè)計意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.
二次根式教案 篇5
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎(chǔ).
基于以上分析,確定本節(jié)課的教學(xué)重點:二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會進(jìn)行簡單的`二次根式的除法運算;
(3) 理解最簡二次根式的概念.
2.目標(biāo)解析
(1)學(xué)生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進(jìn)行運算.
(3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.
三、教學(xué)問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向.
本節(jié)課的教學(xué)難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.
四、教學(xué)過程設(shè)計
1.復(fù)習(xí)提問,探究規(guī)律
問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動 學(xué)生回答。
【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
五、目標(biāo)檢測設(shè)計
【二次根式教案】相關(guān)文章:
二次根式教案08-29
二次根式的加減教案01-19
二次根式教案[熱]07-10
二次根式教案優(yōu)秀06-26
二次根式優(yōu)秀教案03-14
二次根式教案優(yōu)秀(熱門)12-19
二次根式教案15篇02-27
【精品】二次根式教案四篇01-28
【精品】二次根式教案4篇04-07
【精品】二次根式教案三篇04-05