高中數(shù)學(xué)教案(集合15篇)
作為一名教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,借助教案可以有效提升自己的教學(xué)能力。那么應(yīng)當(dāng)如何寫(xiě)教案呢?下面是小編為大家收集的高中數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
高中數(shù)學(xué)教案1
教學(xué)目標(biāo):
1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.
2.會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù).
3.在嘗試、探索求反函數(shù)的過(guò)程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí).
4.進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點(diǎn)分析問(wèn)題,培養(yǎng)抽象、概括的能力.
教學(xué)重點(diǎn):求反函數(shù)的方法.
教學(xué)難點(diǎn):反函數(shù)的概念.
教學(xué)過(guò)程:
教學(xué)活動(dòng)
設(shè)計(jì)意圖一、創(chuàng)設(shè)情境,引入新課
1.復(fù)習(xí)提問(wèn)
、俸瘮(shù)的概念
、趛=f(x)中各變量的意義
2.同學(xué)們?cè)谖锢碚n學(xué)過(guò)勻速直線運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù).在這種情況下,我們說(shuō)t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.
3.板書(shū)課題
由實(shí)際問(wèn)題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.
二、實(shí)例分析,組織探究
1.問(wèn)題組一:
(用投影給出函數(shù)與;與()的圖象)
(1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對(duì)稱;與()的圖象也關(guān)于直線y=x對(duì)稱.是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算.同樣,與()也互為逆運(yùn)算.)
(2)由,已知y能否求x?
(3)是否是一個(gè)函數(shù)?它與有何關(guān)系?
(4)與有何聯(lián)系?
2.問(wèn)題組二:
(1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?
(3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?
3.滲透反函數(shù)的概念.
(教師點(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn))
從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的能力.
通過(guò)這兩組問(wèn)題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問(wèn)題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ).
三、師生互動(dòng),歸納定義
1.(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義)
函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域?yàn)?C.我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來(lái),得到 x = j (y) .如果對(duì)于y在C中的任何一個(gè)值,通過(guò)x = j (y),x在A中都有的值和它對(duì)應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫(xiě)成.
2.引導(dǎo)分析:
1)反函數(shù)也是函數(shù);
2)對(duì)應(yīng)法則為互逆運(yùn)算;
3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來(lái)說(shuō)不一定有反函數(shù);
4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;
5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);
6)要理解好符號(hào)f;
7)交換變量x、y的原因.
3.兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系
(原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的)
4.函數(shù)與其反函數(shù)的關(guān)系
函數(shù)y=f(x)
函數(shù)
定義域
A
C
值 域
C
A
四、應(yīng)用解題,總結(jié)步驟
1.(投影例題)
【例1】求下列函數(shù)的反函數(shù)
(1)y=3x-1 (2)y=x 1
【例2】求函數(shù)的反函數(shù).
(教師板書(shū)例題過(guò)程后,由學(xué)生總結(jié)求反函數(shù)步驟.)
2.總結(jié)求函數(shù)反函數(shù)的步驟:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x與y互換得.
3° 寫(xiě)出反函數(shù)的定義域.
(簡(jiǎn)記為:反解、互換、寫(xiě)出反函數(shù)的定義域)【例3】(1)有沒(méi)有反函數(shù)?
(2)的反函數(shù)是________.
(3)(x<0)的反函數(shù)是__________.
在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù).在剖析定義的過(guò)程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語(yǔ)言有更好的把握.
通過(guò)動(dòng)畫(huà)演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解.
通過(guò)對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.
題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn).并體現(xiàn)了對(duì)定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.
五、鞏固強(qiáng)化,評(píng)價(jià)反饋
1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.
五、反思小結(jié),再度設(shè)疑
本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究.
(讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥)
進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對(duì)知識(shí)的`掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度.具體實(shí)踐中可采取同學(xué)板演、分組競(jìng)賽等多種形式調(diào)動(dòng)學(xué)生的積極性."問(wèn)題是數(shù)學(xué)的心臟"學(xué)生帶著問(wèn)題走進(jìn)課堂又帶著新的問(wèn)題走出課堂.
六、作業(yè)
習(xí)題2.4第1題,第2題
進(jìn)一步鞏固所學(xué)的知識(shí).
教學(xué)設(shè)計(jì)說(shuō)明
"問(wèn)題是數(shù)學(xué)的心臟".一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過(guò)具體到抽象,感性到理性的過(guò)程.本節(jié)教案通過(guò)一個(gè)物理學(xué)中的具體實(shí)例引入反函數(shù),進(jìn)而又通過(guò)若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念.
反函數(shù)的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過(guò)兩次代換,又采用了抽象的符號(hào).由于沒(méi)有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問(wèn)題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對(duì)概念的剖析以及習(xí)題的配備也很精當(dāng),通過(guò)不同層次的問(wèn)題,滿足學(xué)生多層次需要,起到評(píng)價(jià)反饋的作用.通過(guò)對(duì)函數(shù)與方程的分析,互逆探索,動(dòng)畫(huà)演示,表格對(duì)照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動(dòng)了學(xué)生的探求欲,在探究與剖析的過(guò)程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。
高中數(shù)學(xué)教案2
教學(xué)目標(biāo):
1、理解并掌握曲線在某一點(diǎn)處的切線的概念;
2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問(wèn)題的能力及數(shù)形結(jié)合思想。
教學(xué)重點(diǎn):
理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。
教學(xué)難點(diǎn):
用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。
教學(xué)過(guò)程:
一、問(wèn)題情境
1、問(wèn)題情境。
如何精確地刻畫(huà)曲線上某一點(diǎn)處的變化趨勢(shì)呢?
如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。
如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過(guò)點(diǎn)P的所有直線中最逼近曲線的一條直線。
因此,在點(diǎn)P附近我們可以用這條直線來(lái)代替曲線,也就是說(shuō),點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動(dòng)。
如圖所示,直線l1,l2為經(jīng)過(guò)曲線上一點(diǎn)P的兩條直線,
。1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;
。2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學(xué)
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過(guò)點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
三、數(shù)學(xué)運(yùn)用
例1 試求在點(diǎn)(2,4)處的切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的'斜率為:
當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;
當(dāng)Q點(diǎn)橫坐標(biāo)無(wú)限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數(shù)4。
從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。
練習(xí) 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:
。1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);
。2)求出割線PQ的斜率;
。3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
解 設(shè)
所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線的斜率。
變式訓(xùn)練
1。已知,求曲線在處的切線斜率和切線方程;
2。已知,求曲線在處的切線斜率和切線方程;
3。已知,求曲線在處的切線斜率和切線方程。
課堂練習(xí)
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點(diǎn)P處的切線是過(guò)點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。
五、課外作業(yè)
高中數(shù)學(xué)教案3
一、自我介紹
我姓x,是你們的數(shù)學(xué)老師,因?yàn)槭菙?shù)學(xué)老師所以在自我介紹的時(shí)候喜歡給出自己的數(shù)字特征,也是希望通過(guò)這些方式能拓寬與大家交流的平臺(tái),希望能與大家在課堂中相識(shí),在生活中相知,不僅能成為你們知識(shí)的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對(duì)于高中學(xué)習(xí)都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課我們不急于上新課,我想和大家聊一聊數(shù)學(xué),一起來(lái)思考為什么要學(xué)習(xí)數(shù)學(xué)及如何學(xué)好數(shù)學(xué)這兩個(gè)問(wèn)題。
(一)為什么要學(xué)習(xí)數(shù)學(xué)
相信高一的第一節(jié)課是各位科任老師各顯神通的時(shí)候,通過(guò)各種有趣的方式來(lái)突出每門課的重要性,作為數(shù)學(xué)老師我表達(dá)上不如文科老師迂回婉轉(zhuǎn)和風(fēng)趣幽默,我們更喜歡用數(shù)字說(shuō)明問(wèn)題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長(zhǎng)時(shí),就列數(shù)學(xué)系為北大第一系,這種傳統(tǒng)一直保持到現(xiàn)在。為什么數(shù)學(xué)系在高校中有如此重要的地位?課本主編寄語(yǔ)是這樣描述的:數(shù)學(xué)是有用的,數(shù)學(xué)有助于提高能力。
數(shù)學(xué)家華羅庚在《人民日?qǐng)?bào)》精彩描述了數(shù)學(xué)在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無(wú)處不有重要貢獻(xiàn)。
問(wèn)題1:大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請(qǐng)出十大行星行列的?
海王星的發(fā)現(xiàn)是在數(shù)學(xué)計(jì)算過(guò)程中發(fā)現(xiàn)的,天文望遠(yuǎn)鏡的觀測(cè)只是驗(yàn)證了人們的推論。
1812年,法國(guó)人布瓦德在計(jì)算天王星的運(yùn)動(dòng)軌道時(shí),發(fā)現(xiàn)理論計(jì)算值同觀測(cè)資料發(fā)生了一系列誤差。這使許多天文學(xué)家紛紛致力這個(gè)問(wèn)題的研究,進(jìn)而發(fā)現(xiàn)天王星的脫軌與一個(gè)未知的引力的存在相關(guān)。也就是說(shuō)有一個(gè)未知的天體作用于天王星。1846年9月23日。柏林天文臺(tái)收到來(lái)自法國(guó)巴黎的一封快信。發(fā)信人就是勒威耶。信中,勒威耶預(yù)告了一顆以往沒(méi)有發(fā)現(xiàn)的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當(dāng)夜,柏林天文臺(tái)的加勒把巨大的天文望遠(yuǎn)鏡對(duì)準(zhǔn)摩羯座,果真在那里發(fā)現(xiàn)了一顆新的8等星。又過(guò)了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預(yù)告的相差甚微。全世界都震動(dòng)了。人們依照勒威耶的建議,按天文學(xué)慣例,用神話里的名字把這顆星命名為"海王星"。
1930年美國(guó)天文學(xué)家湯博發(fā)現(xiàn)冥王星,當(dāng)時(shí)錯(cuò)估了冥王星的質(zhì)量,以為冥王星比地球還大,所以命名為大行星。然而,經(jīng)過(guò)近30年的進(jìn)一步觀測(cè)和計(jì)算,發(fā)現(xiàn)它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認(rèn),"冥王星是大行星"早已被寫(xiě)入教科書(shū),以后也就將錯(cuò)就錯(cuò)了。經(jīng)過(guò)多年的爭(zhēng)論,國(guó)際天文學(xué)聯(lián)合會(huì)通過(guò)投票表決做出最終決定,取消冥王星的行星資格。8月24日據(jù)國(guó)際天文學(xué)聯(lián)合會(huì)宣布,冥王星將被排除在行星行列之外,從而太陽(yáng)系行星的數(shù)量將由九顆減為八顆。事實(shí)上,位居太陽(yáng)系九大行星末席70多年的冥王星,自發(fā)現(xiàn)之日起地位就備受爭(zhēng)議。
馬克思說(shuō):"一種科學(xué)只有在成功運(yùn)用數(shù)學(xué)時(shí),才算達(dá)到了真正完善的地步。"正因?yàn)閿?shù)學(xué)是日常生活和進(jìn)一步學(xué)習(xí)必不可少的基礎(chǔ)和工具,一切科學(xué)到了最后都?xì)w結(jié)為數(shù)學(xué)問(wèn)題。
其實(shí)在我們的周圍有很多事情都是可以用數(shù)學(xué)可以來(lái)解決的,無(wú)非很多人都沒(méi)有用數(shù)學(xué)的眼光來(lái)看待。
問(wèn)題2:徒認(rèn)為上帝是萬(wàn)能的。你們認(rèn)為呢?如何來(lái)證明你的結(jié)論呢?(讓同學(xué)發(fā)言)
我的觀點(diǎn):上帝不是萬(wàn)能的。為什么呢?仔細(xì)聽(tīng)我講來(lái)。
證明:(反證法)假如上帝是萬(wàn)能的
那么他能夠制作出一塊無(wú)論什么力量都搬不動(dòng)的石頭
根據(jù)假設(shè),既然上帝是萬(wàn)能的,那么他一定能夠搬的動(dòng)他自己制造的那石頭
這與"無(wú)論什么力量都搬不動(dòng)的石頭"相矛盾
所以假設(shè)不成立
所以上帝不是萬(wàn)能的。問(wèn)題3:抓鬮對(duì)個(gè)人來(lái)說(shuō)公平嗎?5張票中有一張獎(jiǎng)票,那么先抽還是后抽對(duì)個(gè)人還說(shuō)公平嗎?
當(dāng)然,我們學(xué)習(xí)的數(shù)學(xué)只是數(shù)學(xué)學(xué)科體系中很基礎(chǔ),很小的一部分。現(xiàn)在課本上學(xué)的未必能直接應(yīng)用于生活,主要是為以后學(xué)習(xí)更高層次的理科打好基礎(chǔ),同時(shí),也為了掌握一些數(shù)學(xué)的思考方法以及分析問(wèn)題解決問(wèn)題的思維方式。哲學(xué)家培根說(shuō)過(guò):"讀詩(shī)使人靈秀,讀歷史使人明智,學(xué)邏輯使人周密,學(xué)哲學(xué)使人善辯,學(xué)數(shù)學(xué)使人聰明…",也有人形象地稱數(shù)學(xué)是思維的體操。下面我們通過(guò)具體的例子來(lái)體驗(yàn)一下某些數(shù)學(xué)思想方法和思維方式。
故事一:據(jù)說(shuō)國(guó)際象棋是古印度的一位宰相發(fā)明的。國(guó)王很欣賞他的這項(xiàng)發(fā)明,問(wèn)他的宰相要什么賞賜。聰明的宰相說(shuō),"我所要的從一粒谷子(沒(méi)錯(cuò),是1粒,不是1兩或1斤)開(kāi)始。在這個(gè)有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國(guó)王覺(jué)得宰相要的實(shí)在不多,就叫人按宰相的要求賞賜。但后來(lái)發(fā)現(xiàn)即使把全國(guó)所有的谷子抬來(lái)也遠(yuǎn)遠(yuǎn)不夠。
人們通常憑借自己掌握的數(shù)學(xué)知識(shí)耍些小聰明,使問(wèn)題妙不可言。
數(shù)學(xué)游戲:兩人相繼輪流往長(zhǎng)方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應(yīng)該先放還是后放才有必勝的把握。
數(shù)學(xué)思想:退到最簡(jiǎn)單、最特殊的地方。
故事二:聰明的渡邊:20世紀(jì)40年代末,手寫(xiě)工具突破性進(jìn)展-圓珠筆問(wèn)世,它以價(jià)廉、方便、書(shū)寫(xiě)流利在社會(huì)上廣泛流傳,但寫(xiě)到20萬(wàn)字時(shí)就會(huì)因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質(zhì)量入手,從改進(jìn)油墨性能入手進(jìn)行改良,但收效甚微。于是廠家打出廣告:解決此問(wèn)題獲獎(jiǎng)金50萬(wàn)元。當(dāng)時(shí)山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時(shí)就德育不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問(wèn)題,你認(rèn)為他會(huì)怎么做呢?
渡邊的成功之處就在于思維角度新,從問(wèn)題的側(cè)面輕巧取勝。也正體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中經(jīng)常用到的發(fā)散式思維。在數(shù)學(xué)學(xué)習(xí)中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對(duì)問(wèn)題的歸納,聯(lián)系思維方式,表現(xiàn)為對(duì)解題方法的模仿和繼承;而發(fā)散式思維即對(duì)問(wèn)題開(kāi)拓、創(chuàng)新,表現(xiàn)為對(duì)問(wèn)題舉一反三,觸類旁通。在解決具體問(wèn)題中,我們應(yīng)該將兩種思維方式相結(jié)合。
學(xué)數(shù)學(xué)有利于培養(yǎng)人的思維品質(zhì):結(jié)構(gòu)意識(shí)、整體意識(shí)、抽象意識(shí)、化歸意識(shí)、優(yōu)化意識(shí)、反思意識(shí),盡管數(shù)學(xué)在培養(yǎng)學(xué)生的這些思維品質(zhì)方面和其他學(xué)科存在著交集,但數(shù)學(xué)在其中的地位是無(wú)法被代替的?傊,學(xué)習(xí)數(shù)學(xué)可以使人思考問(wèn)題更合乎邏輯,更有條理,更嚴(yán)密精確,更深入簡(jiǎn)潔,更善于創(chuàng)造……
(二)如何學(xué)好數(shù)學(xué)
高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強(qiáng),高中很注重自學(xué)能力的培養(yǎng)的,高中不會(huì)像初中那樣老師一天到晚盯著你,在高中一定要注重自學(xué)能力的培養(yǎng),誰(shuí)的自學(xué)能力強(qiáng),那么在一定的程度上影響著你的成績(jī)以及你將來(lái)你發(fā)展的前途。同時(shí)要注意以下幾點(diǎn):
第一:對(duì)數(shù)學(xué)學(xué)科特點(diǎn)有清楚的認(rèn)識(shí)
主編寄語(yǔ)里是這樣描述數(shù)學(xué)的特征的:數(shù)學(xué)是自然的。數(shù)學(xué)的概念、方法、思想都是人類長(zhǎng)期實(shí)踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實(shí)數(shù)再到復(fù)數(shù),都是由自然的認(rèn)知沖突引起的。因此,在學(xué)習(xí)過(guò)程中我們有必要了解知識(shí)產(chǎn)生的背景,它的形成過(guò)程以及它的應(yīng)用,讓數(shù)學(xué)顯得合情合理,渾然天成。數(shù)學(xué)中沒(méi)有含糊不清的詞,對(duì)錯(cuò)分明,凡事都要講個(gè)為什么,只要按照數(shù)學(xué)規(guī)則去學(xué)去想就能融會(huì)貫通,但是如果不把來(lái)龍去脈想清楚而是"想當(dāng)然"的話,那就學(xué)不下去了。
第二:要改變一個(gè)觀念。
有人會(huì)說(shuō)自己的基礎(chǔ)不好。那我問(wèn)下什么是基礎(chǔ)?今天所學(xué)的知識(shí)就是明天的基礎(chǔ)。明天學(xué)習(xí)的知識(shí)就是后天的基礎(chǔ)。所以要學(xué)好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實(shí)的了。所以現(xiàn)在你們是在同一個(gè)起跑線上的,無(wú)所謂基礎(chǔ)好不好。過(guò)去的幾年里我分別帶過(guò)五十一中和一中的學(xué)生,兩邊學(xué)生的課堂感覺(jué)差不多,應(yīng)該說(shuō)接受能力不相上下,有的時(shí)候我會(huì)選擇在五十一中開(kāi)公開(kāi)課,因?yàn)檎n堂氣氛活躍、輕松,但是成績(jī)差異卻是很大,原因在于我們同學(xué)外課自主時(shí)間的投入太少,學(xué)習(xí)習(xí)慣不太好。
第三:學(xué)數(shù)學(xué)要摸索自己的學(xué)習(xí)方法
學(xué)習(xí)、掌握并能靈活應(yīng)用數(shù)學(xué)的途徑有千萬(wàn)條,每個(gè)人都可以有與眾不同的數(shù)學(xué)學(xué)習(xí)方法。做習(xí)題、用數(shù)學(xué)解決各種問(wèn)題是必需的,理解、學(xué)會(huì)證明、領(lǐng)會(huì)思想、掌握方法也是必需的.。此外,還要發(fā)揮問(wèn)題的作用,學(xué)會(huì)提問(wèn),熱心幫助別人解決問(wèn)題,用自己的問(wèn)題和別人的問(wèn)題帶動(dòng)自己的學(xué)習(xí)。同時(shí),注意前后知識(shí)的銜接,類比地學(xué)、聯(lián)系地學(xué),既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊(yùn)含的一般概念。
第四:養(yǎng)成良好的學(xué)習(xí)習(xí)慣(與一中學(xué)生相比較)
、逭n前預(yù)習(xí)。怎樣預(yù)習(xí)呢?就是自己在上課之前把內(nèi)容先看一邊,把自己不懂的地方做個(gè)記號(hào)或者打個(gè)問(wèn)號(hào),以至于上課的時(shí)候重點(diǎn)聽(tīng),這樣才能夠很快提高自己的水平。但是預(yù)習(xí)不是很隨便的把課本看一邊,預(yù)習(xí)有個(gè)目標(biāo),那就是通過(guò)預(yù)習(xí)可以把書(shū)本后面的練習(xí)題可以自己獨(dú)立的完成。一中的同學(xué)預(yù)習(xí)就已經(jīng)有好幾個(gè)層次了,先是課本,再是精編,再是高考題典,上課對(duì)于他們來(lái)說(shuō)是第一輪高考復(fù)習(xí)。
、嫔险n認(rèn)真聽(tīng)講。上課的時(shí)候準(zhǔn)備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過(guò)我不大提倡數(shù)學(xué)課做筆記的。不過(guò)有一點(diǎn),有些知識(shí)點(diǎn)比較重要,課本上又沒(méi)有的,我要求你們把它寫(xiě)在課本上的相應(yīng)的空白地方。還有如果你覺(jué)得某個(gè)例題比較新或者比較重要,也可以把它記在書(shū)本的相應(yīng)位置上,這樣以后復(fù)習(xí)起來(lái)就一目了然了。那么草稿要來(lái)干什么的呢?課堂上你可以自己演算還有做課堂練習(xí)。
、珀P(guān)于作業(yè)。絕對(duì)不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰(shuí)抄作業(yè),那么既然他這樣喜歡抄,我就要你把當(dāng)天的作業(yè)多抄幾遍給我。那有人會(huì)問(wèn),碰到不會(huì)做的題目怎么辦?有兩個(gè)辦法:一、向同學(xué)請(qǐng)教,請(qǐng)教做題目的思路,而不是整個(gè)過(guò)程和答案。同學(xué)之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個(gè)道理大家應(yīng)該明白吧。我非常提倡同學(xué)之間的相互討論問(wèn)題的,這樣才能夠相互促進(jìn)提高。二、向老師請(qǐng)教,要養(yǎng)成多想多問(wèn)的習(xí)慣。我的辦公室在二樓二號(hào),歡迎大家前來(lái)交流
、铚(zhǔn)備一本筆記本,作為自己的問(wèn)題集。把平時(shí)自己不懂的和不大理解的還有易錯(cuò)的記錄下來(lái),并且要及時(shí)的消化,不懂的地方問(wèn)老師。這是一個(gè)很好的辦法,到考試的時(shí)候就可以有重點(diǎn)、有針對(duì)性的自己復(fù)習(xí)了。我高中的時(shí)候就是采用這樣的方法把數(shù)學(xué)成績(jī)提高。
好的開(kāi)始是成功的一半,新的學(xué)期開(kāi)始了,請(qǐng)大家調(diào)整好自己的思想,找到學(xué)習(xí)的原動(dòng)力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習(xí)慣;播種一種習(xí)慣,收獲一種性格;播種一種性格,收獲一種命運(yùn)。愿每位同學(xué)都有個(gè)好的開(kāi)始。
高中數(shù)學(xué)教案4
[學(xué)習(xí)目標(biāo)]
。1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;
。2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問(wèn)題。
[學(xué)習(xí)重點(diǎn)]
兩角和與差的正弦、余弦、正切公式
[學(xué)習(xí)難點(diǎn)]
余弦和角公式的推導(dǎo)
[知識(shí)結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過(guò)程見(jiàn)課本)
2、通過(guò)下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的.基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
高中數(shù)學(xué)教案5
[核心必知]
1、預(yù)習(xí)教材,問(wèn)題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問(wèn)題、
。1)常見(jiàn)的程序框有哪些?
提示:終端框(起止框),輸入、輸出框,處理框,判斷框、
。2)算法的基本邏輯結(jié)構(gòu)有哪些?
提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)、
2、歸納總結(jié),核心必記
。1)程序框圖
程序框圖又稱流程圖,是一種用程序框、流程線及文字說(shuō)明來(lái)表示算法的圖形、
在程序框圖中,一個(gè)或幾個(gè)程序框的組合表示算法中的一個(gè)步驟;帶有方向箭頭的流程線將程序框連接起來(lái),表示算法步驟的執(zhí)行順序、
。2)常見(jiàn)的程序框、流程線及各自表示的功能
圖形符號(hào)名稱功能
終端框(起止框)表示一個(gè)算法的起始和結(jié)束
輸入、輸出框表示一個(gè)算法輸入和輸出的信息
處理框(執(zhí)行框)賦值、計(jì)算
判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”
流程線連接程序框
○連接點(diǎn)連接程序框圖的兩部分
。3)算法的基本邏輯結(jié)構(gòu)
、偎惴ǖ娜N基本邏輯結(jié)構(gòu)
算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬(wàn)別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的
、陧樞蚪Y(jié)構(gòu)
順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的這是任何一個(gè)算法都離不開(kāi)的基本結(jié)構(gòu),用程序框圖表示為:
[問(wèn)題思考]
。1)一個(gè)完整的程序框圖一定是以起止框開(kāi)始,同時(shí)又以起止框表示結(jié)束嗎?
提示:由程序框圖的概念可知一個(gè)完整的程序框圖一定是以起止框開(kāi)始,同時(shí)又以起止框表示結(jié)束、
。2)順序結(jié)構(gòu)是任何算法都離不開(kāi)的基本結(jié)構(gòu)嗎?
提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開(kāi)的基本結(jié)構(gòu)、
[課前反思]
通過(guò)以上預(yù)習(xí),必須掌握的幾個(gè)知識(shí)點(diǎn):
。1)程序框圖的`概念:
。2)常見(jiàn)的程序框、流程線及各自表示的功能:
。3)算法的三種基本邏輯結(jié)構(gòu):
(4)順序結(jié)構(gòu)的概念及其程序框圖的表示:
問(wèn)題背景:計(jì)算1×2+3×4+5×6+…+99×100。
[思考1]能否設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)式子的值。
提示:能。
[思考2]能否采用更簡(jiǎn)潔的方式表述上述算法過(guò)程。
提示:能,利用程序框圖。
[思考3]畫(huà)程序框圖時(shí)應(yīng)遵循怎樣的規(guī)則?
名師指津:
。1)使用標(biāo)準(zhǔn)的框圖符號(hào)。
。2)框圖一般按從上到下、從左到右的方向畫(huà)。
。3)除判斷框外,其他程序框圖的符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn),判斷框是一個(gè)具有超過(guò)一個(gè)退出點(diǎn)的程序框。
。4)在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚。
。5)流程線不要忘記畫(huà)箭頭,因?yàn)樗欠从沉鞒虉?zhí)行先后次序的,如果不畫(huà)出箭頭就難以判斷各框的執(zhí)行順序。
高中數(shù)學(xué)教案6
教學(xué)準(zhǔn)備
1.教學(xué)目標(biāo)
1、知識(shí)與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依
賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),高中階段更注重函數(shù)模型化的思想與意識(shí).
2、過(guò)程與方法:
。1)通過(guò)實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
。4)能夠正確使用“區(qū)間”的符號(hào)表示函數(shù)的定義域;
3、情感態(tài)度與價(jià)值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.
教學(xué)重點(diǎn)/難點(diǎn)
重點(diǎn):理解函數(shù)的模型化思想,用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);
難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)用具
多媒體
4.標(biāo)簽
函數(shù)及其表示
教學(xué)過(guò)程
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2、閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
。1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;
。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;
。3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題.
3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);
4、引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
。ǘ┭刑叫轮
1、函數(shù)的有關(guān)概念
。1)函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
、佟皔=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
、诤瘮(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
。2)構(gòu)成函數(shù)的三要素是什么?
定義域、對(duì)應(yīng)關(guān)系和值域
。3)區(qū)間的概念
、賲^(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;
、跓o(wú)窮區(qū)間;
、蹍^(qū)間的數(shù)軸表示.
。4)初中學(xué)過(guò)哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?
通過(guò)三個(gè)已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對(duì)應(yīng)語(yǔ)言刻畫(huà)的定義,談?wù)勼w會(huì).
師:歸納總結(jié)
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
。1)求函數(shù)的定義域;
。2)求f(-3),f()的值;
(3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫(xiě)成集合或區(qū)間的形式.
例2、設(shè)一個(gè)矩形周長(zhǎng)為80,其中一邊長(zhǎng)為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫(xiě)出定義域.
分析:由題意知,另一邊長(zhǎng)為x,且邊長(zhǎng)x為正數(shù),所以0<x<40.
所以s==(40-x)x(0<x<40)
引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:
。1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R.
2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的'實(shí)數(shù)的集合.
(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)
。5)滿足實(shí)際問(wèn)題有意義.
鞏固練習(xí):課本P19第1
2、如何判斷兩個(gè)函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個(gè)與函數(shù)y=x相等?
分析:
1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。
解:
課本P18例2
。ㄋ模w納小結(jié)
、?gòu)木唧w實(shí)例引入了函數(shù)的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時(shí)引出了區(qū)間的概念.
。ㄎ澹┰O(shè)置問(wèn)題,留下懸念
1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題
2、舉出生活中函數(shù)的例子(三個(gè)以上),并用集合與對(duì)應(yīng)的語(yǔ)言來(lái)描述函數(shù),同時(shí)說(shuō)出函數(shù)的定義域、值域和對(duì)應(yīng)關(guān)系.
課堂小結(jié)
高中數(shù)學(xué)教案7
教學(xué)目標(biāo)
。1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;
。2)使學(xué)生掌握組合數(shù)的計(jì)算公式;
。3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;
難點(diǎn)是解組合的應(yīng)用題.
教學(xué)過(guò)程設(shè)計(jì)
(-)導(dǎo)入新課
。ń處熁顒(dòng))提出下列思考問(wèn)題,打出字幕.
。圩帜唬菀粭l鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?
。▽W(xué)生活動(dòng))討論并回答.
答案提示:(1)排列;(2)組合.
。墼u(píng)述]問(wèn)題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.
設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的.上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的'問(wèn)題.
(二)新課講授
。厶岢鰡(wèn)題 創(chuàng)設(shè)情境]
。ń處熁顒(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說(shuō)明一個(gè)組合是什么?
3.一個(gè)組合與一個(gè)排列有何區(qū)別?
(學(xué)生活動(dòng))閱讀回答.
。ń處熁顒(dòng))對(duì)照課文,逐一評(píng)析.
設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).
。圩帜唬菽P停簭 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.
組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .
。墼u(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.
(學(xué)生活動(dòng))傾聽(tīng)、思索、記錄.
(教師活動(dòng))提出思考問(wèn)題.
。弁队埃 與 的關(guān)系如何?
。◣熒顒(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;
第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .
根據(jù)分步計(jì)數(shù)原理,得到
。圩帜唬莨1:
公式2:
(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.
設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.
(三)小結(jié)
。◣熒顒(dòng))共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計(jì)算的兩個(gè)公式.
(四)布置作業(yè)
1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?
(五)課后點(diǎn)評(píng)
在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
作業(yè)參考答案
2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.
3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形.
探究活動(dòng)
同室四人各寫(xiě)一張賀年卡,先集中起來(lái),然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬(wàn)式可有多少種?
解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來(lái)解.
解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:
甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.
甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.
甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.
由加法原理得,賀卡分配方法有3+3+3=9種.
解法二 可從利用排列數(shù)和組合數(shù)公式角度來(lái)考慮.這時(shí)還存在正向與逆向兩種思考途徑.
正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).
逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).
高中數(shù)學(xué)教案8
整體設(shè)計(jì)
教學(xué)分析
我們?cè)诔踔械膶W(xué)習(xí)過(guò)程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì)。從本節(jié)開(kāi)始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù)。進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪。
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個(gè)具體例子:GDP的增長(zhǎng)問(wèn)題和碳14的衰減問(wèn)題。前一個(gè)問(wèn)題,既讓學(xué)生回顧了初中學(xué)過(guò)的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價(jià)值。后一個(gè)問(wèn)題讓學(xué)生體會(huì)其中的函數(shù)模型的同時(shí),激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無(wú)理數(shù)指數(shù)冪的興趣與欲望,為新知識(shí)的學(xué)習(xí)作了鋪墊。
本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無(wú)理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時(shí),充分關(guān)注與實(shí)際問(wèn)題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值。
根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計(jì)算器和計(jì)算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持。
三維目標(biāo)
1、通過(guò)與初中所學(xué)的知識(shí)進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì)。掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。培養(yǎng)學(xué)生觀察分析、抽象類比的能力。
2、掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。通過(guò)運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來(lái)自生活,數(shù)學(xué)又服務(wù)于生活的哲理。
3、能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡(jiǎn)、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計(jì)算能力。
4、通過(guò)訓(xùn)練及點(diǎn)評(píng),讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì)。展示函數(shù)圖象,讓學(xué)生通過(guò)觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡(jiǎn)潔美和統(tǒng)一美。
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
。1)分?jǐn)?shù)指數(shù)冪和根式概念的理解。
。2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。
。3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡(jiǎn)、求值。
教學(xué)難點(diǎn)
(1)分?jǐn)?shù)指數(shù)冪及根式概念的理解。
。2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用。
課時(shí)安排
3課時(shí)
教學(xué)過(guò)程
第1課時(shí)
作者:路致芳
導(dǎo)入新課
思路1.同學(xué)們?cè)陬A(yù)習(xí)的過(guò)程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過(guò)對(duì)生物化石的研究來(lái)判斷生物的發(fā)展與進(jìn)化的,第二個(gè)問(wèn)題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測(cè)生物所處的年代的。教師板書(shū)本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。
思路2.同學(xué)們,我們?cè)诔踔袑W(xué)習(xí)了平方根、立方根,那么有沒(méi)有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。
推進(jìn)新課
新知探究
提出問(wèn)題
。1)什么是平方根?什么是立方根?一個(gè)數(shù)的平方根有幾個(gè),立方根呢?
。2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
。3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
(4)可否用一個(gè)式子表達(dá)呢?
活動(dòng):教師提示,引導(dǎo)學(xué)生回憶初中的時(shí)候已經(jīng)學(xué)過(guò)的平方根、立方根是如何定義的,對(duì)照類比平方根、立方根的定義解釋上面的式子,對(duì)問(wèn)題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時(shí)啟發(fā)學(xué)生,具體問(wèn)題一般化,歸納類比出n次方根的概念,評(píng)價(jià)學(xué)生的思維。
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個(gè),它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒(méi)有平方根,同理,若x3=a,則x叫做a的立方根,一個(gè)數(shù)的立方根只有一個(gè),如:-8的立方根為-2.
。2)類比平方根、立方根的定義,一個(gè)數(shù)的四次方等于a,則這個(gè)數(shù)叫a的四次方根。一個(gè)數(shù)的五次方等于a,則這個(gè)數(shù)叫a的五次方根。一個(gè)數(shù)的六次方等于a,則這個(gè)數(shù)叫a的六次方根。
。3)類比(2)得到一個(gè)數(shù)的n次方等于a,則這個(gè)數(shù)叫a的n次方根。
。4)用一個(gè)式子表達(dá)是,若xn=a,則x叫a的n次方根。
教師板書(shū)n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集。
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。
提出問(wèn)題
。1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。
、4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
(2)平方根,立方根,4次方根,5次方根,7次方根,分別對(duì)應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對(duì)應(yīng)什么性質(zhì)的數(shù),有什么特點(diǎn)?
。3)問(wèn)題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個(gè)的,也有兩個(gè)的,你能否總結(jié)一般規(guī)律呢?
(4)任何一個(gè)數(shù)a的偶次方根是否存在呢?
活動(dòng):教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個(gè)數(shù)a的n次方根,就是求出的那個(gè)數(shù)的n次方等于a,及時(shí)點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫(xiě)出來(lái),觀察數(shù)的特點(diǎn),對(duì)問(wèn)題(2)中的結(jié)論,類比推廣引申,考慮要全面,對(duì)回答正確的學(xué)生及時(shí)表?yè)P(yáng),對(duì)回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問(wèn)題的思路。
討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
。2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù)。總的來(lái)看,這些數(shù)包括正數(shù),負(fù)數(shù)和零。
。3)一個(gè)數(shù)a的奇次方根只有一個(gè),一個(gè)正數(shù)a的偶次方根有兩個(gè),是互為相反數(shù)。0的任何次方根都是0.
(4)任何一個(gè)數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆](méi)有一個(gè)數(shù)的偶次方是一個(gè)負(fù)數(shù)。
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
、佼(dāng)n為偶數(shù)時(shí),正數(shù)a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫(xiě)成±na(a>0)。
、趎為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號(hào)na表示。
、圬(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是零。
上面的文字語(yǔ)言可用下面的式子表示:
a為正數(shù):n為奇數(shù),a的n次方根有一個(gè)為na,n為偶數(shù),a的n次方根有兩個(gè)為±na.
a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個(gè)為na,n為偶數(shù),a的n次方根不存在。
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。
思考
根據(jù)n次方根的性質(zhì)能否舉例說(shuō)明上述幾種情況?
活動(dòng):教師提示學(xué)生對(duì)方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時(shí)巡視學(xué)生,隨機(jī)給出一個(gè)數(shù),我們寫(xiě)出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時(shí)糾正學(xué)生在舉例過(guò)程中的問(wèn)題。
解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個(gè)名稱——根式。
根式的概念:
式子na叫做根式,其中a叫做被開(kāi)方數(shù),n叫做根指數(shù)。
如3-27中,3叫根指數(shù),-27叫被開(kāi)方數(shù)。
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動(dòng):教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號(hào),充分讓學(xué)生多舉實(shí)例,分組討論。教師點(diǎn)撥,注意歸納整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過(guò)探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.
因此我們得到n次方根的運(yùn)算性質(zhì):
、(na)n=a.先開(kāi)方,再乘方(同次),結(jié)果為被開(kāi)方數(shù)。
、趎為奇數(shù),nan=a.先奇次乘方,再開(kāi)方(同次),結(jié)果為被開(kāi)方數(shù)。
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開(kāi)方(同次),結(jié)果為被開(kāi)方數(shù)的絕對(duì)值。
應(yīng)用示例
思路1
例求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。
活動(dòng):求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識(shí),關(guān)鍵是啥,搞清這些之后,再針對(duì)每一個(gè)題目仔細(xì)分析。觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過(guò)程中出現(xiàn)的問(wèn)題并對(duì)癥下藥。求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來(lái)解,首先要搞清楚運(yùn)算順序,目的是把被開(kāi)方數(shù)的符號(hào)定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無(wú)需考慮符號(hào),如果是偶數(shù),開(kāi)方的結(jié)果必須是非負(fù)數(shù)。
解:(1)3(-8)3=-8;
。2)(-10)2=10;
。3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b)。
點(diǎn)評(píng):不注意n的奇偶性對(duì)式子nan的值的影響,是導(dǎo)致問(wèn)題出現(xiàn)的一個(gè)重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會(huì)用,活用。
變式訓(xùn)練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點(diǎn)評(píng):本題易錯(cuò)的是第(3)題,往往忽視a與1大小的討論,造成錯(cuò)解。
思路2
例1下列各式中正確的是()
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活動(dòng):教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來(lái)解,既要考慮被開(kāi)方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會(huì)方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯(cuò),再回答。
解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時(shí),應(yīng)先寫(xiě)nan=|a|,故A項(xiàng)錯(cuò)。
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項(xiàng)錯(cuò)。
(3)a0=1是有條件的,即a≠0,故C項(xiàng)也錯(cuò)。
(4)D項(xiàng)是一個(gè)正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項(xiàng)正確。所以答案選D.
答案:D
點(diǎn)評(píng):本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時(shí)極易選錯(cuò),選四個(gè)答案的情況都會(huì)有,因此解題時(shí)千萬(wàn)要細(xì)心。
例2 3+22+3-22=__________.
活動(dòng):讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無(wú)關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號(hào)的式子,去掉一層根號(hào),根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號(hào)下面的式子化成一個(gè)完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路。
解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
點(diǎn)評(píng):不難看出3-22與3+22形式上有些特點(diǎn),即是對(duì)稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個(gè)完全平方式。
思考
上面的例2還有別的解法嗎?
活動(dòng):教師引導(dǎo),去根號(hào)常常利用完全平方公式,有時(shí)平方差公式也可,同學(xué)們觀察兩個(gè)式子的特點(diǎn),具有對(duì)稱性,再考慮并交流討論,一個(gè)是“+”,一個(gè)是“-”,去掉一層根號(hào)后,相加正好抵消。同時(shí)借助平方差,又可去掉根號(hào),因此把兩個(gè)式子的和看成一個(gè)整體,兩邊平方即可,探討得另一種解法。
另解:利用整體思想,x=3+22+3-22,
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點(diǎn)評(píng):對(duì)雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號(hào)下面的式子化成一個(gè)完全平方式,問(wèn)題迎刃而解,另外對(duì)A+2B±A-2B的.式子,我們可以把它們看成一個(gè)整體利用完全平方公式和平方差公式去解。
變式訓(xùn)練
若a2-2a+1=a-1,求a的取值范圍。
解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
點(diǎn)評(píng):利用方根的運(yùn)算性質(zhì)轉(zhuǎn)化為去絕對(duì)值符號(hào),是解題的關(guān)鍵。
知能訓(xùn)練
。ń處熡枚嗝襟w顯示在屏幕上)
1、以下說(shuō)法正確的是()
A.正數(shù)的n次方根是一個(gè)正數(shù)
B.負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù)
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)
答案:C
2、化簡(jiǎn)下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、計(jì)算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
問(wèn)題:nan=a與(na)n=a(n>1,n∈N)哪一個(gè)是恒等式,為什么?請(qǐng)舉例說(shuō)明。
活動(dòng):組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問(wèn)題要緊扣n次方根的定義。
通過(guò)歸納,得出問(wèn)題結(jié)果,對(duì)a是正數(shù)和零,n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下。再對(duì)a是負(fù)數(shù),n為偶數(shù)時(shí),n為奇數(shù)時(shí)討論一下,就可得到相應(yīng)的結(jié)論。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意義,則無(wú)論n是奇數(shù)或偶數(shù),x=na一定是它的一個(gè)n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù)。
當(dāng)n為奇數(shù)時(shí),a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
當(dāng)n為偶數(shù)時(shí),a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。
點(diǎn)評(píng):實(shí)質(zhì)上是對(duì)n次方根的概念、性質(zhì)以及運(yùn)算性質(zhì)的深刻理解。
課堂小結(jié)
學(xué)生仔細(xì)交流討論后,在筆記上寫(xiě)出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開(kāi)方數(shù),n叫根指數(shù)。
。1)當(dāng)n為偶數(shù)時(shí),a的n次方根有兩個(gè),是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫(xiě)成±na(a>0)。
(2)n為奇數(shù)時(shí),正數(shù)的n次方根是一個(gè)正數(shù),負(fù)數(shù)的n次方根是一個(gè)負(fù)數(shù),這時(shí)a的n次方根用符號(hào)na表示。
。3)負(fù)數(shù)沒(méi)有偶次方根。0的任何次方根都是零。
2、掌握兩個(gè)公式:n為奇數(shù)時(shí),(na)n=a,n為偶數(shù)時(shí),nan=|a|=a,-a,a≥0,a<0.
作業(yè)
課本習(xí)題2.1A組1.
補(bǔ)充作業(yè):
1、化簡(jiǎn)下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
答案:2a-13
3.5+26+5-26=__________.
解析:對(duì)雙重二次根式,我們覺(jué)得難以下筆,我們考慮只有在開(kāi)方的前提下才可能解出,由此提示我們想辦法去掉一層根式,
不難看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
設(shè)計(jì)感想
學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時(shí),要結(jié)合已學(xué)內(nèi)容,列舉具體實(shí)例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來(lái)進(jìn)行,每種情況又分a>0,a<0,a=0三種情況,并結(jié)合具體例子講解,因此設(shè)計(jì)了大量的類比和練習(xí)題目,要靈活處理這些題目,幫助學(xué)生加以理解,所以需要用多媒體信息技術(shù)服務(wù)教學(xué)。
第2課時(shí)
作者:郝云靜
導(dǎo)入新課
思路1.碳14測(cè)年法。原來(lái)宇宙射線在大氣層中能夠產(chǎn)生放射性碳14,并與氧結(jié)合成二氧化碳后進(jìn)入所有活組織,先為植物吸收,再為動(dòng)物吸收,只要植物和動(dòng)物生存著,它們就會(huì)不斷地吸收碳14在機(jī)體內(nèi)保持一定的水平。而當(dāng)有機(jī)體死亡后,即會(huì)停止吸收碳14,其組織內(nèi)的碳14便以約5 730年的半衰期開(kāi)始衰變并消失。對(duì)于任何含碳物質(zhì)只要測(cè)定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過(guò)一定的時(shí)間,變?yōu)樵瓉?lái)的一半)。引出本節(jié)課題:指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪。
思路2.同學(xué)們,我們?cè)诔踔袑W(xué)習(xí)了整數(shù)指數(shù)冪及其運(yùn)算性質(zhì),那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的。這就是本節(jié)的主講內(nèi)容,教師板書(shū)本節(jié)課題——指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪。
推進(jìn)新課
新知探究
提出問(wèn)題
。1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是什么?
。2)觀察以下式子,并總結(jié)出規(guī)律:a>0,
①;
、赼8=(a4)2=a4=,;
③4a12=4(a3)4=a3=;
、2a10=2(a5)2=a5= 。
。3)利用(2)的規(guī)律,你能表示下列式子嗎?
,,,(x>0,m,n∈正整數(shù)集,且n>1)。
。4)你能用方根的意義來(lái)解釋(3)的式子嗎?
。5)你能推廣到一般的情形嗎?
活動(dòng):學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運(yùn)算性質(zhì),仔細(xì)觀察,特別是每題的開(kāi)始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會(huì)方根的意義,用方根的意義加以解釋,指點(diǎn)啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對(duì)寫(xiě)正確的同學(xué)及時(shí)表?yè)P(yáng),其他學(xué)生鼓勵(lì)提示。
討論結(jié)果:(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無(wú)意義;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
。2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實(shí)質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結(jié)果的a的指數(shù)是2,4,3,5分別寫(xiě)成了105,82,124,105,形式上變了,本質(zhì)沒(méi)變。
根據(jù)4個(gè)式子的最后結(jié)果可以總結(jié):當(dāng)根式的被開(kāi)方數(shù)的指數(shù)能被根指數(shù)整除時(shí),根式可以寫(xiě)成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式)。
。3)利用(2)的規(guī)律,453=,375=,5a7=,nxm= 。
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。
結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的。
。5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數(shù)集,n>1)。
綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書(shū):
規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1)。
提出問(wèn)題
。1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?
(2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?
。3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?
。4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?
(5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個(gè)規(guī)定會(huì)產(chǎn)生什么樣的后果?
。6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?
活動(dòng):學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合自己的學(xué)習(xí)體會(huì)回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來(lái)類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來(lái),與整數(shù)指數(shù)冪的運(yùn)算性質(zhì)類比可得有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師在黑板上板書(shū),學(xué)生合作交流,以具體的實(shí)例說(shuō)明a>0的必要性,教師及時(shí)作出評(píng)價(jià)。
討論結(jié)果:(1)負(fù)整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。
。2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義。
規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。
。3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義。
。4)教師板書(shū)分?jǐn)?shù)指數(shù)冪的意義。分?jǐn)?shù)指數(shù)冪的意義就是:
正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義。
。5)若沒(méi)有a>0這個(gè)條件會(huì)怎樣呢?
如=3-1=-1,=6(-1)2=1具有同樣意義的兩個(gè)式子出現(xiàn)了截然不同的結(jié)果,這只說(shuō)明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時(shí)是無(wú)意義的。因此在把根式化成分?jǐn)?shù)指數(shù)時(shí),切記要使底數(shù)大于零,如無(wú)a>0的條件,比如式子3a2=,同時(shí)負(fù)數(shù)開(kāi)奇次方是有意義的,負(fù)數(shù)開(kāi)奇次方時(shí),應(yīng)把負(fù)號(hào)移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說(shuō),負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上。
(6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。
有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對(duì)任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):
①ar?as=ar+s(a>0,r,s∈Q),
、(ar)s=ars(a>0,r,s∈Q),
、(a?b)r=arbr(a>0,b>0,r∈Q)。
我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以解決一些問(wèn)題,來(lái)看下面的例題。
應(yīng)用示例
例1求值:(1);(2);(3)12-5;(4) 。
活動(dòng):教師引導(dǎo)學(xué)生考慮解題的方法,利用冪的運(yùn)算性質(zhì)計(jì)算出數(shù)值或化成最簡(jiǎn)根式,根據(jù)題目要求,把底數(shù)寫(xiě)成冪的形式,8寫(xiě)成23,25寫(xiě)成52,12寫(xiě)成2-1,1681寫(xiě)成234,利用有理數(shù)冪的運(yùn)算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來(lái)。
解:(1) =22=4;
。2)=5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
。4)=23-3=278.
點(diǎn)評(píng):本例主要考查冪值運(yùn)算,要按規(guī)定來(lái)解。在進(jìn)行冪值運(yùn)算時(shí),要首先考慮轉(zhuǎn)化為指數(shù)運(yùn)算,而不是首先轉(zhuǎn)化為熟悉的根式運(yùn)算,如=382=364=4.
例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活動(dòng):學(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來(lái)運(yùn)算,根式化為分?jǐn)?shù)指數(shù)冪時(shí),要由里往外依次進(jìn)行,把握好運(yùn)算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評(píng)價(jià)學(xué)生的解題情況,鼓勵(lì)學(xué)生注意總結(jié)。
解:a3?a=a3? =;
a2?3a2=a2? =;
a3a= 。
點(diǎn)評(píng):利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行根式運(yùn)算時(shí),其順序是先把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來(lái)運(yùn)算。對(duì)于計(jì)算的結(jié)果,不強(qiáng)求統(tǒng)一用什么形式來(lái)表示,沒(méi)有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來(lái)表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù)。
例3計(jì)算下列各式(式中字母都是正數(shù))。
(1);
。2)。
活動(dòng):先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,四則運(yùn)算的順序是先算乘方,再算乘除,最后算加減,有括號(hào)的先算括號(hào)內(nèi)的,整數(shù)冪的運(yùn)算性質(zhì)及運(yùn)算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運(yùn)算順序仍符合我們以前的四則運(yùn)算順序,再解答,把自己的答案用投影儀展示出來(lái),相互交流,其中要注意到(1)小題是單項(xiàng)式的乘除運(yùn)算,可以用單項(xiàng)式的乘除法運(yùn)算順序進(jìn)行,要注意符號(hào),第(2)小題是乘方運(yùn)算,可先按積的乘方計(jì)算,再按冪的乘方進(jìn)行計(jì)算,熟悉后可以簡(jiǎn)化步驟。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
。2)=m2n-3=m2n3.
點(diǎn)評(píng):分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫(xiě)法。有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則進(jìn)行運(yùn)算了。
本例主要是指數(shù)冪的運(yùn)算法則的綜合考查和應(yīng)用。
變式訓(xùn)練
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4計(jì)算下列各式:
。1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活動(dòng):先由學(xué)生觀察以上兩個(gè)式子的特征,然后分析,化為同底。利用分?jǐn)?shù)指數(shù)冪計(jì)算,在第(1)小題中,只含有根式,且不是同次根式,比較難計(jì)算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計(jì)算,這樣就簡(jiǎn)便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運(yùn)算法則計(jì)算,最后寫(xiě)出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能訓(xùn)練
課本本節(jié)練習(xí)1,2,3
【補(bǔ)充練習(xí)】
教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對(duì)做得好的同學(xué)給予表?yè)P(yáng)鼓勵(lì)。
1、(1)下列運(yùn)算中,正確的是()
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
。2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()
A.①② B.①③ C.①②③④ D.①③④
。3)(34a6)2?(43a6)2等于()
A.a B.a2 C.a3 D.a4
(4)把根式-25(a-b)-2改寫(xiě)成分?jǐn)?shù)指數(shù)冪的形式為()
A. B.
C. D.
。5)化簡(jiǎn)的結(jié)果是()
A.6a B.-a C.-9a D.9a
2、計(jì)算:(1) --17-2+ -3-1+(2-1)0=__________.
。2)設(shè)5x=4,5y=2,則52x-y=__________.
3、已知x+y=12,xy=9且x 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3、解:。 因?yàn)閤+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因?yàn)閤 所以原式= =12-6-63=-33. 拓展提升 1、化簡(jiǎn):。 活動(dòng):學(xué)生觀察式子特點(diǎn),考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對(duì)原式進(jìn)行因式分解,根據(jù)本題的特點(diǎn),注意到: x-1= -13=; x+1= +13=; 。 構(gòu)建解題思路教師適時(shí)啟發(fā)提示。 解: = = = = 。 點(diǎn)撥:解這類題目,要注意運(yùn)用以下公式, =a-b, =a± +b, =a±b. 2、已知,探究下列各式的值的求法。 (1)a+a-1;(2)a2+a-2;(3) 。 解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7; 。2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47; 。3)由于, 所以有=a+a-1+1=8. 點(diǎn)撥:對(duì)“條件求值”問(wèn)題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。 課堂小結(jié) 活動(dòng):教師,本節(jié)課同學(xué)們有哪些收獲?請(qǐng)把你的學(xué)習(xí)收獲記錄在你的筆記本上,同學(xué)們之間相互交流。同時(shí)教師用投影儀顯示本堂課的知識(shí)要點(diǎn): 。1)分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義。 (2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。 。3)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對(duì)任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì): 、賏r?as=ar+s(a>0,r,s∈Q), 、(ar)s=ars(a>0,r,s∈Q), ③(a?b)r=arbr(a>0,b>0,r∈Q)。 (4)說(shuō)明兩點(diǎn): 、俜?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒(méi)有推出關(guān)系。 、谡麛(shù)指數(shù)冪的運(yùn)算性質(zhì)對(duì)任意的有理數(shù)指數(shù)冪也同樣適用。因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用=am來(lái)計(jì)算。 作業(yè) 課本習(xí)題2.1A組2,4. 設(shè)計(jì)感想 本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過(guò)根式與分?jǐn)?shù)指數(shù)冪的互化來(lái)鞏固加深對(duì)這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒(méi)有合理的解釋,因此多安排一些練習(xí),強(qiáng)化訓(xùn)練,鞏固知識(shí),要輔助以信息技術(shù)的手段來(lái)完成大容量的課堂教學(xué)任務(wù)。 第3課時(shí) 作者:鄭芳鳴 導(dǎo)入新課 思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒(méi)有無(wú)理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過(guò)程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實(shí)數(shù)。并且知道,在有理數(shù)到實(shí)數(shù)的擴(kuò)充過(guò)程中,增添的數(shù)是無(wú)理數(shù)。對(duì)無(wú)理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來(lái)。既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書(shū)本堂課的課題〔指數(shù)與指數(shù)冪的運(yùn)算(3)〕之無(wú)理數(shù)指數(shù)冪。 思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識(shí),對(duì)函數(shù)有了一個(gè)初步的了解,到了高中,我們又對(duì)函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡(jiǎn)單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會(huì)的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識(shí),我們必須學(xué)習(xí)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運(yùn)算(3)之無(wú)理數(shù)指數(shù)冪,教師板書(shū)本節(jié)課的課題。 推進(jìn)新課 新知探究 提出問(wèn)題 (1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值? 。2)多媒體顯示以下圖表:同學(xué)們從上面的兩個(gè)表中,能發(fā)現(xiàn)什么樣的規(guī)律? 2的過(guò)剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 … … 的近似值 2的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … (3)你能給上述思想起個(gè)名字嗎? (4)一個(gè)正數(shù)的無(wú)理數(shù)次冪到底是一個(gè)什么性質(zhì)的數(shù)呢?如,根據(jù)你學(xué)過(guò)的知識(shí),能作出判斷并合理地解釋嗎? 。5)借助上面的結(jié)論你能說(shuō)出一般性的結(jié)論嗎? 活動(dòng):教師引導(dǎo),學(xué)生回憶,教師提問(wèn),學(xué)生回答,積極交流,及時(shí)評(píng)價(jià)學(xué)生,學(xué)生有困惑時(shí)加以解釋,可用多媒體顯示輔助內(nèi)容: 問(wèn)題(1)從近似值的分類來(lái)考慮,一方面從大于2的方向,另一方面從小于2的方向。 問(wèn)題(2)對(duì)圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。 問(wèn)題(3)上述方法實(shí)際上是無(wú)限接近,最后是逼近。 問(wèn)題(4)對(duì)問(wèn)題給予大膽猜測(cè),從數(shù)軸的觀點(diǎn)加以解釋。 問(wèn)題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般。 討論結(jié)果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過(guò)剩近似值。 。2)第一個(gè)表:從大于2的方向逼近2時(shí),就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。 第二個(gè)表:從小于2的方向逼近2時(shí),就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。 從另一角度來(lái)看這個(gè)問(wèn)題,在數(shù)軸上近似地表示這些點(diǎn),數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說(shuō)從兩個(gè)方向無(wú)限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結(jié)果,事實(shí)上表示這些數(shù)的點(diǎn)從兩個(gè)方向向表示的點(diǎn)靠近,但這個(gè)點(diǎn)一定在數(shù)軸上,由此我們可得到的結(jié)論是一定是一個(gè)實(shí)數(shù),即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5. 充分表明是一個(gè)實(shí)數(shù)。 。3)逼近思想,事實(shí)上里面含有極限的思想,這是以后要學(xué)的知識(shí)。 。4)根據(jù)(2)(3)我們可以推斷是一個(gè)實(shí)數(shù),猜測(cè)一個(gè)正數(shù)的無(wú)理數(shù)次冪是一個(gè)實(shí)數(shù)。 。5)無(wú)理數(shù)指數(shù)冪的意義: 一般地,無(wú)理數(shù)指數(shù)冪aα(a>0,α是無(wú)理數(shù))是一個(gè)確定的實(shí)數(shù)。 也就是說(shuō)無(wú)理數(shù)可以作為指數(shù),并且它的結(jié)果是一個(gè)實(shí)數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過(guò)程中,我們知道有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。我們規(guī)定了無(wú)理數(shù)指數(shù)冪的意義,知道它是一個(gè)確定的實(shí)數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪。 提出問(wèn)題 。1)為什么在規(guī)定無(wú)理數(shù)指數(shù)冪的意義時(shí),必須規(guī)定底數(shù)是正數(shù)? 。2)無(wú)理數(shù)指數(shù)冪的運(yùn)算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運(yùn)算法則相通呢? 。3)你能給出實(shí)數(shù)指數(shù)冪的運(yùn)算法則嗎? 活動(dòng):教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說(shuō)明問(wèn)題,注意類比,歸納。 對(duì)問(wèn)題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時(shí)對(duì)底數(shù)的規(guī)定,舉例說(shuō)明。 對(duì)問(wèn)題(2)結(jié)合有理數(shù)指數(shù)冪的運(yùn)算法則,既然無(wú)理數(shù)指數(shù)冪aα(a>0,α是無(wú)理數(shù))是一個(gè)確定的實(shí)數(shù),那么無(wú)理數(shù)指數(shù)冪的運(yùn)算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運(yùn)算法則類似,并且相通。 對(duì)問(wèn)題(3)有了有理數(shù)指數(shù)冪的運(yùn)算法則和無(wú)理數(shù)指數(shù)冪的運(yùn)算法則,實(shí)數(shù)的運(yùn)算法則自然就得到了。 討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無(wú)法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無(wú)理數(shù)指數(shù)冪aα是一個(gè)確定的實(shí)數(shù),就不會(huì)再造成混亂。 。2)因?yàn)闊o(wú)理數(shù)指數(shù)冪是一個(gè)確定的實(shí)數(shù),所以能進(jìn)行指數(shù)的運(yùn)算,也能進(jìn)行冪的運(yùn)算,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),同樣也適用于無(wú)理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以得到無(wú)理數(shù)指數(shù)冪的運(yùn)算法則: 、賏r?as=ar+s(a>0,r,s都是無(wú)理數(shù))。 、冢╝r)s=ars(a>0,r,s都是無(wú)理數(shù))。 ③(a?b)r=arbr(a>0,b>0,r是無(wú)理數(shù))。 (3)指數(shù)冪擴(kuò)充到實(shí)數(shù)后,指數(shù)冪的運(yùn)算性質(zhì)也就推廣到了實(shí)數(shù)指數(shù)冪。 實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì): 對(duì)任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì): 、賏r?as=ar+s(a>0,r,s∈R)。 ②(ar)s=ars(a>0,r,s∈R)。 、(a?b)r=arbr(a>0,b>0,r∈R)。 應(yīng)用示例 例1利用函數(shù)計(jì)算器計(jì)算。(精確到0.001) (1)0.32.1;(2)3.14-3;(3);(4) 。 活動(dòng):教師教會(huì)學(xué)生利用函數(shù)計(jì)算器計(jì)算,熟悉計(jì)算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對(duì)于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值; 對(duì)于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號(hào)-鍵,再按3,最后按=即可; 對(duì)于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可; 對(duì)于(4),這種無(wú)理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時(shí)也可按2ndf或shift鍵,使用鍵上面的功能去運(yùn)算。 學(xué)生可以相互交流,挖掘計(jì)算器的用途。 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705. 點(diǎn)評(píng):熟練掌握用計(jì)算器計(jì)算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會(huì);用四舍五入法求近似值,若保留小數(shù)點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可。 例2求值或化簡(jiǎn)。 (1)a-4b23ab2(a>0,b>0); 。2)(a>0,b>0); (3)5-26+7-43-6-42. 活動(dòng):學(xué)生觀察,思考,所謂化簡(jiǎn),即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡(jiǎn),對(duì)既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運(yùn)算,教師有針對(duì)性地提示引導(dǎo),對(duì)(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運(yùn)算性質(zhì),對(duì)(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來(lái),化為分?jǐn)?shù)指數(shù)冪,對(duì)(3)有多重根號(hào)的式子,應(yīng)先去根號(hào),這里是二次根式,被開(kāi)方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對(duì)學(xué)生作及時(shí)的評(píng)價(jià),注意總結(jié)解題的方法和規(guī)律。 解:(1)a-4b23ab2= =3b46a11 。 點(diǎn)評(píng):根式的運(yùn)算常;蓛绲倪\(yùn)算進(jìn)行,計(jì)算結(jié)果如沒(méi)有特殊要求,就用根式的形式來(lái)表示。 教學(xué)目標(biāo): 1。通過(guò)生活中優(yōu)化問(wèn)題的學(xué)習(xí),體會(huì)導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的作用,促進(jìn) 學(xué)生全面認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。 2。通過(guò)實(shí)際問(wèn)題的研究,促進(jìn)學(xué)生分析問(wèn)題、解決問(wèn)題以及數(shù)學(xué)建模能力的提高。 教學(xué)重點(diǎn): 如何建立實(shí)際問(wèn)題的目標(biāo)函數(shù)是教學(xué)的重點(diǎn)與難點(diǎn)。 教學(xué)過(guò)程: 一、問(wèn)題情境 問(wèn)題1把長(zhǎng)為60cm的鐵絲圍成矩形,長(zhǎng)寬各為多少時(shí)面積最大? 問(wèn)題2把長(zhǎng)為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個(gè)正方形面積之各最小? 問(wèn)題3做一個(gè)容積為256L的方底無(wú)蓋水箱,它的高為多少時(shí)材料最省? 二、新課引入 導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問(wèn)題。 1。幾何方面的`應(yīng)用(面積和體積等的最值)。 2。物理方面的應(yīng)用(功和功率等最值)。 3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤(rùn)方面最值)。 三、知識(shí)建構(gòu) 例1在邊長(zhǎng)為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱底的容積最大?最大容積是多少? 說(shuō)明1解應(yīng)用題一般有四個(gè)要點(diǎn)步驟:設(shè)——列——解——答。 說(shuō)明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個(gè)極 值及端點(diǎn)值比較即可。 例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才 能使所用的材料最? 變式當(dāng)圓柱形金屬飲料罐的表面積為定值S時(shí),它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最省? 說(shuō)明1這種在定義域內(nèi)僅有一個(gè)極值的函數(shù)稱單峰函數(shù)。 說(shuō)明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對(duì)一般的求法加以簡(jiǎn)化,其步驟為: S1列:列出函數(shù)關(guān)系式。 S2求:求函數(shù)的導(dǎo)數(shù)。 S3述:說(shuō)明函數(shù)在定義域內(nèi)僅有一個(gè)極大(小)值,從而斷定為函數(shù)的最大(。┲,必要時(shí)作答。 例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動(dòng)勢(shì)為。外電阻為 多大時(shí),才能使電功率最大?最大電功率是多少? 說(shuō)明求最值要注意驗(yàn)證等號(hào)成立的條件,也就是說(shuō)取得這樣的值時(shí)對(duì)應(yīng)的自變量必須有解。 例4強(qiáng)度分別為a,b的兩個(gè)光源A,B,它們間的距離為d,試問(wèn):在連接這兩個(gè)光源的線段AB上,何處照度最?試就a=8,b=1,d=3時(shí)回答上述問(wèn)題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。 例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤(rùn)函數(shù),記為。 。1)設(shè),生產(chǎn)多少單位產(chǎn)品時(shí),邊際成本最低? (2)設(shè),產(chǎn)品的單價(jià),怎樣的定價(jià)可使利潤(rùn)最大? 四、課堂練習(xí) 1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。 2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽? 時(shí),它的面積最大。 3。有一邊長(zhǎng)分別為8與5的長(zhǎng)方形,在各角剪去相同的小正方形,把四邊折起做成一個(gè)無(wú)蓋小盒,要使紙盒的容積最大,問(wèn)剪去的小正方形邊長(zhǎng)應(yīng)為多少? 4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面ABCD的面積為定值S時(shí),使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長(zhǎng)b。 五、回顧反思 (1)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問(wèn)題的實(shí)際意義。 。2)根據(jù)問(wèn)題的實(shí)際意義來(lái)判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,不必再與端點(diǎn)值比較。 。3)相當(dāng)多有關(guān)最值的實(shí)際問(wèn)題用導(dǎo)數(shù)方法解決較簡(jiǎn)單。 六、課外作業(yè) 課本第38頁(yè)第1,2,3,4題。 一、什么是教學(xué)案例 教學(xué)案例是真實(shí)而又典型且含有問(wèn)題的事件。簡(jiǎn)單地說(shuō),一個(gè)教學(xué)案例就是一個(gè)包含有疑難問(wèn)題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過(guò)程中的故事,描述的是教學(xué)過(guò)程中“意料之外,情理之中的事”。 這可以從以下幾個(gè)層次來(lái)理解: 教學(xué)案例是事件:教學(xué)案例是對(duì)教學(xué)過(guò)程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對(duì)教學(xué)現(xiàn)象的動(dòng)態(tài)性的把握。 教學(xué)案例是含有問(wèn)題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問(wèn)題或疑難情境在內(nèi),并且也可能包含有解決問(wèn)題的方法在內(nèi)。正因?yàn)檫@一點(diǎn),案例才成為一種獨(dú)特的研究成果的表現(xiàn)形式。 案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來(lái)一定的啟示和體會(huì)。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現(xiàn)。是對(duì)“當(dāng)前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來(lái)替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來(lái)替代。 二、如何進(jìn)行教學(xué)案例研究 教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認(rèn)識(shí)到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過(guò)程就是教師自我教育和成長(zhǎng)的過(guò)程。 那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節(jié):案例研究的準(zhǔn)備及實(shí)施、案例研究報(bào)告的撰寫(xiě)與反思。 (一)案例研究的準(zhǔn)備與實(shí)施 1.研究主題的選擇 案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見(jiàn)的疑難問(wèn)題和困惑事件相關(guān),一般來(lái)說(shuō)可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問(wèn)、教學(xué)媒體的使用、教學(xué)評(píng)價(jià)語(yǔ)言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問(wèn)題解決學(xué)習(xí)、合作學(xué)習(xí)、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內(nèi)容等都可以確定研究的主題。 研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標(biāo)準(zhǔn)》和有針對(duì)性地作一些理論準(zhǔn)備。還要通過(guò)有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計(jì),進(jìn)行訪談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。 一般來(lái)說(shuō),案例研究主題的確定往往需要思考下面一些問(wèn)題:即研究的事件是否對(duì)于自我發(fā)現(xiàn)更有潛力?選擇的事件對(duì)學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過(guò)去成功的行為嗎?事件呈現(xiàn)的是一個(gè)你不能確定怎樣解決的問(wèn)題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺(jué)不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問(wèn)題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。 高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問(wèn)題的思維方式、獨(dú)立思考與合作學(xué)習(xí)等;(3)教師專業(yè)知識(shí)的提升:如數(shù)學(xué)板書(shū)與電子屏幕的展示對(duì)學(xué)生思維的影響、數(shù)學(xué)語(yǔ)言的訓(xùn)練對(duì)人們思維的影響、數(shù)學(xué)知識(shí)模式化教學(xué)的優(yōu)劣等。 2.案例研究的基本方法 (1)課堂觀察。觀察方法是指研究者按照一定的目的和計(jì)劃,在課堂教學(xué)活動(dòng)的自然狀態(tài)下,用自己的感官和輔助工具對(duì)研究對(duì)象進(jìn)行觀察研究的一種方法。它可以是教師自己對(duì)教學(xué)對(duì)象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀察,也可以由其他教師來(lái)實(shí)施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽(tīng)手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對(duì)觀察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問(wèn)技巧水平檢核表、提問(wèn)行為類型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續(xù)分析案例提供翔實(shí)的原始材料。 (2)訪談與調(diào)查。對(duì)一些課堂教學(xué)不能觀察到的師生內(nèi)心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運(yùn)用以及教學(xué)達(dá)標(biāo)的成效等一些需要進(jìn)一步了解的問(wèn)題,可以通過(guò)與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀察的材料;對(duì)學(xué)生在課堂教學(xué)活動(dòng)中回答問(wèn)題的心理狀態(tài)、解題思路等問(wèn)題,也可以在課后做一些問(wèn)卷調(diào)查;對(duì)學(xué)生達(dá)標(biāo)的成度、效度,也可以作一些測(cè)試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節(jié)中出現(xiàn)問(wèn)題,從中提煉出解決問(wèn)題的對(duì)策。 (3)文獻(xiàn)分析。文獻(xiàn)分析是通過(guò)查閱文獻(xiàn)資料,從過(guò)去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強(qiáng)案例分析的說(shuō)服力。當(dāng)然,對(duì)廣大第一線教師而言,這里所運(yùn)用的文獻(xiàn)分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過(guò)有關(guān)教育理論文獻(xiàn)的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過(guò)學(xué)生的動(dòng)手操作來(lái)獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問(wèn)題,查閱、分析有關(guān)文獻(xiàn)資料,從學(xué)習(xí)中提高研究者自身的理論水平。 (二)案例研究報(bào)告的撰寫(xiě) 1.常見(jiàn)的案例報(bào)告格式 撰寫(xiě)教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過(guò)程——案例反思”、“課例——問(wèn)題——分析”、“主題與背景——情景描述——問(wèn)題討論——詮釋與研究”等。當(dāng)前,國(guó)內(nèi)外課堂教學(xué)案例編寫(xiě)的格式有多種多樣。但不管何種編寫(xiě)格式,它們都有兩個(gè)共同的特點(diǎn):一是對(duì)案例的客觀描述;二是對(duì)案例中所述問(wèn)題、關(guān)鍵教學(xué)事件等的分析。 下面介紹兩種常用的案例編寫(xiě)的格式: (1)“描述+分析”式 此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對(duì)情景中的一個(gè)問(wèn)題進(jìn)行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動(dòng)中的某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來(lái)。描述的形式可以是一串問(wèn)答式的課堂對(duì)話,也可以概括式地?cái)⑹,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問(wèn)題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對(duì)描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說(shuō)明。分析方法可以是對(duì)描述中提出的一個(gè)問(wèn)題,從幾個(gè)方面加以分析:也可以是對(duì)描述中的幾個(gè)問(wèn)題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問(wèn)題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對(duì)關(guān)鍵教學(xué)事件的正確把握。 (2)“背景+描述+問(wèn)題+詮釋”式 此格式是一種要求比較高的編寫(xiě)格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分: A.主題與背景 主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長(zhǎng),只需提綱挈領(lǐng)敘述清楚即可。 B.情景描述 與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。 C.問(wèn)題討論 這是根據(jù)主題要求與情景描述,進(jìn)行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識(shí)的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說(shuō)明與注意事項(xiàng)。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認(rèn)識(shí)水平與學(xué)生主動(dòng)學(xué)習(xí)的能力。不同的'教學(xué)觀念,不同的教學(xué)手段,所提出的問(wèn)題也不同。對(duì)案例中所提出的主題以及情景描述中提出的問(wèn)題闡述自己的見(jiàn)解。 D.詮釋與研究 這部分主要是用教育理論對(duì)案例情景作多角度的解讀。它包括對(duì)課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們?吹竭@樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標(biāo),反之教師期望的目標(biāo)學(xué)生沒(méi)有達(dá)到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運(yùn)用與學(xué)生內(nèi)在動(dòng)機(jī)的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過(guò)詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。 2.案例報(bào)告撰寫(xiě)的關(guān)鍵 (1)掌握四個(gè)原則。要寫(xiě)好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習(xí)他人的案例作品以提高寫(xiě)作技巧外,還應(yīng)把握以下四點(diǎn): A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識(shí),以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點(diǎn)和重點(diǎn),尋找數(shù)學(xué)教師專業(yè)發(fā)展的途徑與規(guī)律。報(bào)告圍繞主題進(jìn)行情景描述和獲得解決問(wèn)題的策略。這種描述不是簡(jiǎn)單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過(guò)程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫(xiě)作,突出主題,詳寫(xiě)重點(diǎn),雕刻高潮。 案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見(jiàn)問(wèn)題、處理方法等等,可以說(shuō),主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計(jì)主題就要有新意、有時(shí)代感,通俗地說(shuō)就是與眾不同,要有獨(dú)特見(jiàn)解、獨(dú)家發(fā)現(xiàn)。來(lái)源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫(xiě)者對(duì)實(shí)踐的發(fā)展與理論的升華程度,包括對(duì)題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節(jié),用了“細(xì)節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長(zhǎng)》、《捕捉資源因勢(shì)利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫(xiě)作案例時(shí),選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動(dòng)筆,才能寫(xiě)出高質(zhì)量的案例。 B.理論性原則:解決問(wèn)題的策略中應(yīng)當(dāng)蘊(yùn)含一定的教育基本原理和教育思想。實(shí)際是將自己對(duì)教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點(diǎn)撥,師生心理、行為變化情況等,無(wú)不體現(xiàn)教師的教學(xué)思想和教育基本原理。 C.敘事性原則:案例報(bào)告的書(shū)寫(xiě)方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節(jié),可以?shī)A敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個(gè)主題的幾節(jié)課的情景片段。 D.學(xué)科性原則:數(shù)學(xué)案例報(bào)告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標(biāo)準(zhǔn),滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫(xiě)者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現(xiàn)。 (2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法: A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據(jù)操作程序作一點(diǎn)“簡(jiǎn)評(píng)”,最后作“總評(píng)”。 B.以案說(shuō)理:對(duì)教學(xué)過(guò)程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強(qiáng)化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長(zhǎng)篇幅的理性思考。 C.圖表展示法:用圖表進(jìn)行統(tǒng)計(jì)的形式體現(xiàn)撰寫(xiě)者的教育思想,給人以一目了然的感覺(jué),幫助讀者迅速了解撰寫(xiě)者的寫(xiě)作意圖,是常用的一種案例撰寫(xiě)方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問(wèn)題的質(zhì)量等多個(gè)問(wèn)題,都可以在一張或數(shù)張圖表上用百分比或個(gè)(次)數(shù)進(jìn)行統(tǒng)計(jì)。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫(xiě)者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對(duì)案例的分析和建議。 D.分析討論法:在撰寫(xiě)時(shí),應(yīng)汲取分析討論中最精彩的部分做深入、細(xì)致的全面記錄,最后撰寫(xiě)者還必須對(duì)討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問(wèn)題。 3.優(yōu)秀案例的特征 (1)時(shí)代性:一個(gè)好的案例描述的是現(xiàn)實(shí)生活場(chǎng)景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問(wèn)題為著眼點(diǎn),至少應(yīng)該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應(yīng)該與整個(gè)時(shí)代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺(jué),并對(duì)案例所涉及的人產(chǎn)生移情作用。 (2)真實(shí)性:一個(gè)好的案例應(yīng)該包括從案例所反映的對(duì)象那里引述的材料——案例寫(xiě)作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書(shū)面的、正式的或非正式的材料,如對(duì)話、筆記、信函等,以增強(qiáng)案例的真實(shí)感和可讀性。重要的事實(shí)性材料應(yīng)注明資料來(lái)源。 (3)適用性:一個(gè)好的案例需要針對(duì)面臨的疑難問(wèn)題提出解決辦法——案例不能只是提出問(wèn)題,它必須提出解決問(wèn)題的主要思路、具體措施,并包含著解決問(wèn)題的詳細(xì)過(guò)程,這應(yīng)該是案例寫(xiě)作的重點(diǎn)。如果一個(gè)問(wèn)題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問(wèn)題的辦法,那么案例這種形式就不必要存在了。 (4)反思性:一個(gè)好的案例需要有對(duì)已經(jīng)做出的解決問(wèn)題的決策的評(píng)價(jià)——評(píng)價(jià)是為了給新的決策提供參考點(diǎn)?稍诎咐拈_(kāi)頭或結(jié)尾寫(xiě)下案例作者對(duì)自己解決問(wèn)題策略的評(píng)論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。 三、案例研究過(guò)程中需注意的問(wèn)題 1.選材面過(guò)窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說(shuō)明問(wèn)題,或者在一節(jié)課中,也只會(huì)從簡(jiǎn)單的對(duì)話分析問(wèn)題,做不到全方位、多角度。這說(shuō)明教師對(duì)教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認(rèn)識(shí)不夠。 2.缺乏典型性。有的案例對(duì)教學(xué)實(shí)踐沒(méi)有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒(méi)有實(shí)用價(jià)值。不能夠通過(guò)對(duì)某一事件現(xiàn)象的分析、處理、詮釋,達(dá)到舉一反三的效果,這樣的案例對(duì)他人沒(méi)什么借鑒作用。 3.主題不明確。主要體現(xiàn)為: (1)主題渙散。有的案例象記流水帳,沒(méi)有根據(jù)需要進(jìn)行恰當(dāng)?shù)娜∩,看不出作者要反映、探討什么?wèn)題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。 (2)定題過(guò)于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。 4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫(xiě)作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強(qiáng)案例的可讀性和指導(dǎo)性。如寫(xiě)成一般的教學(xué)設(shè)計(jì),一般包括“備課思路、教學(xué)目標(biāo)、教學(xué)重點(diǎn)、教學(xué)方法、課前準(zhǔn)備、教學(xué)內(nèi)容、教學(xué)過(guò)程”等內(nèi)容;寫(xiě)成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來(lái),再寫(xiě)上作者的看法;重記錄輕分析,過(guò)程描述多,評(píng)析少等等。沒(méi)有創(chuàng)新,平淡無(wú)趣,看不出案例研究和反映的問(wèn)題。 5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀點(diǎn),分析闡明的是另一種觀點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無(wú)物。 一、單元教學(xué)內(nèi)容 (1)算法的基本概念 (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu) (3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句 二、單元教學(xué)內(nèi)容分析 算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來(lái)越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力 三、單元教學(xué)課時(shí)安排: 1、算法的.基本概念3課時(shí) 2、程序框圖與算法的基本結(jié)構(gòu)5課時(shí) 3、算法的基本語(yǔ)句2課時(shí) 四、單元教學(xué)目標(biāo)分析 1、通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析體會(huì)算法的思想,了解算法的含義 2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。 3、經(jīng)歷將具體問(wèn)題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。 4、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。 五、單元教學(xué)重點(diǎn)與難點(diǎn)分析 1、重點(diǎn) (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會(huì)用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題 2、難點(diǎn) (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計(jì) 六、單元總體教學(xué)方法 本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過(guò)對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。 七、單元展開(kāi)方式與特點(diǎn) 1、展開(kāi)方式 自然語(yǔ)言→程序框圖→算法語(yǔ)句 2、特點(diǎn) (1)螺旋上升分層遞進(jìn)(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇 八、單元教學(xué)過(guò)程分析 1.算法基本概念教學(xué)過(guò)程分析 對(duì)生活中的實(shí)際問(wèn)題通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì)算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。 2.算法的流程圖教學(xué)過(guò)程分析 對(duì)生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區(qū)別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。 3.基本算法語(yǔ)句教學(xué)過(guò)程分析 經(jīng)歷將具體生活中問(wèn)題的流程圖轉(zhuǎn)化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達(dá)算法, 4.通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。 九、單元評(píng)價(jià)設(shè)想 1.重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià) 關(guān)注學(xué)生在數(shù)學(xué)語(yǔ)言的學(xué)習(xí)過(guò)程中,是否對(duì)用集合語(yǔ)言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問(wèn)題充滿興趣;在學(xué)習(xí)過(guò)程中,能否體會(huì)集合語(yǔ)言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。 2.正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能 關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法 課題: 等比數(shù)列的概念 教學(xué)目標(biāo) 1、通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、 2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、 3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、 教學(xué)重點(diǎn),難點(diǎn) 重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、 教學(xué)用具 投影儀,多媒體軟件,電腦、 教學(xué)方法 討論、談話法、 教學(xué)過(guò)程 一、提出問(wèn)題 給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn)、(幻燈片) ①—2,1,4,7,10,13,16,19,… ②8,16,32,64,128,256,… 、1,1,1,1,1,1,1,… 、243,81,27,9,3,1,,,… 、31,29,27,25,23,21,19,… 、1,—1,1,—1,1,—1,1,—1,… ⑦1,—10,100,—1000,10000,—100000,… 、0,0,0,0,0,0,0,… 由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列)、 二、講解新課 請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題、假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步) 等比數(shù)列(板書(shū)) 1、等比數(shù)列的定義(板書(shū)) 根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的教師寫(xiě)出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語(yǔ)、 請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例、而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問(wèn)理由,引出對(duì)等比數(shù)列的認(rèn)識(shí): 2、對(duì)定義的認(rèn)識(shí)(板書(shū)) 。1)等比數(shù)列的首項(xiàng)不為0; 。2)等比數(shù)列的每一項(xiàng)都不為0,即 問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件? (3)公比不為0、 用數(shù)學(xué)式子表示等比數(shù)列的定義、 是等比數(shù)列 、、在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成 ,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為 是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第 項(xiàng)的'數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、 3、等比數(shù)列的通項(xiàng)公式(板書(shū)) 問(wèn)題:用和表示第項(xiàng) 、俨煌耆珰w納法 、诏B乘法,…,,這個(gè)式子相乘得,所以(板書(shū)) (1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書(shū)) (2)對(duì)公式的認(rèn)識(shí) 由學(xué)生來(lái)說(shuō),最后歸結(jié): 、俸瘮(shù)觀點(diǎn); 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已)、 這里強(qiáng)調(diào)方程思想解決問(wèn)題、方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練) 如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。 三、小結(jié) 1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式; 2、注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比; 3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。 探究活動(dòng) 將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。 參考答案: 30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍热缂埡?、001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了、還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對(duì)數(shù)算也行)。 一、教學(xué)目標(biāo) (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式; (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義; (3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題; (4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題; (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假; (6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能. 二、教學(xué)重點(diǎn)難點(diǎn): 重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解. 三、教學(xué)過(guò)程 1.新課導(dǎo)入 在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí). 初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.) (從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).) 學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1) 兩直線平行,同位角相等.…………(2) 教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3) (同學(xué)議論結(jié)果,答案是肯定的) 教師提問(wèn):什么是命題? (學(xué)生進(jìn)行回憶、思考.) 概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題. (教師肯定了同學(xué)的回答,并作板書(shū).) 由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題. (教師利用投影片,和學(xué)生討論以下問(wèn)題.) 例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假: 命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題. 初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí). 2.講授新課 大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題? (片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.) (1)什么叫做命題? 可以判斷真假的語(yǔ)句叫做命題. 判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”). (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”. “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式. 對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個(gè)是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能. 對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個(gè)條件都要滿足的`意思. 對(duì)“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題 對(duì)應(yīng)于集合 ,則命題非 就對(duì)應(yīng)著集合 在全集 中的補(bǔ)集 . 命題可分為簡(jiǎn)單命題和復(fù)合命題. 不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題. 由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題. (4)命題的表示:用 , , , ,……來(lái)表示. (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).) 我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式. 給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題. 對(duì)于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 . 在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題. 3.鞏固新課 例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題. (1) ; (2)0.5非整數(shù); (3)內(nèi)錯(cuò)角相等,兩直線平行; (4)菱形的對(duì)角線互相垂直且平分; (5)平行線不相交; (6)若 ,則 . (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.) 例3 寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)). 若給定語(yǔ)為 等于 大于 是 都是 至多有一個(gè) 至少有一個(gè) 至多有個(gè) 其否定語(yǔ)分別為 分析:“等于”的否定語(yǔ)是“不等于”; “大于”的否定語(yǔ)是“小于或者等于”; “是”的否定語(yǔ)是“不是”; “都是”的否定語(yǔ)是“不都是”; “至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”; “至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”; “至多有 個(gè)”的否定語(yǔ)是“至少有 個(gè)”. (如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.) 置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi).) 4.課堂練習(xí):第26頁(yè)練習(xí)1 5.課外作業(yè):第29頁(yè)習(xí)題1.6 內(nèi)容分析: 1、 集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集。至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具。這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)。 把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯。 本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的.概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子。 這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念。 集合是集合論中的原始的、不定義的概念 在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書(shū)給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集 ”這句話,只是對(duì)集合概念的描述性說(shuō)明。 教學(xué)過(guò)程: 一、復(fù)習(xí)引入: 1.簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù); 2.教材中的章頭引言; 3.集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄); 4.“物以類聚”,“人以群分”; 5.教材中例子(P4)。 二、講解新課: 閱讀教材第一部分,問(wèn)題如下: 。1)有那些概念?是如何定義的? 。2)有那些符號(hào)?是如何表示的? (3)集合中元素的特性是什么? 。ㄒ唬┘系挠嘘P(guān)概念:由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的.我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集.集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素. 定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合. 1、集合的概念 (1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集) 。2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素 2、常用數(shù)集及記法 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合,記作N,N={0,1,2,…} 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集,記作N*或N+,N*={1,2,3,…} 。3)整數(shù)集:全體整數(shù)的集合,記作Z ,Z={0,±1,±2,…} (4)有理數(shù)集:全體有理數(shù)的集合,記作Q,Q={整數(shù)與分?jǐn)?shù)} (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合,記作R,R={數(shù)軸上所有點(diǎn)所對(duì)應(yīng)的數(shù)} 注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0 。2)非負(fù)整數(shù)集內(nèi)排除0的集,記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z* 3、元素對(duì)于集合的隸屬關(guān)系 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A (2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作aA 4、集合中元素的特性 。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可 (2)互異性:集合中的元素沒(méi)有重復(fù) 。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯?/p> 5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q…… 、啤啊省钡拈_(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)。 教學(xué)目標(biāo): 。1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題。 。2)進(jìn)一步理解曲線的方程和方程的曲線。 。3)初步掌握求曲線方程的方法。 。4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力。 教學(xué)重點(diǎn)、難點(diǎn): 求曲線的方程。 教學(xué)用具: 計(jì)算機(jī)。 教學(xué)方法: 啟發(fā)引導(dǎo)法,討論法。 教學(xué)過(guò)程: 【引入】 1、提問(wèn):什么是曲線的方程和方程的曲線。 學(xué)生思考并回答。教師強(qiáng)調(diào)。 2、坐標(biāo)法和解析幾何的意義、基本問(wèn)題。 對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問(wèn)題就是: 。1)根據(jù)已知條件,求出表示平面曲線的方程。 。2)通過(guò)方程,研究平面曲線的性質(zhì)。 事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。 【問(wèn)題】 如何根據(jù)已知條件,求出曲線的方程。 【實(shí)例分析】 例1:設(shè)、兩點(diǎn)的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。 首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。 解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3), 由斜率關(guān)系可求得l的斜率為 于是有 即l的方程為 、 分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決。可是,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線的方程?根據(jù)是什么,有證明嗎? (通過(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。 證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。 設(shè)是線段的垂直平分線上任意一點(diǎn),則 即 將上式兩邊平方,整理得 這說(shuō)明點(diǎn)的坐標(biāo)是方程的解。 (2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。 設(shè)點(diǎn)的坐標(biāo)是方程①的任意一解,則 到、的距離分別為 所以,即點(diǎn)在直線上。 綜合(1)、(2),①是所求直線的方程。 至此,證明完畢;仡櫳鲜鰞(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè)是線段的垂直平分線上任意一點(diǎn),最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看: 解法二:設(shè)是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合 由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為 將上式兩邊平方,整理得 果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。 這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想。因此是個(gè)好方法。 讓我們用這個(gè)方法試解如下問(wèn)題: 例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù)求點(diǎn)的軌跡方程。 分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。 求解過(guò)程略。 【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié): 分析上面兩個(gè)例題的'求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟: 首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫(xiě)出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是: (1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo); (2)寫(xiě)出適合條件的點(diǎn)的集合 ; 。3)用坐標(biāo)表示條件,列出方程; 。4)化方程為最簡(jiǎn)形式; 。5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。 一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。 上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正。 下面再看一個(gè)問(wèn)題: 例3:已知一條曲線在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線的方程。 【動(dòng)畫(huà)演示】用幾何畫(huà)板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系。 解:設(shè)點(diǎn)是曲線上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合 由距離公式,點(diǎn)適合的條件可表示為 、 將①式移項(xiàng)后再兩邊平方,得 化簡(jiǎn)得 由題意,曲線在軸的上方,所以,雖然原點(diǎn)的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。 【練習(xí)鞏固】 題目:在正三角形內(nèi)有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、、,且有,求點(diǎn)軌跡方程。 分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。 根據(jù)條件,代入坐標(biāo)可得 化簡(jiǎn)得 、 由于題目中要求點(diǎn)在三角形內(nèi),所以,在結(jié)合①式可進(jìn)一步求出、的范圍,最后曲線方程可表示為 【小結(jié)】師生共同總結(jié): 。1)解析幾何研究研究問(wèn)題的方法是什么? 。2)如何求曲線的方程? (3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么? 【作業(yè)】課本第72頁(yè)練習(xí)1,2,3; 【高中數(shù)學(xué)教案】相關(guān)文章: 高中數(shù)學(xué)教案11-08 高中數(shù)學(xué)教案04-14 高中數(shù)學(xué)教案15篇01-26高中數(shù)學(xué)教案9
高中數(shù)學(xué)教案10
高中數(shù)學(xué)教案11
高中數(shù)學(xué)教案12
高中數(shù)學(xué)教案13
高中數(shù)學(xué)教案14
高中數(shù)學(xué)教案15