- 《一元二次方程》的優(yōu)秀教案 推薦度:
- 一元一次方程教案 推薦度:
- 相關(guān)推薦
《方程》教案(15篇)
作為一名教師,就不得不需要編寫教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。怎樣寫教案才更能起到其作用呢?下面是小編為大家收集的《方程》教案,僅供參考,大家一起來看看吧。
《方程》教案1
教學(xué)目標(biāo)
1.使學(xué)生初步學(xué)會 這一類簡易方程的解法.
2.知道計算這類方程的道理.
教學(xué)重點
掌握解 這一類方程的解法.
教學(xué)難點
理解這一類方程的.算理.
教學(xué)過程()
一、復(fù)習(xí)引入
。ㄒ唬┙庀铝蟹匠
(二)乘法分配律的意義是什么?用字母怎樣表示?
二、教學(xué)新授
。ㄒ唬┙虒W(xué)例5
例5.一個工地用汽車運土,每輛車運 噸,一天上午運了4車,下午運了3車.這一天共運土多少噸?
1.讀題,理解題意.
2.出示圖片:示意圖
3.教師提問:通過觀察這幅圖,你都知道了什么?
教師板書:
上午 下午 一天
4.教師說明:這個式子中含有兩個未知數(shù) ,這就是今天要學(xué)習(xí)的解簡易方程.
板書課題:解簡易方程.
5.學(xué)生分組討論計算方法.
。1) 表示4個 , 表示3個 , 一共是(4+3)個 ,也就是 .
。2) 可以根據(jù)乘法分配律把4和3相加,就是(4+3)個 , .
6.教師說明:兩種思考方法既有聯(lián)系又有區(qū)別,最后的結(jié)果都是正確的.
教師板書:
=(4+3) =
答:這一天共運土 噸.
7.思考:上午比下午多運的噸數(shù)是多少?怎樣列式?
教師提示:1個 ,可以寫成 .“1”可以省略不寫.
8.教師小結(jié)
一個式子中如果含有兩個 的加減法,可以根據(jù)乘法分配律和式子所表示的意義,將 前面的因數(shù)相加或相減,再乘 ,計算出結(jié)果.
9.練習(xí)
。ǘ┙虒W(xué)例6
例6.解方程
1.教師提問
。1)這個方程有什么特點?
。2)應(yīng)該怎樣解答?
2.學(xué)生獨立解答.
教師板書:
解:
檢驗:把 代入原方程.
左邊=7×5+9×5=80,右邊=80,
左邊=右邊
所以 是原方的解.
3.練習(xí)
解方程 3.6 -0.9 =5.4(要寫出檢驗過程)
三、課堂小結(jié)
今天這節(jié)課你學(xué)到了哪些知識?解這類方程時要注意什么?
四、鞏固練習(xí)
(一)填空.
1. 表示( )加( ),一共是( )個 ,得( ).
2. 表示( )減( ),是( )個 ,得( ).
3. ( ).
(二)直接寫得數(shù).
。ㄈ┡袛嗾`,對的畫“√”,錯的畫“×”.
1. ( )
2. ( )
3. ( )
。ㄋ模┯镁段把下面每個方程與它的解連起來.
。13=33 =0
3 - =80 =10
1.8 =54 =20
6.7 -60.3=6.7 =30
9 + =0 =40
五、布置作業(yè)
。ㄒ唬┙夥匠蹋ǖ谝恍袃尚☆}要寫出檢驗過程)
《方程》教案2
教學(xué)目的:
掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題
教學(xué)重點:
圓的標(biāo)準(zhǔn)方程及有關(guān)運用
教學(xué)難點:
標(biāo)準(zhǔn)方程的靈活運用
教學(xué)過程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識,鞏固練習(xí)
練習(xí):
⒈說出下列圓的方程
、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3
、仓赋鱿铝袌A的圓心和半徑
、牛▁-2)2+(y+3)2=3
⑵x2+y2=2
、莤2+y2-6x+4y+12=0
、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系
、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的'數(shù)學(xué)方法)
練習(xí):
1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
《方程》教案3
一、教學(xué)目標(biāo)
【知識與技能】
進(jìn)一步掌握直線方程的各種形式,會根據(jù)條件求直線的方程。
【過程與方法】
在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】
在學(xué)習(xí)活動中獲得成功的體驗,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的`興趣與信心。
二、教學(xué)重難點
【重點】根據(jù)條件求直線的方程。
【難點】根據(jù)條件求直線的方程。
三、教學(xué)過程
(一)課堂導(dǎo)入
直接點明最近學(xué)習(xí)了直線方程的多種形式,這節(jié)課將練習(xí)求直線的方程。
(二)回顧舊知
帶領(lǐng)學(xué)生復(fù)習(xí)回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。
為了加深學(xué)生的運用和理解,繼續(xù)引導(dǎo)學(xué)生思考,是否有其他解題思路。預(yù)設(shè)大部分學(xué)生能夠想到用點斜式進(jìn)行計算。教師肯定學(xué)生想法并組織學(xué)生動手計算,之后請學(xué)生上黑板板演。
預(yù)設(shè)學(xué)生有多種解題方法,如AB、AC所在直線方程用兩點式求解,BC所在直線方程用點斜式求解。
學(xué)生板演后教師講解,點明不足,提示學(xué)生,計算結(jié)束后要記得將所求得方程整理為直線方程的一般式。
師生總結(jié)解題思路:求直線所在方程時,若給出兩點坐標(biāo),在符合條件的情況下,可直接套用公式,也可利用點斜式進(jìn)行求解,注意一題多解的情況。
(四)小結(jié)作業(yè)
小結(jié):學(xué)生暢談收獲。
作業(yè):完成課后相應(yīng)練習(xí)題,根據(jù)已知條件求直線的方程。
《方程》教案4
一、教材分析
本章將在上章學(xué)習(xí)了直線與方程的基礎(chǔ)上,學(xué)習(xí)在平面直角坐標(biāo)系中建立圓的代數(shù)方程,運用代數(shù)方法研究直線與圓,圓與圓的位置關(guān)系,了解空間直角坐標(biāo)系,在這個過程中進(jìn)一步體會數(shù)形結(jié)合的思想,形成用代數(shù)方法解決幾何問題的能力。
二、教學(xué)目標(biāo)
1、 知識目標(biāo):使學(xué)生掌握圓的標(biāo)準(zhǔn)方程并依據(jù)不同條件求得圓的方程。
2、 能力目標(biāo):
(1)使學(xué)生初步熟悉圓的標(biāo)準(zhǔn)方程的用途和用法。
(2)體會數(shù)形結(jié)合思想,形成代數(shù)方法處理幾何問題能力(3)培養(yǎng)學(xué)生觀察、比較、分析、概括的思維能力。
三、重點、難點、疑點及解決辦法
1、重點:圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程和圓的標(biāo)準(zhǔn)方程特點的明確。
2、難點:圓的方程的應(yīng)用。
3、解決辦法 充分利用課本提供的2個例題,通過例題的解決使學(xué)生初步熟悉圓的標(biāo)準(zhǔn)方程的用途和用法。
四、學(xué)法
在課前必須先做好充分的預(yù)習(xí),讓學(xué)生帶著疑問聽課,以提高聽課效率。采取學(xué)生共同探究問題的學(xué)習(xí)方法。
五、教法
先讓學(xué)生帶著問題預(yù)習(xí)課文,對圓的方程有個初步的認(rèn)識,在教學(xué)過程中,主要采用啟發(fā)性原則,發(fā)揮學(xué)生的思維能力、空間想象能力。在教學(xué)中,還不時補充練習(xí)題,以鞏固學(xué)生對新知識的理解,并緊緊與考試相結(jié)合。
六、教學(xué)步驟
(一)導(dǎo)入新課 首先讓學(xué)生回顧上一章的直線的方程是怎么樣求出的。
(二)講授新課
1、新知識學(xué)習(xí)在學(xué)生回顧確定直線的要素——兩點(或者一點和斜率)確定一條直線的基礎(chǔ)上,回顧確定圓的幾何要素——圓心位置與半徑大小,即圓是這樣的一個點的.集合在平面直角坐標(biāo)系中,圓心 可以用坐標(biāo) 表示出來,半徑長 是圓上任意一點與圓心的距離,根據(jù)兩點間的距離公式,得到圓上任意一點 的坐標(biāo) 滿足的關(guān)系式。經(jīng)過化簡,得到圓的標(biāo)準(zhǔn)方程
2、知識鞏固
學(xué)生口答下面問題
1、求下列各圓的標(biāo)準(zhǔn)方程。
、 圓心坐標(biāo)為(-4,-3)半徑長度為6;
、 圓心坐標(biāo)為(2,5)半徑長度為3;2、求下列各圓的圓心坐標(biāo)和半徑。
3、知識的延伸根據(jù)“曲線與方程”的意義可知,坐標(biāo)滿足方程的點在曲線上,坐標(biāo)不滿足方程的點不在曲線上,為了使學(xué)生體驗曲線和方程的思想,加深對圓的標(biāo)準(zhǔn)方程的理解,教科書配置了例1。
例1要求首先根據(jù)坐標(biāo)與半徑大小寫出圓的標(biāo)準(zhǔn)方程,然后給一個點,判斷該點與圓的關(guān)系,這里體現(xiàn)了坐標(biāo)法的思想,根據(jù)圓的坐標(biāo)及半徑寫方程——從幾何到代數(shù);根據(jù)坐標(biāo)滿足方程來看在不在圓上——從代數(shù)到幾何。
(三)知識的運用
例2給出不在同一直線上的三點,可以畫出一個三角形,三角形有唯一的外接圓,因此可以求出他的標(biāo)準(zhǔn)方程。由于圓的標(biāo)準(zhǔn)方程含有三個參數(shù) , ,因此必須具備三個獨立條件才能確定一個圓。引導(dǎo)學(xué)生找出求三個參數(shù)的方法,讓學(xué)生初步體驗用“待定系數(shù)法”求曲線方程這一數(shù)學(xué)方法的使用過程
(四)小結(jié)一、知識概括
1、 圓心為 ,半徑長度為 的圓的標(biāo)準(zhǔn)方程為
2、 判斷給出一個點,這個點與圓什么關(guān)系。
3、 怎樣建立一個坐標(biāo)系,然后求出圓的標(biāo)準(zhǔn)方程。
4、思想方法
。1)建立平面直角坐標(biāo)系,將曲線用方程來表示,然后用方程來研究曲線的性質(zhì),這是解析幾何研究平面圖形的基本思路,本節(jié)課的學(xué)習(xí)對于研究其他圓錐曲線有示范作用。
。2)曲線與方程之間對立與統(tǒng)一的關(guān)系正是“對立統(tǒng)一”的哲學(xué)觀點在教學(xué)中的體現(xiàn)。
五、布置作業(yè)(第127頁2、3、4題)
《方程》教案5
教學(xué)目標(biāo)
(1)使學(xué)生初步理解“方程的解”、“解方程”的含義以及“方程的解”和“解方程”之間的聯(lián)系和區(qū)別。
(2)初步理解等式的基本性質(zhì),能用等式的性質(zhì)解簡易方程。
(3)關(guān)注由具體到一般的抽象概括過程,培養(yǎng)學(xué)生初步的代數(shù)思想。
(4)重視良好學(xué) 教學(xué)重、難點:(1) “方程的解”和“解方程”之間的聯(lián)系和區(qū)別。 (2)利用天平平衡的道理理解比較簡單的方程的方法。
教學(xué)過程
一.揭示課題,復(fù) 師:(出示課件)老師在天平的左邊放了一杯水,杯重100克,水重X克,一杯水重多少?生:(100+X)克
師:在天平的右邊放了多少砝碼,天平保持平衡呢?(教師邊講邊操作100克、200克、250克)
師:請你根據(jù)圖意列一個方程。生:100+X=250(課件顯示:100+X=250)
師:這個方程怎么解呢?就是我們今天要學(xué) 二.探究新知,理解歸納
(1)概念教學(xué):認(rèn)識“方程的解”和“解方程”的兩個概念
師:(出示課件)那你猜一猜這個方程X的值是多少?并說出理由。
生1:我有辦法,可以用250-100=150,所以X=150.
生2:我有辦法,因為100+150=250,所以X=150
生3:老師我也有辦法,我是這樣想的,假如方程的兩邊同時減去100,就能得出X=150師:黎明同學(xué)的想法太棒了!我們一起探索驗證一下。請看屏幕,怎樣操作才使天平左邊只剩X克水,而天平保持平衡。
生:我在天平的左邊拿走一個重100克空杯子,在天平的右邊拿走100克的砝碼,天平保持平衡。
師:你能根據(jù)操作過程說出等式嗎?
生:100+X-100=250-100
(課件顯示:100+X-100=250-100)
師:這時天平表示未知數(shù)X的值是多少?生:X=150(課件顯示:X=150)
師:是的,黎明同學(xué)的想法是正確的,方程左右兩邊同時減100,就能得出X=150。我們表揚他。把掌聲送給他。
師:根據(jù)剛才的實驗,我們來認(rèn)識兩個新的概念———“方程的.解”和“解方程”。師:(課件顯示X=150的)指著方程100+X=250說:“X=150是這個方程的解。(課件顯示:方程的解)
師:100+X=250 100+X-100=250-100說:“這是求方程的解的過程,叫解方程。
師:在解方程的開頭寫上“解:”,表示解方程的全過程。(課件顯示:解:)
師:同時還要注意“=”對齊。師:都認(rèn)識了嗎?請打開課本第57頁將概念讀一次,并標(biāo)上重點字、詞。
師:你們怎么理解這兩個概念的? (學(xué)生獨立思考,再在小組內(nèi)交流。)
師:誰來說說你想法?
生1:“解方程”是指演算過程
生2:“方程的解”是指未知數(shù)的值,這個值有一個前提條件必須使這個方程左右兩邊相等。
師:“方程的解”和“解方程”的兩個解有什么不同?
生:“方程的解”的解,它是一個數(shù)值!敖夥匠獭钡慕,它是一個演變過程。
[設(shè)計意圖:通過自主學(xué)精神。]
(2)教學(xué)例1。
師:要是老師出一個方程,你會求這個方程的解嗎?
生:會。
師:請自學(xué)第58頁的例1的有關(guān)內(nèi)容。
[學(xué)生獨立學(xué) 師:(出示例1)左邊有X個,右邊有3個,一共用9個。根據(jù)圖意列一個方程。
生:X+3=9(板書:X+3=9)
師:X+3=9這個方程怎么解?我們可以利用天平保持平衡的道理幫助理解,請看屏幕。師:怎樣操作才使天平的左邊只剩X,而天平保持平衡。
生:天平左右兩邊同時拿走3個球,使天平左邊只剩X,天平保持平衡。(教師隨著學(xué)生的回答演示課件)
師:根據(jù)操作過程說出等式?
生:X+3-3=9-3(板書:X+3-3=9-3)
師:這時天平表示X的值是多少?生:X=6(板書:X=6)
師:方程左右兩邊為什么同時減3?
生1:使方程左右兩邊只剩X。
生2:方程左右兩邊同時減3,使方程左邊只剩X,方程左右兩邊相等。
師:“方程左右兩邊同時減3,使方程左邊只剩X,方程左右兩邊相等。”就是解這個方程的方法。
師:這個方程會解。我們怎么知道X=6一定是這個方程的解呢?生:驗算。
師:對了,驗算方法是什么?
生:將X=6代入原方程,看方程的左邊是否等于方程的右邊。
(板書:驗算:方程的左邊=6+3=9方程的右邊=9
方程的左邊=方程的右邊所以,X=6是方程的解。)
師:以后解方程時,要求檢驗的,要寫出檢驗過程;沒有要求檢驗的,要進(jìn)行口頭檢驗,要養(yǎng)成口頭檢驗的 解方程:3x=18?
[學(xué)生獨立思考,再在小組內(nèi)交流。]
匯報交流,指生說,然后課件演示。
方程兩邊同時除以一個不等于0的數(shù),左右兩邊仍然相等。
做一做:
身高問題
小明去年的身高+比去年長高的8cm=今年的身高
小明今年的身高-小明去年的身高=8cm
小明今年的身高-8cm=小明去年的身高
小紅高165cm,比小華高10cm,小華高多少cm?
我們用桶接水接了30分鐘水,一共接了1.8KG,每分鐘接水多少克?
三、鞏固應(yīng)用
1、填空。
(1)使方程左右兩邊相等的( )叫做方程的解。
(2)求方程的解的過程叫做( )。
(3)比x多5的數(shù)是10。列方程為( )
(4)8與x的和是56。方程為( )
(5)比x少1.06的數(shù)是21.5。列方程為( )。
2、你能說出下列方程的解是多少嗎?
X+19=21 x-24=15
5x=10 x÷2=4
3、用含有字母的式子表示下列數(shù)量關(guān)系。
(1).比x多3的數(shù)。
(2).X的1.5倍。
(3).每枝鉛筆x元,買30枝鉛筆需要多少錢?
(4).小明13歲,比小紅小x歲,小紅多少歲?
4、練小結(jié):解含有加法方程的步驟。(口述過程)
四、拓展延伸。
1、挑戰(zhàn)501 -- 502
五年級參加科技小組的人數(shù)是34人,比參加文藝小組的人數(shù)的2倍少6人,參加文藝小組人數(shù)有多少人?(寫出數(shù)量關(guān)系式,列方程解)
師:看來,解加法方程同學(xué)們掌握得很好,老師得提高一點難度,敢挑戰(zhàn)嗎?
生:敢。
師:誰愿意讀讀這個方程? [學(xué)生都爭著讀這個方程,可激烈了]
師:這是一個含有減法的方程,你能根據(jù)解加法方程的步驟,嘗試完成。
(指名王欣同學(xué)到黑板板演,其他同學(xué)在單行紙完成) [學(xué)生試著解方程并進(jìn)行口頭驗算] 2、集體交流、評價、明確方法。
師:王欣同學(xué)做對了嗎?生:對。
師:方程左右兩邊為什么同時加幾?
生:方程左右兩邊同時加6,使方程左邊只剩2X,方程左右兩邊相等......(由板演
王欣同學(xué)面向大家回答)
3 、提煉升華
師:誰能說說解含有加法和減法的方程的步驟?(隨著學(xué)生,課件顯示全過程。)
生:解方程的步驟:
a)先寫“解:”。
b)方程左右兩邊同時加或減一個相同的數(shù),使方程左邊只剩X,方程左右兩邊相等。
c)求出X的值。
d)驗算。
4、全課小結(jié),評價深化
通過今天的學(xué) 以小組為單位自評或互評課堂表現(xiàn),發(fā)揚優(yōu)點、改正缺點。
對老師的表現(xiàn)進(jìn)行評價。
[設(shè)計意圖:教師始終把學(xué)生放在主體地位,為學(xué)生提供了一個自己去想去說,去回味知識掌握過程的舞臺,這樣將更有助于學(xué)生掌握正確的學(xué)總結(jié)失敗原因,發(fā)揚成功經(jīng)驗,培養(yǎng)良好的學(xué)習(xí)習(xí)慣。]
[板書設(shè)計]解方程例1:書本圖X+3=9驗算:X-2=15解:X+3-3 =9-3方程左邊= 6+3=9解:X-2+2=15+2 X=6方程右邊= 9 X=17方程左邊=方程右邊所以,X=6是方程的解。
《方程》教案6
學(xué)習(xí)目標(biāo):
(一)學(xué)習(xí)知識點
1、用分式方程的數(shù)學(xué)模型反映現(xiàn)實情境中的實際問題.
2、用分式方程來解決現(xiàn)實情境中的問題.
3、經(jīng)歷建立分式方程模型解決實際問題的過程,體會數(shù)學(xué)模型的應(yīng)用價值,從而提高學(xué)習(xí)數(shù)學(xué)的興趣.
學(xué)習(xí)重點:
1.審明題意,尋找等量關(guān)系,將實際問題轉(zhuǎn)化成分式方程的數(shù)學(xué)模型.
2.根據(jù)實際意義檢驗解的合理性.
學(xué)習(xí)難點:
尋求實際問題中的等量關(guān)系,尋求不同的解決問題的方法.
學(xué)習(xí)過程:
、.提出問題,引入新課
前兩節(jié)課,我們認(rèn)識了分式方程這樣的數(shù)學(xué)模型,并且學(xué)會了解分式方程.
接下來,我們就用分式方程解決生活中實際問題.
例1:某單位將沿街的一部分房屋出租.每間房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年為9.6萬元,第二年為10.2萬元.
(1)你能找出這一情境的等量關(guān)系嗎?
(2)根據(jù)這一情境,你能提出哪些問題?
(3)這兩年每間房屋的租金各是多少?
解法一:設(shè)每年各有x間房屋出租,那么第一年每間房屋的租金為______元,第二年每間房屋的租金為__________元,根據(jù)題意得方程,
解法二:設(shè)第一年每間房屋的租金為x元,第二年每間房屋的租金為_______元.第一年租出的房間為__________間,第二年租出的房間為__________間,根據(jù)題意得方程,
例2:小芳帶了15元錢去商店買筆記本.如果買一種軟皮本,正好需付15元錢.但售貨員建議她買一種質(zhì)量好的硬皮本,這種本子的價格比軟皮本高出一半,因此她只能少買一本筆記本.這種軟皮本和硬皮本的價格各是多少?
解:設(shè)軟皮本的價格為x元,則硬皮本的價格為________元,那么15元錢可買軟皮本_________本,硬皮本___________本.根據(jù)題意得方程,
圖3-4
活動與探究:
1、如圖,小明家、王老師家、學(xué)校在同一條路上.小明家到王老師家路程為3km,王老師家到學(xué)校的路程為0.5km,由于小明父母戰(zhàn)斗在抗“非典”第一線,為了使他能按時到校,王老師每天騎自行車接小明上學(xué).已知王老師騎自行車的速度是步行速度的3倍,每天比平時步行上班多用了20分鐘,問王老師的步行速度及騎自行車的速度各是多少?(20xx年吉林省中考題)
2、從甲地到乙地有兩條公路:一條全長600千米的普通公路,另一條是全長480千米的高速公路。某客車在高速公路上行駛的速度比在普通公路上快45千米/時,由高速公路從甲地到乙地所需時間是由普通公路從甲地到乙地所需時間的一半。求客車在高速公路上行駛的速度。
3、輪船順?biāo)叫?0千米所用的時間與逆水航行30千米所用的`時間相同,若水流的速度為3千米/時求輪船在靜水中的速度?
積累與總結(jié):
1、列方程解決實際情境中的具體問題,是數(shù)學(xué)實用性最直接的體現(xiàn),而解決這一問題是如何將實際問題建立方程這樣的數(shù)學(xué)模型,關(guān)鍵則在于審清題意,找出題中的等量關(guān)系,找到它就為列方程指明了方向.
2、列分式方程解應(yīng)用題的一般步驟:(1)審清題意,找出等量關(guān)系;(2)設(shè)出__________;(3)列出_________;(4)解分式方程;(5)檢驗,既要驗證是否是原方程的的根,又要驗證是否符合題意;(6)寫出答案。
《方程》教案7
【教材分析】
一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)中占有重要地位。通過一元二次方程的學(xué)習(xí),可以對已學(xué)過實數(shù)、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學(xué)習(xí)可化為一元二次方程的其它高元方程、一元二次不等式、二次函數(shù)等知識的基礎(chǔ)。此外,學(xué)習(xí)一元二次方程對其它學(xué)科有重要意義。本節(jié)課是一元二次方程的概念,是通過豐富的實例,讓學(xué)生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。
【教學(xué)目標(biāo)】
1、理解一元二次方程的概念,能熟練地把一元二次方程整理成一般形式(≠0)并知道各項及其系數(shù)。
2、在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具,增加對一元二次方程的進(jìn)一步認(rèn)識。
【教學(xué)重點與難點】
理解一元二次方程的概念及一般形式,會正確識別一般式中的“項”及“系數(shù)”。
【教法、學(xué)法】
因為學(xué)生已經(jīng)學(xué)習(xí)了一元一次方程及相關(guān)概念,所以本節(jié)課我主要采用啟發(fā)式、類比法教學(xué)。教學(xué)中力求體現(xiàn)“問題情景---數(shù)學(xué)模型-----概念歸納”的模式。本節(jié)課借助多媒體輔助教學(xué),指導(dǎo)學(xué)生從具體的問題情景中抽象出數(shù)學(xué)問題,建立數(shù)學(xué)方程,從而突破難點。同時學(xué)生在現(xiàn)實的生活情景中,經(jīng)歷數(shù)學(xué)建模,經(jīng)過自主探索和合作交流的學(xué)習(xí)過程,產(chǎn)生積極的情感體驗,進(jìn)而創(chuàng)造性地解決問題,有效發(fā)揮學(xué)生的思維能力。
【教學(xué)過程】
一、復(fù)習(xí)舊知,類比新知
1、一元一次方程的概念
像這樣的等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是1(一次)的方程叫做一元一次方程
2、一般形式:
是常數(shù)且
設(shè)計意圖:復(fù)習(xí)一元一次方程,讓學(xué)生回憶起一元一次方程的概念,回憶起“項”及“系數(shù)”的概念,通過類比,讓學(xué)生能更好的理解一元二次方程的概念。
二、生活情境,自主學(xué)習(xí)
(1)正方形桌面的面積是2m
,設(shè)正方形桌面的`邊長是x m,可得方程
(2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,
設(shè)花圃的寬是x m則花圃的長是m,
可得方程
。3)一張面積是600cm2的長方形紙片,把它的一邊剪短10cm,恰好得到一個正方形。設(shè)這個正方形的邊長是x cm,可得方程
(4)長5米的梯子斜靠在墻上,梯子的底端與墻的距離比梯子的頂端到地面的距離多1m,設(shè)梯子的底端到墻面的距離是x m,可得方程
設(shè)計意圖:因為數(shù)學(xué)來源與生活,所以以學(xué)生的實際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。讓學(xué)生從實際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的,從而激發(fā)學(xué)生的求知欲望,順利地進(jìn)入新課。
三、探究學(xué)習(xí):
1、概念得出
討論交流:以上所列方程有哪些共同特征?
設(shè)計意圖:英國一位著名的數(shù)學(xué)教育心理學(xué)家曾說:概念的教學(xué)要從大量實例出發(fā),通過實例幫助完成定義,而不是教定義。讓學(xué)生充分感受所列方程的特點,再通過類比的方法得到定義,從而達(dá)到真正理解定義的目的.
2、鞏固概念
下列方程中那些是一元二次方程。
設(shè)計意圖:
這組練習(xí)目的在于鞏固學(xué)生對一元二次方程定義中3個特征的理解.題目的設(shè)置,目的在于進(jìn)一步加深學(xué)生對定義的掌握,提高學(xué)生對變式的理解能力.此環(huán)節(jié)采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性.
3、一元二次方程的一般形式:
設(shè)計意圖:此環(huán)節(jié)讓學(xué)生通過自主探究,類比一元一次方程一般形式,得出一元二次方程一般形式和項,系數(shù)的概念,從而達(dá)到真正理解并掌握的目的.
4.典型例題
例將下列方程化為一元二次方程的一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項
設(shè)計意圖:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解。
5.鞏固練習(xí)
把下列方程化成一元二次方程的一般形式,并寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項
設(shè)計意圖:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解
6、拓展應(yīng)用
。1)、若是關(guān)于x的一元二次方程,則()
A、p為任意實數(shù)B、p=0 C、p≠0 D、p=0或1
。2)、若關(guān)于x的方程mx
-2x+1=2x(x-1)是一元二次方程,那么m的取值范圍是
。3)、若方程是關(guān)于x的一元二次方程,則m的值為
設(shè)計意圖:此題讓學(xué)生進(jìn)行思考,討論,讓學(xué)生進(jìn)行講解,教師作適當(dāng)歸納,可留疑,讓學(xué)生課下思考。此題需進(jìn)行分類討論,開拓學(xué)生思維,體現(xiàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
7.課堂小結(jié)
設(shè)計意圖:小結(jié)反思中,不同學(xué)生有不同的體會,要尊重學(xué)生的個體差異,激發(fā)學(xué)生主動參與意識,.為每個學(xué)生都創(chuàng)造了數(shù)學(xué)活動中獲得活動經(jīng)驗的機(jī)會。
【課后作業(yè)】
1、下列方程中哪些是一元二次方程?試說明理由。
2、將下列方程化為一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項:
《方程》教案8
教學(xué)目標(biāo):
1、掌握圓的標(biāo)準(zhǔn)方程,能根據(jù)圓心、半徑寫出圓的標(biāo)準(zhǔn)方程。
2、會用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程。
教學(xué)重點:圓的標(biāo)準(zhǔn)方程
教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程。
教學(xué)過程:
(一)、情境設(shè)置:
在直角坐標(biāo)系中,確定直線的基本要素是什么?圓作為平面幾何中的基本圖形,確定它的要素又是什么呢?什么叫圓?在平面直角坐標(biāo)系中,任何一條直線都可用一個二元一次方程來表示,那么,圓是否也可用一個方程來表示呢?如果能,這個方程又有什么特征呢?
探索研究:
(二)、探索研究:
確定圓的基本條件為圓心和半徑,設(shè)圓的圓心坐標(biāo)為A(a,b),半徑為r。(其中a、b、r都是常數(shù),r>0)設(shè)M(x,y)為這個圓上任意一點,那么點M滿足的條件是(引導(dǎo)學(xué)生自己列出)P={M||MA|=r},由兩點間的距離公式讓學(xué)生寫出點M適合的條件①
化簡可得:②
引導(dǎo)學(xué)生自己證明為圓的方程,得出結(jié)論。
方程②就是圓心為A(a,b),半徑為r的圓的方程,我們把它叫做圓的標(biāo)準(zhǔn)方程。
(三)、知識應(yīng)用與解題研究
例1.(課本例1)寫出圓心為,半徑長等于5的`圓的方程,并判斷點是否在這個圓上。
分析探求:可以從計算點到圓心的距離入手。
探究:點與圓的關(guān)系的判斷方法:
。1)>,點在圓外
。2)=,點在圓上
。3)<,點在圓內(nèi)
解:
例2.(課本例2)的三個頂點的坐標(biāo)是求它的外接圓的方程。
師生共同分析:不在同一條直線上的三個點可以確定一個圓,三角形有唯一的外接圓。從圓的標(biāo)準(zhǔn)方程可知,要確定圓的標(biāo)準(zhǔn)方程,可用待定系數(shù)法確定三個參數(shù)。
解:
例3.(課本例3)已知圓心為的圓經(jīng)過點和,且圓心在上,求圓心為的圓的標(biāo)準(zhǔn)方程。
師生共同分析:如圖,確定一個圓只需確定圓心位置與半徑大小。圓心為的圓經(jīng)過點和,由于圓心與A,B兩點的距離相等,所以圓心在線段AB的垂直平分線m上,又圓心在直線上,因此圓心是直線與直線m的交點,半徑長等于或。
解:
總結(jié)歸納:(教師啟發(fā),學(xué)生自己比較、歸納)比較例2、例3可得出圓的標(biāo)準(zhǔn)方程的兩種求法:
1、根據(jù)題設(shè)條件,列出關(guān)于的方程組,解方程組得到的值,寫出圓的標(biāo)準(zhǔn)方程。
、讴p根據(jù)確定圓的要素,以及題設(shè)條件,分別求出圓心坐標(biāo)和半徑大小,然后再寫出圓的標(biāo)準(zhǔn)方程。
。ㄋ模、課堂練習(xí)(課本P120練習(xí)1,2,3,4)
歸納小結(jié):
1、圓的標(biāo)準(zhǔn)方程。
2、點與圓的位置關(guān)系的判斷方法。
3、根據(jù)已知條件求圓的標(biāo)準(zhǔn)方程的方法。
作業(yè)布置:課本習(xí)題4。1A組第2,3,4題。
課后記:
《方程》教案9
教學(xué)內(nèi)容:教科書第13~14頁,“練習(xí)與應(yīng)用”第5~7題,“探索與實踐”第8~9題及“與反思”。
教學(xué)目標(biāo):
1、通過練習(xí)與應(yīng)用,使學(xué)生進(jìn)一步掌握列方程解決實際問題的方法與步驟,提高列方程解決實際問題的意識和能力。
2、通過小組合作,進(jìn)一步培養(yǎng)學(xué)生探索的意識,發(fā)展思維能力。
3、通過與反思,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,獲得成功體驗,增強(qiáng)學(xué)好數(shù)學(xué)的信心。
教學(xué)過程:
一、練習(xí)與應(yīng)用
1、談話引入這節(jié)課我們繼續(xù)對列方程解決實際問題進(jìn)行練習(xí)。板書課題。
2、指導(dǎo)練習(xí)。獨立完成5~7題。展示交流。集體評講。你是根據(jù)什么等量關(guān)系列出方程的?在解方程時要注意什么?(步驟、格式、檢驗)
二、探索與實踐
1、完成第8題。理解題意,完成填寫。小組中交流第一個問題。匯報自己發(fā)現(xiàn)。把得到的和分別除以3,看看可以發(fā)現(xiàn)什么?可以得出什么結(jié)論?獨立解答第二個問題。你是怎么解答第二個問題的?指導(dǎo)解答第三個問題。試著連續(xù)寫出5個奇數(shù),看看有什么發(fā)現(xiàn)?怎樣求n的`值呢?5個連續(xù)偶數(shù)的和有這樣的規(guī)律嗎?試試看。
2、完成第9題。小組中討論方法,巡視指導(dǎo)?梢韵劝炎筮叺膬蛇叾既サ魞蓚蘋果。1個梨=3個蘋果再根據(jù)右邊圖:3個蘋果=6個獼猴桃=1個梨
三、與反思
在小組中說說自己對每次指標(biāo)的理解。自我反思與。說說自己的優(yōu)點與不足。
四、閱讀“你知道嗎”可以再查找資料,詳細(xì)了解。
五、課堂這節(jié)課我們復(fù)習(xí)了哪些內(nèi)容?你有了哪些收獲?
《方程》教案10
設(shè)計說明
本節(jié)課的教學(xué)任務(wù)是使學(xué)生了解等式性質(zhì)(二),并會用這個性質(zhì)解方程。由于學(xué)生在探究等式性質(zhì)(一)時已經(jīng)具備了一定的學(xué)習(xí)經(jīng)驗,因此本節(jié)課的教學(xué)設(shè)計主要突出以下兩點:
1、在操作實踐中驗證等式性質(zhì)(二)。
在教學(xué)中,通過學(xué)生的親身實踐,邊操作邊觀察邊總結(jié),使等式性質(zhì)(二)順利地生成,同時讓學(xué)生對此有直觀的理解,強(qiáng)化學(xué)習(xí)效果。
2、通過直觀圖理解解方程的過程。
在指導(dǎo)學(xué)生利用等式性質(zhì)(二)解方程時,充分發(fā)揮了直觀圖的作用,加深學(xué)生對解方程的過程和依據(jù)的了解,提高學(xué)習(xí)效率。
課前準(zhǔn)備
教師準(zhǔn)備:
PPT課件
學(xué)生準(zhǔn)備:
天平,若干個貼有標(biāo)簽的砝碼
教學(xué)過程
猜想導(dǎo)入
師:誰能說出我們學(xué)過的等式性質(zhì)?
[學(xué)生回顧上節(jié)課學(xué)習(xí)的內(nèi)容,并匯報:等式兩邊同時加上(或減去)同一個數(shù),等式仍然成立]
引導(dǎo)學(xué)生猜想:等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式是否仍然成立呢?思考并在小組內(nèi)交流自己的想法,然后匯報。
設(shè)計意圖:學(xué)生已經(jīng)學(xué)過了等式兩邊都加上(或減去)同一個數(shù),等式仍然成立的性質(zhì)。上課伊始,先復(fù)習(xí)所學(xué)知識,并由此進(jìn)行合理猜想,再自然地引入新課,直奔主題。
動手驗證,探究規(guī)律
師:大家的猜想對不對呢?我們來驗證一下。
1、(課件演示,學(xué)生操作)天平左側(cè)的砝碼重x克,右側(cè)放5克的砝碼,這時天平的指針指向正中央,說明了什么?你知道左側(cè)的`砝碼重多少克嗎?怎樣用等式表示?(說明天平平衡,左側(cè)的砝碼重5克,x=5)
2、如果左側(cè)再加上2個x克的砝碼,右側(cè)再加上2個5克的砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,3x=3×5)
3、如果左側(cè)有2個x克的砝碼,右側(cè)有2個10克的砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,2x=20)
4、如果左側(cè)拿走一個x克的砝碼,右側(cè)拿走一個10克的砝碼,這時天平的指針指向正中央,說明了什么?你能寫出一個等式嗎?(說明天平平衡,2x÷2=20÷2)
5、通過上面的游戲,你發(fā)現(xiàn)了什么?
小結(jié):等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立。
設(shè)計意圖:利用課件的演示和動手操作,讓學(xué)生體會天平兩側(cè)的變化情況,加深學(xué)生對等式的理解,體會等式的變化規(guī)律。
解方程
1、(課件出示教材70頁方程:4y=20xx)
師:你們能求出這個方程的解嗎?
。▽W(xué)生先獨立嘗試,然后小組交流,并匯報)
預(yù)設(shè)
方法一:想?×4=20xx,直接得出答案。
方法二:用等式性質(zhì)解方程,方程的兩邊都除以4,從而得出答案。
師:為什么方程的兩邊都除以4,依據(jù)是什么?
預(yù)設(shè)
生:依據(jù)是等式的兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立。
讓學(xué)生說出用等式性質(zhì)解方程的過程。
《方程》教案11
教材內(nèi)容:
《解簡易方程》是九年義務(wù)教育中六年制小學(xué)數(shù)學(xué)教材第九冊第四單元第二節(jié)內(nèi)容。
教材簡析:
本節(jié)課的主要內(nèi)容是方程的定義,方程的性質(zhì)和利用方程性質(zhì)解方程。
從知識結(jié)構(gòu)上看:本節(jié)課是在學(xué)生學(xué)習(xí)了一定的算術(shù)知識(如整數(shù),小數(shù)的四則運算及其應(yīng)用),已初步接觸了一些代數(shù)知識(如用字母表示數(shù)及其運算定律)的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)的關(guān)鍵。本節(jié)課的內(nèi)容又為后面學(xué)習(xí)解方程和列方程解應(yīng)用題做準(zhǔn)備。這為過渡到下節(jié)的學(xué)習(xí)起著鋪墊作用。
從認(rèn)知結(jié)構(gòu)上看:本節(jié)課在初等代數(shù)中占有重要地位,中學(xué)生在學(xué)習(xí)代數(shù)的整個過程中,幾乎都要接觸這方面的知識,是教材中必不可少的組成部分,是一個非常重要的基礎(chǔ)知識,所以它又是本章的重點內(nèi)容之一。
教學(xué)目標(biāo):
(1)知識目標(biāo):根據(jù)等式的性質(zhì),使學(xué)生初步掌握解方程及檢驗的方法,并理解解方程及方程的解的概念。
(2)能力目標(biāo):培養(yǎng)學(xué)生的分析能力應(yīng)用所學(xué)知識解決實際問題的能力,掌握解方程的一般步驟,會解簡單的方程。
(3)情感目標(biāo):通過教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。幫助學(xué)生養(yǎng)成自覺檢驗的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生的分析能力和應(yīng)用能力,滲透代數(shù)的數(shù)學(xué)思想和方法。
教學(xué)重點:
根據(jù)上面的分析不難看出《解簡易方程》這節(jié)課在整個教材中將起到承上啟下的作用,特別是利用方程性質(zhì)解未知數(shù),它是后續(xù)知識發(fā)展的起點,學(xué)生對未知數(shù)的理解對今后一元一次方程,一元二次方程的學(xué)習(xí)起著決定作用,另一方面,對于學(xué)生來說,弄清方程和等式的異同,正確設(shè)未知數(shù),找出等量關(guān)系是很困難的所以我認(rèn)為這節(jié)課的重點及難點是:理解方程的解和解方程的含義和掌握解方程的方法。
教學(xué)學(xué)情:
大部分學(xué)生對數(shù)學(xué)學(xué)習(xí)的積極性比較高,能從已有的知識和經(jīng)驗出發(fā)獲取知識,抽象思維水平有了一定的發(fā)展。 基礎(chǔ)知識掌握牢固,具備了一定的學(xué)習(xí)數(shù)學(xué)的能力。在課堂上能積極主動地參與學(xué)習(xí)過程,具有觀察、分析、自學(xué)、表達(dá)、操作、與人合作等一般能力,在小組合作中,同學(xué)之間會交流合作,自主探討。 但有個別學(xué)生基礎(chǔ)知識差, 上課不認(rèn)真聽講,不能自覺的完成學(xué)習(xí)任務(wù),需要老師督促并輔導(dǎo)。
教法學(xué)法:
在教學(xué)中,學(xué)生往往更習(xí)慣運用算術(shù)方法解題,這是因為他們之前長期用算術(shù)的思路思考問題,再學(xué)列方程時,往往會受到干擾。因此在教學(xué)中要注意過渡和對比,克服干擾,多讓學(xué)生體會列方程解題的優(yōu)越性。而在整節(jié)課的設(shè)計上,我想著重突出這么幾點。
1、通過創(chuàng)設(shè)有效的情境串,激發(fā)學(xué)生興趣,調(diào)動學(xué)生積極性,引發(fā)學(xué)生的數(shù)學(xué)思考,幫助學(xué)生突破重點、難點。根據(jù)題目中信息的敘述方式,通過順向思考列出數(shù)量關(guān)系。由于是剛接觸方程,列出文字性的數(shù)量關(guān)系對于學(xué)生正確地列出方程是很重要的。
2、堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。借助小組合作、自主探究等形式,因勢利導(dǎo)、適時調(diào)控、努力營造師生互動、生動活潑的課堂氛圍,實現(xiàn)預(yù)設(shè)的教學(xué)目標(biāo)。
教學(xué)過程:
一、。復(fù)習(xí)鋪墊
(1)拋出問題
師:同學(xué)們我們上節(jié)課學(xué)了方程的意義,你還記得什么叫方程嗎?
(生:含有未知數(shù)的等式叫方程。)
【設(shè)計意圖】讓學(xué)生回憶舊知識,鞏固舊知識,引出方的解、解方程的定義。結(jié)合引導(dǎo)復(fù)習(xí)的方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(2)判斷下面哪些是方程
師:你能判斷下面哪些是方程嗎?
(1)a+24=73 (2)4x<36+17 a="">12
(4)72=x+16 (5)x+85 (6)25÷y=0.6
(生:1、4、6是方程。)
師:說說你的理由?
(生:它含有未知數(shù),而且是等式)
【設(shè)計意圖】在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式教法,課堂討論法。鞏固方程的性質(zhì),承接后面利用方程的性質(zhì)解方程的應(yīng)用。
二、探究新知
1、方程的解和解方程
(1)看圖寫方程
師:說的真好,那么請同學(xué)觀察這幅圖(P57主題圖)從圖中你知道了什么?
(生:我知道杯子重100克,水重X克,合起來是250克。)
師:你能根據(jù)這幅圖列出方程嗎?
生:100+X=250.(板書)
【設(shè)計意圖】運用知識遷移,結(jié)合直觀圖例,應(yīng)用方程的性質(zhì),讓學(xué)生自主探索列出方程。
(2)求方程中的未知數(shù)
師:那么方程中的x等于多少呢?請同學(xué)們同桌交流,說說你是怎么想的?(交流后匯報)
學(xué)生可能出現(xiàn)的回答
生1:根據(jù)加減法之間的關(guān)系250-100=150,所以X=150.
生2:根據(jù)數(shù)的組成100+150=250,所以X=150.
生3:100+X=250=100+150,所以X=150.
生4:假如在方程左右兩邊同時減去100,那么也可得出X=150.……
【設(shè)計意圖】這樣的提問,有多種回答,鍛煉學(xué)生的發(fā)散性思維,有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。
(3)驗證方程中的未知數(shù),引出方程的解和解方程兩個概念。
師:同學(xué)們用不同的方法算出X=150,那么它對不對呢?
生:對,因為X=150時方程左邊和右邊相等。
師:這時我們說“x=150”是方程“100+X=250”的解,剛才我們求X的過程就叫做叫解方程。(板書:方程的解、解方程)請同學(xué)在書中找到這兩個概念(使方程左右兩邊相等的未知數(shù)的值叫做方程的解,解出方程的解的過程叫解方程。)并齊讀。
【設(shè)計意圖】學(xué)生齊讀的時候,把解方程和方程的解的概念板書在黑板上,并且在學(xué)生讀的過程中學(xué)生可以加深印象。
(4)辨析方程的解和解方程兩個概念
師:你們能說出 “方程的解”和“解方程”有什么區(qū)別么?討論一下,然后匯報。
生:方程的解是未知數(shù)的值,它是一個數(shù),而解方程是求未知數(shù)的過程,是一個計算過程,它的目的是求出方程的解。
【設(shè)計意圖】通過組內(nèi)交流,讓學(xué)生自己總結(jié)出“方程的解”和“解方程”的區(qū)別,提高學(xué)生總結(jié)歸納的能力和小組合作精神。
2、例1解析
師:(出示例1圖)圖上畫的是什么?你能列出方程嗎?
生:x+3=9(板書:x+3=9)
(1)引導(dǎo)學(xué)生思考怎樣解方程。
師:怎樣解這個方程?我們可以借助天平(電腦顯示)
師:我們解方程的目的是求想x,怎樣使天平一邊只剩x呢?
生:天平兩邊同時減去3個球。(電腦顯示)
師:天平兩邊還平衡嗎?怎樣反映在方程上呢?
生:方程兩邊同時減3。(結(jié)合學(xué)生回答板書)
師:為什么同時減3而不是其它數(shù)呢?
生:方程兩邊同時減3就可以使方程一邊只剩x。
(2)檢驗方程的解。
師:X=6是不是方程的'解呢?
生:是,因為X=6使方程左邊是6+3=9,右邊是9,左右兩邊相等,所以X=6是方程X+3=9的解。
師:以后解方程時,我們要養(yǎng)成檢驗的習(xí)慣,力求計算準(zhǔn)確。
【設(shè)計意圖】自學(xué)思考匯報交流既有利于每個學(xué)生的自主探索,保證個性發(fā)展,也有利于教師考察學(xué)生思維的合理性和靈活性,考察學(xué)生是否能用清晰的數(shù)學(xué)語言表達(dá)自己的觀點。
(3)強(qiáng)調(diào)解方程的格式步驟
解方程要注意:(1)先寫“解”,等號要對齊。
(2)做完后要注意檢驗。
【設(shè)計意圖】再一次強(qiáng)調(diào),可以讓學(xué)生加深印象,掌握解方程的正確格式和步驟,再今后的解題中不會出現(xiàn)格式錯誤的問題。
3、鞏固練習(xí)
師:你會學(xué)老師這樣解方程嗎?
請同學(xué)們解方程x+3.2=4.6, x+19=30。
先獨立完成,再招學(xué)生板書練習(xí)集體訂正
【設(shè)計意圖】在理解例1的解法后再完成本題,鞏固對同種題型解題方法的認(rèn)知,使學(xué)生對知識掌握的更牢固。
4、小組討論怎樣解方程x-2=15,x-1.8=4
師:剛才的題同學(xué)們都做的非常好,那么下面的題你們會解么?(出示題目:x-2=15,x-1.8=4)請同學(xué)們小組討論怎樣解方程x-2=15,x-1.8=4并說出你這樣做的根據(jù)。
學(xué)生小組討論并解出上面兩道方程,并板書、匯報自己的解題過程。
師:在這個過程中哪些是解方程,哪些是方程的解。
生:我們計算的過程是解方程,而x=17和x=5.8是方程的解。
【設(shè)計意圖】通過學(xué)生自主學(xué)習(xí)探究出不同類型方程的解法,讓學(xué)生享受到自學(xué)的樂趣,明白解這類方程就是要在方程的左右兩邊同時加上或者減去一個相同的數(shù),讓方程的左右兩邊仍然相等。與此同時再復(fù)習(xí)鞏固下方程的解和解方程的概念。
三、實踐應(yīng)用。
1、填空
(1)含有( )的( )叫方程。
(2)使方程左右兩邊相等的( )叫方程的解。
(3)求( )叫做解方程。
(4)x-15=20 這個方程的解是( )
指名學(xué)生口頭回答。
2、解下列方程
x+0.3=1.8 x-1.5=4
x-6=7.6 x+5=32
學(xué)生獨立完成并集體訂正。
3、列方程解決問題
學(xué)生獨立列方程解答,集體訂正。
【設(shè)計意圖】鞏固本節(jié)課所學(xué)習(xí)的內(nèi)容,檢查學(xué)生的掌握情況。
四、全課小結(jié)。
師:這節(jié)課你有什么收獲?
課后請同學(xué)們思考生活中哪些問題可以運用解方程和知識幫我們解決問題,把你想到的和同伴一起分享。
《方程》教案12
【教學(xué)目標(biāo)】
一、知識目標(biāo)
經(jīng)歷“實際問題-分式方程方程模型”的過程,經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程表示,體會分式方程的模型作用。
二、能力目標(biāo)
知道分時方程的意義,會解可化為一元一次方程的分式方程。
三、情感目標(biāo)
在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué)生努力尋找解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值。
【教學(xué)重難點】
將實際問題中的等量關(guān)系用分式方程表示。找實際問題中的等量關(guān)系。
【教學(xué)過程】
一、課前預(yù)習(xí)與導(dǎo)學(xué)
1.什么叫做分式方程?解分式方程的步驟有哪幾步?
2.判斷下面解方程的過程是否正確,若不正確,請加以改正。
解方程:=3-
解:兩邊同乘以(x-1),得
2=3-x=1,①
x=3+1-2,②
所以x=2.③
。ú徽_。正確的解:兩邊同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)
3.解下列分式方程:(1)=(2)+=2.
二、新課
。ㄒ唬┣榫硠(chuàng)設(shè):
1.甲、乙兩人加工同一種服裝,乙每天比甲多加工1件,已知乙加工24件服裝所用時間與甲加工20件服裝所用時間相同。怎樣用方程來描述其中數(shù)量之間的相等關(guān)系?
設(shè)甲每天加工服裝多少件,可得方程:
2.一個兩位數(shù)的各位數(shù)字是4,如果把各位數(shù)字與十位數(shù)字對調(diào),那么所得的兩位數(shù)與原兩位數(shù)的比值是。怎樣用方程來描述其中數(shù)量之間的相等關(guān)系?
設(shè)這個兩位數(shù)的十位數(shù)字是x,可得方程:
3.某校學(xué)生到距離學(xué)校15km的山坡上植樹,一部分學(xué)生騎自行車出發(fā)40min后,另一部分學(xué)生乘汽車出發(fā),結(jié)果全體學(xué)生同時到達(dá)。已知汽車的速度是自行車的速度的3倍。怎樣用方程來描述其中數(shù)量之間的相等關(guān)系?
設(shè)自行車的速度為xkm/h,可得方程:
。ǘ┨剿骰顒樱
1.上面所得到的方程有什么共同特點?
2.這些方程與整式方程有什么區(qū)別?
結(jié)論:分母中含有未知數(shù)的`方程叫做分式方程。
3.如何解分式方程=?
解:這個分式方程的兩邊同乘各分式的最簡公分母x(x+1),
可以得到一元一次方程:20(x+1)=24x
解這個方程,得
x=5
為了判斷x=5是否是原方程的解,我們把x=5代入原方程:
左邊==4,右邊==4,左邊=右邊。
x=5是原方程的解。
說明:解分式方程的一般步驟是先去分母(在分式方程的兩邊同乘各分式的最簡公分母),把不熟悉的分式方程轉(zhuǎn)化為熟悉的一元一次方程來解決。
三、例題教學(xué):
例1.解方程:-=0
板書出解分式方程的一般過程及完整的書寫格式。
解:方程兩邊同乘x(x-2),得
3(x-2)-2x=0
解這個方程,得
x=6
把x=6代入原方程:左邊=右邊=0,左邊=右邊。
x=6是原方程的解。
四、課堂練習(xí):
1.下列各式中,分式方程是()
A.B.C.D.
2.分式方程解的情況是()
A.有解,B.有解C.有解,D.無解
3.解下列方程:
4.為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為人,那么滿足怎樣的方程?并求解。
《方程》教案13
學(xué)習(xí)目標(biāo):
1.探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并用方程進(jìn)行描述,進(jìn)而讓學(xué)生初步體驗方程是刻畫現(xiàn)實世界的一種有效模型。
2.通過觀察所列的方程的特點,掌握一元一次方程的概念并能夠熟練識別一元一次方程
3.進(jìn)一步培養(yǎng)學(xué)生觀察、思考、分析問題、解決問題的能力,滲透建模的數(shù)學(xué)思想。
4.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
學(xué)習(xí)難點:
分析與確定問題中的等量關(guān)系,能用方程來描述和刻畫事物間的等量關(guān)系。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
問題一:
甲、乙兩城市間的鐵路經(jīng)過技術(shù)改造,列車在甲乙兩城市間的'運行速度從80千米/時提高到100千米/時,運行時間縮短了3小時.甲、乙兩城市間的路程是多少千米?
変式1:甲、乙兩列車都從A市駛向B市,甲車用了3小時,乙車用了2小時。已知乙車的速度是甲車速度的2倍少40千米,甲、乙兩車的速度分別是多少?
変式2:甲、乙兩列車都從A市駛向B市,甲車用了3小時,乙車用了2小時。已知乙車的速度是甲車速度的2倍少40千米,A、B兩城市間的路程是多少?
二、合作質(zhì)疑,探索新知
問題二:小明用50元錢購買了面值為1元和2元的郵票共30張,他買了多少張面值為1元的郵票?
如果設(shè)面值為1元的郵票買了x張,那么面值為2元的郵票買了_______張.
買面值為1元的郵票的錢+買面值為2元的郵票的錢=50元.
可得方程____________________
問題三:某通訊公司有兩種手機(jī)話費付費方式:第一種方式不交月租費,每分鐘付話費0.6元;第二種方式每月交月租費50元,每分鐘付話費0.2元.一個月通話多少分鐘時,兩種付費方式費用相同?
三、自主歸納,形成方法
1、學(xué)生自主歸納:如何從問題到方程?
2、自主歸納一元一次方程的特點,并舉例說明
四、鞏固練習(xí):
根據(jù)實際問題的意義列出方程
1.甲車的速度為60km/h,乙車的速度80km/h,兩車同時同地出發(fā),反向而行,經(jīng)過多長時間兩車相距280km?
2.小麗花50元錢買了面值為1元和2元的兩種郵票,如果面值為2元的郵票比面值為1元的郵票少5張,那么,這兩種面值的郵票各買了多少張?
3.一個長方形足球場的周長是300m,它的長比寬多30m,求這個足球場的長.
五、課堂小結(jié),感悟收獲
1、從實際問題到方程,一般要經(jīng)歷哪些過程?
2、列方程的關(guān)鍵是什么?
【課后作業(yè)】
班級姓名學(xué)號
一、選擇:
1.下列方程是一元一次方程的是()
A.B.C.D.
2.根據(jù)下列條件能列出方程的是()
A.一個數(shù)的與另一個數(shù)的的和B.與1的差的4倍是8
C.和的60%D.甲的3倍與乙的差的2倍
3.七年級二班共有學(xué)生48人,已知男生比女生少2人,問七年級二班男生、女生各有多少人?設(shè)七年級二班男生有男生x人,則下列方程中錯誤的是()
A.B.C.D.
4.課外興趣小組的女生人數(shù)占全組人數(shù)的,再加入6名女生后,女生人數(shù)就占原來人數(shù)的一半,課外興趣小組原有多少人?若設(shè)原有x人,則下列方程正確的是()
A.B.C.D.
二、根據(jù)實際問題的意義列出方程
5.根據(jù)“x的5倍比它的35%少28”列出方程為________.
6.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.
7.一個足球場的周長為310米,長和寬之差為25米,這個足球場的長和寬分別是多少?
8.甲、乙兩隊開展足球?qū)官悾?guī)定每隊勝一場得3分,平一場得1分,負(fù)一場得0分。甲隊與乙隊一共比賽了10場,甲隊保持了不敗記錄,一共得了22分。甲隊勝了多少場?平了多少場?
9.三個連續(xù)奇數(shù)的和為57,求這三個數(shù)。
10.一位教師和一群學(xué)生一起去看足球賽,教師門票按全票價每人70元,學(xué)生只收半價。如果門票總價910元,那么學(xué)生有多少人?
11.某班學(xué)生39人到公園劃船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人,每艘船都坐滿.問大船、小船各租了多少艘?
12.議一議:育紅學(xué)校七年級學(xué)生步行到郊外旅行,1班的學(xué)生組成前隊,步行的速度為4千米/小時,2班的學(xué)生組成后隊,速度為6千米/小時,前隊出發(fā)1小時后,后隊出發(fā),同時后隊派一名聯(lián)絡(luò)員騎自行車在兩隊之間不間斷地來回進(jìn)行聯(lián)絡(luò),他騎車的速度為12千米/小時。
問題1:后隊追上前隊用了多長時間?
問題2:后隊追上前隊時聯(lián)絡(luò)員行了多少路程?
問題3:聯(lián)絡(luò)員第一次追上前隊時用了多長時間?
問題4:當(dāng)后隊追上前隊時,他們已經(jīng)行進(jìn)了多少路程?
你能根據(jù)題意再提出兩個問題嗎?和你的同學(xué)交流一下
《方程》教案14
課型:新授課
教學(xué)目標(biāo):
1、知識與技能
(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
。2)能正確利用直線的點斜式、斜截式公式求直線方程。
。3)體會直線的斜截式方程與一次函數(shù)的關(guān)系.
2、過程與方法
在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學(xué)生通過對比理解“截距”與“距離”的區(qū)別。
3、情態(tài)與價值觀
通過讓學(xué)生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點,使學(xué)生能用聯(lián)系的觀點看問題。
教學(xué)重點:直線的點斜式方程和斜截式方程。
教學(xué)難點:直線的點斜式方程和斜截式方程的應(yīng)用
教學(xué)過程:
問題
設(shè)計意圖
師生活動
1、在直線坐標(biāo)系內(nèi)確定一條直線,應(yīng)知道哪些條件?
使學(xué)生在已有知識和經(jīng)驗的基礎(chǔ)上,探索新知。
學(xué)生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標(biāo)滿足的關(guān)系式。
2、直線經(jīng)過點,且斜率為。設(shè)點是直線上的任意一點,請建立與之間的關(guān)系。
培養(yǎng)學(xué)生自主探索的能力,并體會直線的.方程,就是直線上任意一點的坐標(biāo)滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。
學(xué)生根據(jù)斜率公式,可以得到,當(dāng)時,即(1)教師對基礎(chǔ)薄弱的學(xué)生給予關(guān)注、引導(dǎo),使每個學(xué)生都能推導(dǎo)出這個方程。
3、(1)過點,斜率是的直線上的點,其坐標(biāo)都滿足方程(1)嗎?
使學(xué)生了解方程為直線方程必須滿兩個條件。
學(xué)生驗證,教師引導(dǎo)。
問題
設(shè)計意圖
師生活動
(2)坐標(biāo)滿足方程(1)的點都在經(jīng)過,斜率為的直線上嗎?
使學(xué)生了解方程為直線方程必須滿兩個條件。
學(xué)生驗證,教師引導(dǎo)。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式(point slope form).
4、直線的點斜式方程能否表示坐標(biāo)平面上的所有直線呢?
使學(xué)生理解直線的點斜式方程的適用范圍。
學(xué)生分組互相討論,然后說明理由。
5、(1)軸所在直線的方程是什么?軸所在直線的方程是什么?
。2)經(jīng)過點且平行于軸(即垂直于軸)的直線方程是什么?
(3)經(jīng)過點且平行于軸(即垂直于軸)的直線方程是什么?
進(jìn)一步使學(xué)生理解直線的點斜式方程的適用范圍,掌握特殊直線方程的表示形式。
教師學(xué)生引導(dǎo)通過畫圖分析,求得問題的解決。
6、例1的教學(xué)。(教材93頁)
學(xué)會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的方法。
教師引導(dǎo)學(xué)生分析要用點斜式求直線方程應(yīng)已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標(biāo)平面內(nèi),要畫一條直線可以怎樣去畫。
7、已知直線的斜率為,且與軸的交點為,求直線的方程。
引入斜截式方程,讓學(xué)生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。
學(xué)生獨立求出直線的方程:
。2)
再此基礎(chǔ)上,教師給出截距的概念,引導(dǎo)學(xué)生分析方程(2)由哪兩個條件確定,讓學(xué)生理解斜截式方程概念的內(nèi)涵。
8、觀察方程,它的形式具有什么特點?
深入理解和掌握斜截式方程的特點?
學(xué)生討論,教師及時給予評價。
問題
設(shè)計意圖
師生活動
9、直線在軸上的截距是什么?
使學(xué)生理解“截距”與“距離”兩個概念的區(qū)別。
學(xué)生思考回答,教師評價。
10、你如何從直線方程的角度認(rèn)識一次函數(shù)?一次函數(shù)中和的幾何意義是什么?你能說出一次函數(shù)圖象的特點嗎?
體會直線的斜截式方程與一次函數(shù)的關(guān)系.
學(xué)生思考、討論,教師評價、歸納概括。
11、例2的教學(xué)。(教材94頁)
掌握從直線方程的角度判斷兩條直線相互平行,或相互垂直;進(jìn)一步理解斜截式方程中的幾何意義。
教師引導(dǎo)學(xué)生分析:用斜率判斷兩條直線平行、垂直結(jié)論。思考(1)時,有何關(guān)系?(2)時,有何關(guān)系?在此由學(xué)生得出結(jié)論:
且;
12、課堂練習(xí)第95頁練習(xí)第1,2,3,4題。
鞏固本節(jié)課所學(xué)過的知識。
學(xué)生獨立完成,教師檢查反饋。
13、小結(jié)
使學(xué)生對本節(jié)課所學(xué)的知識有一個整體性的認(rèn)識,了解知識的來龍去脈。
教師引導(dǎo)學(xué)生概括:(1)本節(jié)課我們學(xué)過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?
14、布置作業(yè):第106頁第1題的(1)、(2)、(3)和第3、5題
鞏固深化
學(xué)生課后獨立完成。
例3.如果直線沿x軸負(fù)方向平移3個單位,再沿y軸正方向平移1個單位后,又回到原來的位置,求直線l的斜率.
歸納小結(jié):(1)本節(jié)課我們學(xué)過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?
作業(yè)布置:第100頁第1題的(1)、(2)、(3)和第3、5題
課后記:
《方程》教案15
教學(xué)內(nèi)容
解方程:教材P69例4、例5。
教學(xué)目標(biāo)
1.鞏固利用等式的性質(zhì)解方程的知識,學(xué)會解ax±b=c與a(x±b)=c類型的方程。
2.進(jìn)一步掌握解方程的書寫格式和寫法。
3.在學(xué)習(xí)過程中,進(jìn)一步積累數(shù)學(xué)活動經(jīng)驗,感受方程的思想方法,發(fā)展初步的抽象思維能力。
教學(xué)重點
理解在解方程過程中,把一個式子看作一個整體。
教學(xué)難點
理解解方程的方法。
教學(xué)過程
一、導(dǎo)入新課
我們上節(jié)課學(xué)習(xí)了解方程,這節(jié)課我們來繼續(xù)學(xué)習(xí)。
二、新課教學(xué)
1.教學(xué)例4。
師:(出示教材第69頁例4情境圖)你看到了什么?
生:有3盒鉛筆和4只鉛筆,一盒鉛筆盒中有x支鉛筆。
師:你能根據(jù)圖列一個方程嗎?
生:3x+4=40。
師:你是怎么想的?
生:一盒鉛筆盒有x支鉛筆,3盒鉛筆盒就有3x支鉛筆。據(jù)此,可列出方程。
師:說得好,你能解這個方程嗎?
學(xué)生在嘗試解方程時,可能會遇到困難,要讓學(xué)生說一說自己的困惑。學(xué)生可能會疑惑:方程的左邊是個二級運算不知識如何解。也有學(xué)生可能會想到,把3個未知的鉛筆盒看作一部分,先求出這部分有多少支,再求一盒多少支。(如果沒有,教師可提示學(xué)生這樣思考。)
師:假如知道一盒鉛筆盒有幾支,要求一共有多少支鉛筆,你會怎么算?
生:先算出3個鉛筆盒一共多少支,再加上外面的4支。
師:在這里,我們也是先把3個鉛筆盒的支數(shù)看成了一個整體,先求這部分有多少支。解方程時,也就是先把誰看成一個整體?我們可以先把“3x”看成一個整體。
讓學(xué)生嘗試?yán)^續(xù)解答,教師根據(jù)學(xué)生的回答,板書解題過程。也可以讓學(xué)生同桌之間再說一說解方程的過程。
2.教學(xué)例5。
師:(出示教材第69頁例5)你能夠解這個方程嗎?
生1:我們可以參照例4的方法,先把x-16看作一個整體。
學(xué)生解方程得x=20。
生2:我們也可以用運算定律來解。
師:2x-32=8運用了什么運算定律?
生:運用了乘法分配律。然后把2x
看作一個整體。
學(xué)生解方程得x=20。
師:你的解法正確嗎?你如何檢驗方程是否正確?
生:可以把方程的.解代入方程中計算,看看方程左右兩邊是否相等。
三、鞏固練習(xí)
教材第69頁“做一做”第1、2題。
第1題的形式、內(nèi)容都與例4基本相同。第2題的4個方程在兩道例題的基礎(chǔ)上略有變化,使學(xué)生學(xué)會舉一反三。
這兩道練習(xí)要讓學(xué)生獨立完成,教師可提醒學(xué)生解一題,代入檢驗一題,以促進(jìn)檢驗習(xí)慣的養(yǎng)成。
四、課堂小結(jié)
1.在解較復(fù)雜的方程時,可以把一個式子看作一個整體來解。
2.在解方程時,可以運用運算定律來解。
五、布置作業(yè)
教材第71頁“練習(xí)十五”第6、8、9.題。
【《方程》教案】相關(guān)文章:
《方程》教案11-26
《方程的意義》教案02-18
解方程教案03-29
認(rèn)識方程教案03-29
《簡易方程》教案04-26
《方程》教案15篇02-22
《方程的意義》教案15篇02-18
《方程的意義》教案(15篇)02-18