欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當前位置:好文網(wǎng)>實用文>說課稿>《三角形內(nèi)角和》說課稿

      《三角形內(nèi)角和》說課稿

      時間:2024-10-19 23:59:20 說課稿 我要投稿
      • 相關推薦

      《三角形內(nèi)角和》說課稿15篇

        作為一名教學工作者,就難以避免地要準備說課稿,是說課取得成功的前提。我們該怎么去寫說課稿呢?以下是小編為大家收集的《三角形內(nèi)角和》說課稿,歡迎閱讀,希望大家能夠喜歡。

      《三角形內(nèi)角和》說課稿15篇

      《三角形內(nèi)角和》說課稿1

      尊敬的各位評委,各位老師:

        大家好!今天我說課的內(nèi)容是人教版義務教育課程標準實驗教材數(shù)學四年級下冊85頁內(nèi)容《三角形的內(nèi)角和》。

        一、教材分析

        新課標把三角形的內(nèi)角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發(fā)現(xiàn)并形成結論。

        二、學情分析

       。、通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與技能基礎。

        2、學生的生活經(jīng)驗是可利用的教學資源。我在課前了解到,已經(jīng)有不少學生知道了三角形內(nèi)角和是180度,,但卻不知道怎樣才能得出這個結論,因此學生在這節(jié)課上的主要目標是驗證三角形的內(nèi)角和是180度。

        三、教學目標

        基于以上對教材的分析以及對學生情況的思考,我從知識與技能,過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

        1、通過"量一量","算一算","拼一拼","折一折"的方法,讓學生推理歸納出三角形內(nèi)角和是180°,并能應用這一知識解決一些簡單問題。

        2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學思想。

        3、通過數(shù)學活動使學生獲得成功的體驗,增強自信心,培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。

        教學重難點:理解并掌握三角形的內(nèi)角和是180度這一結論。

        四、教學準備:

        教具:多媒體課件,

        學具:各類三角形、長方形、量角器、活動記錄表等。

        五、教法和學法

        “三角形的內(nèi)角和”一課,知識與技能目標并不難,但我認為本節(jié)課更重要的是通過自主探索與合作交流使學生經(jīng)歷知識的形成過程,領悟轉(zhuǎn)化思想在解決問題中的應用,以及在探索過程中,培養(yǎng)學生實事求是、敢于質(zhì)疑的科學態(tài)度,同時,在不同方法的交流中,開拓思維、提升能力;谝陨侠砟睿竟(jié)課,我準備引導學生采用自主探究、動手操作、猜想驗證、合作交流的學習方法,并在教學過程中談話激疑,引導探究;組織討論,適時地啟發(fā)幫助。使教法和學法和諧統(tǒng)一在“以學生的發(fā)展為本”這一教育目標之中。

        六、教學過程

        本節(jié)課,我遵循“學生主動和教師指導相統(tǒng)一,問題主線和活動主軸相統(tǒng)一”的原則,制定了以下教學程序:

       。ㄒ唬﹦(chuàng)設情境,激發(fā)興趣

        “興趣是最好的老師”。開課伊始我利用課件動態(tài)演示一只蝴蝶在把一條繩子圍成不同的三角形。讓學生觀察在圍的過程中,什么變了?什么沒變?讓學生在變與不變的觀察與對比中,激發(fā)學生的學習興趣,引出本節(jié)課的學習內(nèi)容(板書:三角形的內(nèi)角和),為后面的探索奠定基礎。

        【設計意圖:以問題情境為出發(fā)點,既豐富了學生的感官認識,又激發(fā)了學生的學習熱情!

        (二)動手操作,探索新知

        本環(huán)節(jié)是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經(jīng)歷知識的形成過程。

        1、揭示“內(nèi)角”和“內(nèi)角和”的概念

        明確“內(nèi)角”和“內(nèi)角和”的概念是學生進一步探究內(nèi)角和度數(shù)的前提,本環(huán)節(jié)首先請學生都拿出一個三角形,指一指三個內(nèi)角,然后讓學生談談自己對內(nèi)角和的理解,在大家交流的基礎上得出:三角形的內(nèi)角和就是三個內(nèi)角的度數(shù)之和。

        2、猜測內(nèi)角和

        牛頓曾說:“沒有大膽的猜想,就沒有偉大的發(fā)現(xiàn)!”所以我放手讓學生猜測三角形內(nèi)角和的度數(shù),由于絕大多數(shù)學生有課外知識的積累,不難說出三角形的內(nèi)角和是180度,但猜想并不等于結論,三角形的`內(nèi)角和到底是不是180度?(板書:?)還要進一步的驗證。猜想——驗證是學生探究數(shù)學的有效途徑。

        3、動手驗證,匯報交流

        (1)介紹學具筐

        由教師介紹學具筐中都有什么學習材料。

       。2)生獨立思考、動手操作

        因為合作交流應建立在獨立思考的基礎上,所以先讓學生獨立思考:打算選用什么材料,怎樣來驗證三角形的內(nèi)角和是不是180°。然后再讓學生把想法付諸實踐。此環(huán)節(jié)會留給學生充分的思考、操作、發(fā)現(xiàn)的時間,讓學生在探索中找到證明的切入點,體驗成功。在這期間,教師走下講臺,參與學生的活動,與學生一起尋找驗證的方法,對有困難的學生提供幫助,不放棄任何一個學生。

       。3)組內(nèi)交流

        經(jīng)過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內(nèi)交流各自的驗證方法。

       。4)全班匯報交流。

        在足夠的交流之后,開始進入全班匯報展示過程,達到智慧共享的目的。學生可能會出現(xiàn)以下幾種方法:

        A、測量方法

        活動記錄表

        三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和

        ∠1∠2∠3

        這個驗證方法應是大多數(shù)學生都能想到的,在交流匯報結果時會發(fā)現(xiàn)答案不統(tǒng)一,可能會出現(xiàn)大于180度、等于180度或小于180度不同的結果。此時學生會在心中產(chǎn)生更大的疑惑,“三角形的內(nèi)角和到底是多少度?誰的答案正確呢?”在這里教師要抓住契機,肯定學生實事求是的態(tài)度和質(zhì)疑的精神,把這一問題拋給學生,再次激起學生的探究熱情,強烈的求知欲和好勝心讓學生躍躍欲試,讓學生充分發(fā)表觀點,最終使學生認識到測量法會有誤差,看來僅用一種測量的方法來驗證只能得到三角形的內(nèi)角和在180°左右,到底是不是180°,疑問依然存在,說服力還不夠,此時我順水推舟,讓用不同驗證方法的學生上臺匯報展示。

        B、撕拼法

        我認為數(shù)學課不僅是解決數(shù)學問題,更重要的是思維方式的點撥,使數(shù)學思想的種子播種在學生的頭腦中。本環(huán)節(jié)主要想實現(xiàn)向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學思想的教學目標。四年級學生在以往的數(shù)學學習過程中都積累了不少“轉(zhuǎn)化”的體驗,但這種體驗基本上處于無意識的狀態(tài),只有合理呈現(xiàn)學習素材,才能使學生對轉(zhuǎn)化策略形成清晰的認識。所以我請用撕拼法的同學上臺展示撕拼的過程,學生可能會撕拼不同類型的三角形,如:

        此時教師適時追問:你是怎么想到把三個內(nèi)角撕下來拼成一個平角來驗證的呢?因為平角是180度,三角形的三個內(nèi)角拼在一起正好形成了一個平角,所以三角形的內(nèi)角和就是180度。教師可及時評價點撥:“你們把本不在一起的三個角,通過移動位置,把它轉(zhuǎn)化成一個平角來驗證,運用了轉(zhuǎn)化策略,真了不起!睆亩箤W生清晰的感受到數(shù)學學習就是把新知轉(zhuǎn)化成舊知的過程。

        C、其它方法

        除了以上兩種驗證方法外,學生可能還會出現(xiàn)不同的驗證方法,比如折一折的方法,把三個完全相同的三角形用不同的三個內(nèi)角拼成一個平角來驗證的方法,例圖:

        如果學生出現(xiàn)用長方形剪成兩個完全相同的直角三角形或把兩個完全相同的直角三角形拼成長方形來驗證的方法,例圖:

        教師可追問:“這種方法只能證明哪一類的三角形呢?”使學生明白,這種驗證方法有局限性,只能證明直角三角形的內(nèi)角和是180°。然后教師引導學生歸納出這些不同方法都有異曲同工之妙,就是都運用了轉(zhuǎn)化的策略,讓學生在不知不覺中進一步感悟轉(zhuǎn)化在數(shù)學學習中的重要作用。通過各種方法的展示交流,學生對三角形內(nèi)角和是不是180度的疑問已經(jīng)消除,所以可以把“?”改成“。”

        【設計意圖:《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!痹诮虒W設計中我注意體現(xiàn)這一理念,允許學生根據(jù)已有的知識經(jīng)驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內(nèi)角和是180°這個圖形性質(zhì)。在探索活動中,使學生學會與他人合作,同時也使學生學到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)他們主動探索的精神,讓學生在活動中學習,在活動中發(fā)展!

        4、科學驗證方法

        數(shù)學是一門嚴謹?shù)膶W科,數(shù)學結論的得出必須經(jīng)過嚴格的證明。那如何科學地驗證三角形內(nèi)角和是不是180°呢?用課件動態(tài)演示科學家的驗證方法。

        【設計意圖:一方面使學生為自己猜想的結論能被證明而產(chǎn)生滿足感;另一方面使學生體會到數(shù)學是嚴謹?shù),從小就應該讓學生養(yǎng)成嚴謹、認真、實事求是的學習態(tài)度!

       。ㄈ┱n外拓展,積淀文化

        為了使學生在獲得數(shù)學知識的同時積淀數(shù)學文化,用課件介紹最早發(fā)現(xiàn)三角形內(nèi)角和秘密的法國科學家帕斯卡(課件)讓學生交流:聽了這個故事,你想說什么?在學生交流的基礎上,教師抓住契機,及時鼓勵學生:這節(jié)課才10歲的我們利用自己的智慧發(fā)現(xiàn)了帕斯卡12歲時數(shù)學發(fā)現(xiàn),我們同樣了不起,劉老師為大家感到驕傲。ò鍟海。┻@個感嘆號不僅表示教師對學生的贊嘆,更是學生對自我的一種肯定,獲得成功的自豪感。

        【設計意圖:適當?shù)囊胝n外知識,它既可以激發(fā)學生的學習興趣,又有機的滲透了向帕斯卡學習,做一個善于思考、善于發(fā)現(xiàn)的孩子,對學生的情感、態(tài)度、價值觀的形成與發(fā)展能起到了潛移默化的作用。】

       。ㄋ模⿷眯轮,解決問題

        數(shù)學規(guī)律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓練,以達到練習的有效性。對此,我設計了三個層次的練習:

        1、把兩個小三角形拼成一起,大三形的內(nèi)角和是多少度?為什么?

        【設計意圖:通過兩個三角形分與合的過程,讓學生進一步理解三角形內(nèi)角和等于180度這個結論,認識到三角形的內(nèi)角和不因三角形的大小而改變。】

        2、想一想,做一做

        在一個三角形ABC中,已知∠A═45°,∠B═85,求∠с的度數(shù)。

        在一個直角三角形中,已知∠с═52,求∠A的度數(shù)。

        爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?

        【設計意圖:將三角形內(nèi)角和知識與三角形特征結合起來,引導學生綜合運用內(nèi)角和知識和直角三角形、等腰三角形等圖形特征求三角形內(nèi)角的度數(shù)!

        3、思考:

        你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?

        【設計意圖:將三角形內(nèi)角和知識與三角形的分類知識結合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系!

        (五)全課小結,完善新知

        你在這堂課中有什么收獲?

        【設計意圖:這樣用談話的方式進行總結,不僅總結了所學知識技能,還體現(xiàn)了學法的指導,增強了情感體驗!

        板書設計:

        三角形的內(nèi)角和180°

        三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和

        ∠1∠2∠3

        總之,本節(jié)課我力圖引導學生通過自主探究、合作交流,讓學生充分經(jīng)歷一個知識的學習過程,讓學生學會數(shù)學、會學數(shù)學、愛學數(shù)學。在教學中,隨時會生成一些新教學資源,課堂的生成一定大于課前預設,我將及時調(diào)整我的預案,以達到最佳的教學效果。

        教學特色:

        本節(jié)課我努力體現(xiàn)以下2個教學特色:

        1、引導學生自主探索,激發(fā)學生的學習興趣,體現(xiàn)以學生的發(fā)展為本的教學理念。

        強化學生探究學習的心理體驗,把數(shù)學學習和情感態(tài)度的發(fā)展有機的結合起來。

      《三角形內(nèi)角和》說課稿2

        今天我說課的內(nèi)容是人教版九年義務教育小學數(shù)學四年級下冊第五單元第67頁的《三角形的內(nèi)角和》。根據(jù)xxx教授的授課七步法,即說教材,說學情,說目標,說模式,說方法,說設計,說板書,我將進行本課的說課。

        一、說教材

        “三角形的內(nèi)角和”是新課標人教版四年級下冊第五單元第三節(jié)的內(nèi)容。本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。

        仔細分析教材的知識結構,它是分成3個部分來呈現(xiàn)的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗證問題,再到運用規(guī)律,充分體現(xiàn)了知識結構的有序性和強烈的數(shù)學建模思想,既符合四年級學生的認知規(guī)律,又突出了本課教學的重點。

        二、說學情

       。、通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎技能。

       。、學生的生活經(jīng)驗是可利用的教學資源。我在課前了解到,已經(jīng)有不少學生知道了三角形內(nèi)角和是180度,但卻不知道怎樣才能得出這個結論,因此學生在這節(jié)課上的主要目標是驗證三角形的內(nèi)角和是180度。

        三、說目標

        根據(jù)小學數(shù)學教學大綱對四年級學生的具體要求,結合教材特點及學生年齡特征,將本節(jié)課的目標制定為以下幾點:

        認知技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。

        數(shù)學思考:在操作實驗中,讓學生感受圖形的轉(zhuǎn)化過程及數(shù)學建模思想,初步培養(yǎng)學生的空間思維觀念。

        解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養(yǎng)學生的應用意識。

        情感態(tài)度:通過各種實驗活動,激發(fā)學習興趣,體驗學習成功感,并在教學中,感受生活與數(shù)學的密切聯(lián)系。

        將運用各種實驗方法探究三角形內(nèi)角和為180度的過程并掌握規(guī)律,運用規(guī)律解決實際問題確定為本節(jié)課的教學重點。而同時學生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學難點。

        四、說模式

        “三角形的內(nèi)角和”一課,知識與技能目標并不難,我認為本節(jié)課更重要的是通過自主探索與合作交流使學生經(jīng)歷知識的形成過程,領悟轉(zhuǎn)化思想在解決問題中的應用,以及在探索過程中,培養(yǎng)學生實事求是、敢于質(zhì)疑的科學態(tài)度,同時合作交流中,開拓思維、提升能力。基于以上理念,本節(jié)課,我準備引導學生采用自主探究、猜想驗證、合作探究的學習模式。體現(xiàn)“以學生的發(fā)展為本”這一教育理念。

        五、說方法

        本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180度。

        因為《課程標準》明確指出:“要結合有關內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力”。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。

        六、說設計

        根據(jù)我對教材的把握和對學情的了解,設計了4個環(huán)節(jié)展開教學。

        一、創(chuàng)設情境,發(fā)現(xiàn)問題

        小游戲:猜一猜藏在信封后面的是什么三角形。

        師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形?磥碓谝粋三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?

        三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。

       。▌(chuàng)設的不是生活中的情境,而是數(shù)學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學生在認知上的矛盾,學生用已經(jīng)學的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣"。這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣,讓學生在疑問與猜想中尋找驗證的方法。)

        教學進入第二環(huán)節(jié)——引導探究

        二、動手操作,探究規(guī)律

        1.介紹內(nèi)角、內(nèi)角和,并提出猜想

        師:我們現(xiàn)在研究三角形的'三個角,都是它的內(nèi)角。

        課件演示:三角形的三個內(nèi)角

        師:今天我們就來一起探究《三角形的內(nèi)角和》。猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

        2.確定研究范圍

        師:研究三角形的內(nèi)角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)

        請你想個辦法吧!

       。ㄍㄟ^引導學生分析,"研究哪幾類三角形,就能代表所有的三角形"這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學思想)

        3.建立模型,解決問題

        (一)測量法:

       。1)學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關系都接近180度。

       。2)教師要組織學生進行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內(nèi)角并計算出它們的總和是多少?

        (3)記錄小組測量結果及討論結果

        實驗名稱三角形內(nèi)角和

        實驗目的探究三角形內(nèi)角和是多少度。

        實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片

        方法一三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角的

        方法二

        我的發(fā)現(xiàn)

        (4)學生匯報量的方法,師請同學評價這種方法。

        師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

       。ǘ┘羝捶

        學生匯報后師小結:能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)

        師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°?

       。ㄈ┱燮捶

        學生匯報后師小結:我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學過的平角解決的問題。

        這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

       。ㄋ模┭堇[推理法

       。ń柚鷮W過的長方形,把一個長方形沿對角線分成兩個三角形。)

        師:你認為這種方法好不好?我們看看是不是這么回事。

       。ㄑ菔菊n件:兩個完全相同的三角形內(nèi)角和等于360°,一個三角形內(nèi)角和等于180°)

        師小結:這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準確的說明了三角形的內(nèi)角和一定是180度。

       。▽W生通過小組合作的方式學到方法,分享經(jīng)驗,更重要的是領悟到科學研究問題的方法。就學生的發(fā)展而言,探究的過程比探究獲得的結論更有價值。)

        學生用的方法會非常多,但它們的思維水平是不平行的。

        直接測量法是學生利用已有的知識,測量出每個角的度數(shù),再用加法求和;

        拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;

        而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。

        前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內(nèi)角和,它有嚴密性和精確性。

        本節(jié)課引導學生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學的嚴謹性。讓學生在經(jīng)歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律!

        4.驗證猜想"三角形的內(nèi)角和是180度"

        5.進一步感受

       。1)三角形內(nèi)角和與三角形大小的關系

        教師出示一個小三角形,問學生內(nèi)角和是多少度?再出示一個大的等腰三角形,問學生它的內(nèi)角和是多少度?把這個大三角形平均分成兩份,每份內(nèi)角和是多少度?你有什么發(fā)現(xiàn)嗎?

       。2)三角形內(nèi)角和與三角形形狀的關系

       。ㄑ菔静粩嘧兓娜切巍#┳屑氂^察,在這個過程中,什么變化了?什么沒變化?(三個角的度數(shù)都在變化,內(nèi)角和卻總是不變的)你有什么新發(fā)現(xiàn)嗎?

        如果老師把一個角一直往下拽,猜一猜會怎樣?

       。ㄍㄟ^變化的三角形和三個內(nèi)角的數(shù)據(jù)顯示,進一步感受三角形的內(nèi)角和與三角形的形狀、大小都沒有關系;當把三角形的一個角一直向下拽,這個角變成了一個180度的平角,另外兩個角變成了0度角,雖然已經(jīng)不再是三角形,也能從一個側(cè)面證明三角形的內(nèi)角和是180度,使學生感受到極限的思維方法。)

        6.解釋課前問題

        用內(nèi)角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。

        三、拓展應用,深化創(chuàng)新

        本節(jié)課的練習由易到難,設計成三個層次。

        1、基本練習形成技能

        2、變式練習鞏固技能

        3、綜合練習發(fā)展提高技能

        介紹科學家帕斯卡(出示帕斯卡的資料)

        師:帕斯卡為科學作出了巨大的貢獻,在我們以后學習的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

        多邊形邊形內(nèi)角和

        (設計求多邊形的內(nèi)角和,旨在把新問題轉(zhuǎn)化歸結為求幾個三角形內(nèi)角和的問題上,滲透化歸的數(shù)學學習方法。)

        四、總結全課,全面提升

        我們用三角形內(nèi)角和的知識知道了六邊形內(nèi)角和,那么五邊形、七邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,你能用學到的知識和方法去探究問題,相信你還會有一些精彩的發(fā)現(xiàn)。

        七、說設計

        三角形的內(nèi)角和是180度。

        轉(zhuǎn)化的思想:量、撕、剪、折、拼

      《三角形內(nèi)角和》說課稿3

        一,說教材

        (一)教材的地位和作用

        《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

        (二)教學目標

        基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

        1。通過量一量;算一算;拼一拼折一折的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應用這一知識解決一些簡單問題。

        2。通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透轉(zhuǎn)化;的數(shù)學思想。

        3。通過數(shù)學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。

        (三)教學重,難點

        因為學生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內(nèi)角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內(nèi)角和是180°。在整個過程中學生要了解的是內(nèi)角的概念,如何驗證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內(nèi)角和是180°。

        二,說教法,學法

        本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°。

        因為《課程標準》明確指出要結合有關內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。

        三,說教學過程

        我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。

        引入

        呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是內(nèi)角;。( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個內(nèi)角 (四個)它的內(nèi)角有什么特點 (都是直角)這四個內(nèi)角的和是多少 (360°)三角形有幾個內(nèi)角呢 從而引入課題。

        【設計意圖】讓學生整體感知三角形內(nèi)角和的知識,這樣的教學, 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學知識背景, 滲透數(shù)學知識之間的聯(lián)系, 有效地避免了新知識的橫空出現(xiàn)

        猜測

        提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

        【設計意圖】引導學生提出合理猜測:三角形的內(nèi)角和是180°。

        (三)驗證

        (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

       。2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

       。3)折—拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°。

       。4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°。

        一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

        【設計意圖】利用已經(jīng)學過的知識構建新的數(shù)學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內(nèi)角和規(guī)律的教學中,注意引導學生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系

        起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的'內(nèi)在聯(lián)系。在整個探索過程中學生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。

        深化

        質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎

        觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)

        結論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關。

        實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當活動角的兩條邊與小棒重合時。

        結論:活動角就是一個平角180°, 另外兩個角都是0°。

        【設計意圖】小學生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯(lián)系起來,通過讓學生觀察利用角的大小與邊的長短無關的舊知識來理解說明。

        對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。

        (五)應用

        1。基礎練習:書本練習十四的習題9,求出三角形各個角的度數(shù)。

        2。變式練習:一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學的知識說明嗎3。(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內(nèi)角和是多少

       。2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內(nèi)角和分別是多少

        4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習十四的習題

        【設計意圖】習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

        第一題將三角形內(nèi)角和知識與三角形特征結合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

        第二題將三角形內(nèi)角和知識與三角形的分類知識結合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

        第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識。

        第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構建。能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

        第一題將三角形內(nèi)角和知識與三角形特征結合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

        第二題將三角形內(nèi)角和知識與三角形的分類知識結合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

        第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識。

        第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構建。

      《三角形內(nèi)角和》說課稿4

        一、說教材

        “三角形的內(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。經(jīng)過第一學段以及本單元的學習,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎。

        為方便教師領會教材編寫的意圖與理念,開展有效的教學,更好的發(fā)展學生的空間觀念,培養(yǎng)學生的各種能力,教材在呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現(xiàn)在:概念的形成不直接給出結論,而是提供豐富的動手實踐的素材,設計思考性較強的問題,讓學生通過探索、實驗、發(fā)現(xiàn)、討論、交流等獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力,不斷提高自己的思維水平;趯滩囊陨系恼J識及課程標準的要求,我擬定本節(jié)課的教學目標為:

        1、知識目標:知道三角形內(nèi)角和是180°。

        2、能力目標:①通過學生猜、測、拼、折、觀察等活動,培養(yǎng)學生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。②能運用三角形內(nèi)角和是180°這一規(guī)律解決實際問題。

        3、情感目標:①讓學生在探索活動中產(chǎn)生對數(shù)學的好奇心,發(fā)展學生的空間觀念;②體驗探索的樂趣和成功的快樂,增強學好數(shù)學的信心。

        教學重點:三角形內(nèi)角和是180°的實際應用。

        教學難點:探索三角形的內(nèi)角和是180°

        {二、教學用具}

        本節(jié)課采用課件、不同形狀的三角形、量件器等。

        三、說教法

        新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態(tài)度,促使學生向著預定的目標發(fā)展的作用”。因此,我運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。

        四、說學法

        學法是學生再生知識的法寶。為了使學生能在整節(jié)課的探索活動中積極主動參與動手實踐、自主探究、合作交流的學習活動,我設計了獨立活動、二人活動及分小組活動。在具體活動中,我讓學生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)是18度。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。

        五、說教學流程

        “將課堂還給學生,讓課堂煥發(fā)生命的活力”,“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創(chuàng)造者。在整個教學設計上力求充分體現(xiàn)“以學生發(fā)展為本”教育理念,我將教學流程擬定為“設疑導入——大膽猜想——動手驗證——鞏固內(nèi)化&mdash

        ;—拓展延伸”,努力構建探索型的課堂教學模式。

        1、設疑導入

        教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。伊始上課,我想以前面學過的知識“三角形的分類”為切入點,給出不同形狀的三角形,讓學生說出它們的名稱,有銳角三角形、直角三角形、鈍角三角形,隨后我提出挑戰(zhàn),讓學生畫一個很特殊的三角形:即含有兩個直角的三角形,結果是可想而知的,學生是不可能畫出來的,想知道為什么呢?學了“三角形內(nèi)角和”我們就知道了。板書課題:三角形內(nèi)角和。這樣,我在很短的時間內(nèi)最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,為學生進一步學習打好基礎。

        2、大膽猜想

        學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時我讓學生大膽猜想:為什么不能畫出有兩個直角的三角形呢?猜一猜三角形的內(nèi)角和”大約是多少度?學生猜想時我在黑板上書寫幾個比較接近的度數(shù)。這樣形成統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的`目標。

        3、動手驗證

        學生形成統(tǒng)一的猜想后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{既驗證三角形的內(nèi)角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,也不是隨意放開讓學生盲目的操作,我想把放和引有機的結合起來,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量量不同形狀的三角形的三個內(nèi)角拼一拼將三角形的三個內(nèi)角可以拼成一個什么角,折一折將三角形的三個內(nèi)角可以折成一個什么角,看一看無論是量、還是拼、或者是折我們得到的三角形內(nèi)角和都是多少度?。

        4、鞏固內(nèi)化:

        俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我力爭注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用。

        1、釋疑練習:讓學生用所學的知識說一說為什么畫不出含有兩個直角的三角形?目的是解釋課前的設疑,從中培養(yǎng)學生應用意識和解決問題的能力;

        2、基本練習:鞏固本節(jié)課所學的知識。

        3、變式練習:目的是是學生將知識轉(zhuǎn)化成能力。

        4、綜合練習:目的是讓學生感受數(shù)學與生活的聯(lián)系,培養(yǎng)運用所學知識解決實際問題的能力。

        5、拓展創(chuàng)新:力求體現(xiàn)“不同的人在數(shù)學上得到不同的發(fā)展”這一新課程理念。

        數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我給學生出了一道通過對本節(jié)課所學知識的遷移就可以完成的問題,對學生進行思維訓練,既培養(yǎng)了學生應用知識的能力,又培養(yǎng)了學生的創(chuàng)新意識和創(chuàng)新精神。

        總之,在本節(jié)課教學活動中我力求充分體現(xiàn)一下特點:以學生發(fā)展為本,以學生為主體,以思維訓練為主線的教學思想;充分關注學生的自主探究與合作交流,注重培養(yǎng)學生的創(chuàng)新意識和實踐能力。

      《三角形內(nèi)角和》說課稿5

        一、 說教材

        三角形的內(nèi)角和是北師大版四年級下冊第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。

        二、說學情

        本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅實的基礎。

        因此,我確定本節(jié)課的教學目標是:

        教學目標:

        知識與技能:通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180。知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。能應用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。

        過程與方法:

        發(fā)展學生動手操作、觀察比較和抽象概括的能力。

        情感、態(tài)度與價值觀:體驗數(shù)學活動的探索樂趣,體會研究數(shù)學問題的思想方法。

        教學重點:

        學生經(jīng)歷探究三角形內(nèi)角和的全過程并歸納概括三角形內(nèi)角和等于180。

        教學難點:

        三角形內(nèi)角和的探索與驗證,對不同探究方法的指導和學生對規(guī)律的靈活應用。

        三、說教法、學法

        整個教學將體現(xiàn)以人為本,先放后扶的教學策略。放,不是漫無目的的放,而是為學生提供足夠的探究規(guī)律的材料和時間,放手讓學生自主學習,合作探究;扶,則是根據(jù)學生的不同探究方法和出現(xiàn)的錯誤,給予恰當指導,引導學生歸納概括出規(guī)律。

        《課程標準》明確指出:要結合有關內(nèi)容的教學,引導學生進行觀察、操作、猜想,培養(yǎng)學生初步的思維能力。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。在教學中,學生通過測量、拼折、驗證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了探索能力和創(chuàng)新精神。

        四、說教學過程

        基于以上分析,我以猜測、驗證、結論和應用四個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。

        第一, 猜測。

        通過出示一個角形,讓學生說知道三角形的知識來引出三角形的內(nèi)角的概念,讓學生自由猜測,三角形內(nèi)角和是多少?引出課題,以疑激思。

        第二,動手操作,探究新知。

        動手實踐,自主探究,是學生學習數(shù)學的重要方式,新課程的一個重要理念就是提倡學生做數(shù)學用親身體驗的方式來經(jīng)歷數(shù)學,探究數(shù)學,這要求老師首先為學生提供充分的研究材料,以及充裕的時間,保證學生能真正地試驗,操作和探索。

        這一環(huán)節(jié)我設計為以下三步:

        1、操作感知。

        組織學生通過算一算初步感知三角形的內(nèi)角和。根據(jù)學生特點,為了節(jié)約學生上課的時間,作為預習作業(yè),我提前讓學生在家里自制鈍角、銳角、直角三角形,并測量出每個角的度數(shù),寫在三角形對應的角上,也填在書上的表格里。這時直接讓學生計算,學生匯報計算結果,不同的學生可能會有不同的結果,有可能大于180或小于180甚至等于180,只要相對合理(允許一點誤差)都給與肯定。這時可引導學生得出結論(強調(diào)在排除測量誤差的前提下):三角形的內(nèi)角和是180度。在這一過程中,學生有困惑,有疑問,而正是這些困惑激發(fā)了學生更強的探究欲望,正是這些疑問,使得合作成為學生的內(nèi)在需要。

        2、小組合作。

        針對探究過程中不同思維能力的學生,要做到因材施教。對于得出結論的學生要鼓勵他們思考新的方法,對于無法下手的學生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來看是多少?能用什么方法將三個角合起來。在探究學習中,老師只是起一個引導者的作用,引導學生不斷地深入探究,盡可能用多種合理的方法,驗證結論。

        3、交流反饋,得出結論。

        學生完成探究活動之后,在有親身體驗的基礎上,我將選擇不同方法的代表,在展示平臺上展示自己的探究過程,并說說自己是怎樣想的。我關注的不是學生最后論證的結果,而是學生思維的過程。學生可能通過:拼一拼、折一折、畫一畫的方法,驗證得出三角形的內(nèi)角和是180度,并通過觀察對比各組所用的三角形,是不同類型的.而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對于任意三角形都是適用。在學生探究之后,我用課件重新演示了3種方法,讓學生有一個系統(tǒng)的知識體系。

        第三是靈活應用,拓展延伸。

        揭示規(guī)律之后,學生要掌握知識,形成技能技巧,就要通過解答實際問題的練習來鞏固內(nèi)化。根據(jù)學生能力的不同,我將練習分為以下3個層次。

        1、基礎練習。要求學生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個角,求第三個角。由于學生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字敘述題。在這之間指導學生注意一題多解。

        2、提高練習。如已知一個直角三角形的一個角的度數(shù),求另一個角的度數(shù);已知一個等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。

        3、拓展練習。針對不同思維能力的學生,我設計的思考題是要求學生應用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學生去求解多邊形的內(nèi)角和,更重要的是為了讓學生靈活應用知識點,培養(yǎng)學生的空間思維能力。

        這樣安排可以兼顧不同能力的學生,在保證基本教學要求的同時,盡量滿足學生的學習需要,啟發(fā)學生的思維活動。

        本節(jié)課通過這樣的設計,學生全身心投入到數(shù)學探究互動中去,學生不僅學到科學探究的方法,而體驗到探索的甘苦,領略成功的喜悅,學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長,最終實現(xiàn)可持續(xù)性發(fā)展。

        板書:

        三角形的內(nèi)角和

        猜測驗證結論應用

        三角形內(nèi)角和等于180。

      《三角形內(nèi)角和》說課稿6

        《三角形內(nèi)角和》說課稿

        一、說課內(nèi)容:北師大版義務教育課程標準實驗教材小學數(shù)學四年級下冊第二單元第三節(jié)----《三角形的內(nèi)角和》一課。

        二、教材分析:

        在這一環(huán)節(jié)我要闡述四方面的內(nèi)容:

        1、三角形的內(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關系,教材呈現(xiàn)教學內(nèi)容時,安排了一系列的實驗操作活動。讓學生通過探索,發(fā)現(xiàn)三角形的內(nèi)角和是180度。

        2、學情分析:

        學生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學生知道了三角形內(nèi)角和是180°的結論。

        3、教學目標:

        A、讓學生親自動手,發(fā)現(xiàn),證實三角形的內(nèi)角和等于180度。并能初步運用這一性質(zhì)解決有一些實際問題。

        B、在經(jīng)歷“觀察、測量、撕拼、折疊”的驗證的過程中培養(yǎng)學生觀察能力,歸納能力、合作能力和創(chuàng)造能力。

        4、教學重難點:

        經(jīng)歷三角形的內(nèi)角和是180度這一知識的形成,發(fā)展和應用的全過程。

        5、教學難點:

        讓學生用不同方法驗證三角形的內(nèi)角和是180度。

        三、教學準備:

        在備課過程中,我閱讀了農(nóng)遠光盤中多位名師的教學案例來完善自己的教學設計,并收集了農(nóng)遠光盤中的多媒體課件,用課件適時播放。

        四、教法分析

        為了使教學目標得以落實,談談本課的教法和學法。新課程標準強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者。我采用了趣味教學法、情境教學法、引導發(fā)現(xiàn)法、合作探究法和直觀演示法。

        五、學法分析

        在學法指導上,我把學習的主動權交給學生,引導學生通過動手、動腦、動口,積極參與知識形成的全過程。體現(xiàn)了學生動手實踐、合作交流,自主探索的`學習方式。

        六:教學流程:

        (一)猜迷激趣,復習舊知。,

        興趣是最好的老師,開課我出示了一則謎語。調(diào)動學生學習的積極性。

        形狀是似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。(打一平面圖形)

        由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學生頭腦中有關三角形的知識,同時很自然引出對“三角形內(nèi)角和”一詞的講解,為后面的探索奠定基礎。

        (二)創(chuàng)設情境,巧引新知(課件出示)

        (三)驗證猜想,主動探究。

        本環(huán)節(jié)是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經(jīng)歷知識的形成過程。

        “你能運用已有的知識和身邊的學具想辦法驗證你的猜想嗎?”學生思考片刻后,我出示學習提綱:

        A、先獨立思考,你想怎樣驗證?

        B、再小組合作探究,運用多種方法驗證。

        C、最后匯報,展示你的驗證方法。

        課程標準指出:數(shù)學教學應該由簡單的問答式教學向獨立思考基礎上的合作學習轉(zhuǎn)變。所以,先讓他們獨立思考,形成獨特的個人見解。等有了合作的需要時,再合作探究。此時的合作,學生才會有展示自己的方法的強烈欲望,才會在不同意見的相互碰撞中產(chǎn)生富有創(chuàng)意的思維火花。在足夠的討論之后,進入了匯報展示過程。學生可能出現(xiàn)以下幾種方法

        1.量角求和

        這個驗證方法應是全班同學都能想到的,因此,在這一環(huán)節(jié)我設計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學生通過畫、量、算,最后發(fā)現(xiàn)三角形的三個內(nèi)角和都是180度。

        2.拼角求和

        通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學生在以前學過平角是180度,很快就發(fā)現(xiàn)這三個三角形的內(nèi)角和都是180度。為了讓全班學生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學生一目了然,攻克了本課的一個教學重點。

        3.折角求和

        有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內(nèi)角剛好組成平角呢?這一驗證方法是本課教學的一個難點。

        在學生展示完驗證方法后,我又讓每位學生選擇自己喜歡的方法,再去驗證剛才的發(fā)現(xiàn)。最后歸納出結論:所有三角形的內(nèi)角和都是180度。

       。ㄋ模⿷眯轮,解決問題。

        數(shù)學離不開練習。本節(jié)課我把圖像、動畫等引入課件,使練習的內(nèi)容具有簡單的背景與情節(jié),使學生對解題產(chǎn)生了濃厚的興趣。

        我設計了四個層次的練習:有序而多樣。

        1)基本練習:讓學生通過這一習題,掌握求未知角的一般方法。

        2)實踐運用:這一習題的設計是為了讓學生知道生活中到處都有數(shù)學,數(shù)學能解決生活實際問題,真切體驗到學的是有價值的數(shù)學。

        3)鞏固提高:使學生了解在間接條件下求未知角的方法。

        4)拓展延伸。讓學生體會到數(shù)學中輔助線的橋梁作用,在潛移默化中滲透一個重要數(shù)學思想―――轉(zhuǎn)化,為以后學習數(shù)學打下堅實的基礎。

       。ㄎ澹┤n小結完善新知

        1、這節(jié)課我們學到了什么知識?2、你有什么收獲?

        通過學生談這節(jié)課的收獲,對所學知識和學習方法進行系統(tǒng)的整理歸納。

       。┌鍟O計

        三角形的內(nèi)角和

        量角撕拼折角拼圖

        三角形的內(nèi)角和是180度。

        六、說效果預測:

        本課中,學生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內(nèi)角和的知識,也使學生學到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。促進學生良好思維品質(zhì)的形成,達到預想的教學目的。使學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長!

      《三角形內(nèi)角和》說課稿7

        各位評委:

        我說課的主題是“角色扮演,引導學生猜想驗證”,說課的內(nèi)容是《三角形的內(nèi)角和》。

        一、說說我對教材與學情的分析

        《三角形的內(nèi)角和》是北師大版四年級下冊第二單元的教學內(nèi)容,是在學生學習了三角形的概念及特征、分類之后進行的,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎。教材的小標題為“探索與發(fā)現(xiàn)”,強調(diào)說明這一部分的內(nèi)容要求學生通過自主探索來發(fā)現(xiàn)有關三角形的性質(zhì)。學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結論,但不一定清楚道理,所以本課的'設計意圖不在于了解,而在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。

        二、聊聊我對教學目標及重難點的確定

        以建構主義理論以及有效教學的理念為指導,結合對教材和學情的分析,我將本節(jié)課的教學目標定為下列幾點:

        1、通過量、剪、拼等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

        2、經(jīng)歷親自動手實踐、探索三角形內(nèi)角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數(shù)學思想方法。

        3、在探究中體驗成功的喜悅,激發(fā)主動學習數(shù)學的興趣。

        教學重點:經(jīng)歷“三角形的內(nèi)角和是180°”的形成、發(fā)展和應用的全過程。

        教學難點:驗證“三角形的內(nèi)角和是180°”以及對這一規(guī)律的靈活運用。

        學具準備:量角器、三角尺、剪刀和準備一個喜歡的三角形。

        三、談談我的主要教學流程

        本節(jié)課我設計采用支架式教學方法,以猜想→驗證→應用→評價四個活動環(huán)節(jié)為主線,引導學生通過自主探究學習實現(xiàn)對“三角形內(nèi)角和是180°”這一知識規(guī)律的數(shù)學理解。同時,每一個活動環(huán)節(jié)都讓學生嘗試扮演一種角色,激發(fā)他們投入課堂活動的興趣。

        1.大膽設疑,提出猜想(猜想家)

        在這節(jié)課之前,有不少學生通過各種渠道了解了三角形的內(nèi)角和是180°。因此,第一個環(huán)節(jié)我就讓學生根據(jù)已有的知識經(jīng)驗進行大膽設疑,提出猜想,做一個猜想家。

        首先,我向?qū)W生出示一個長方形,向?qū)W生講解長方形的四個內(nèi)角,引導學生將這四個內(nèi)角的度數(shù)相加算出長方形的內(nèi)角和是360°。

        接著,我把長方形拆成兩個三角形,讓學生指出其中一個三角形的三個內(nèi)角,設問:這個三角形的三個內(nèi)角和是多少?讓學生說說各自的看法和理由,并引導提出“是不是所有的三角形的內(nèi)角和是180°”的猜想。通過這一環(huán)節(jié),學生首先獲得對“三角形內(nèi)角和是什么”這一陳述性知識的數(shù)學理解。

        2.科學驗證,探索規(guī)律(科學家)

        有了大膽的猜想,就要進行科學的驗證,第二個角色就是扮演科學家,對剛才的猜想進行科學驗證,自主探索。

        第二個環(huán)節(jié)的活動步驟如下:

       。1)提供實驗活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學生說說:“要知道三角形的內(nèi)角和,怎樣利用好這些工具?”

       。2)明確提出操作要求:先在自己準備的三角形上作好內(nèi)角的符號,選擇合適的工具開展實驗,遇到操作困難可以與同伴商量或請老師幫助解決。

       。3)學生操作后在小組內(nèi)交流,出示交流提綱:

        A、通過實驗操作,你發(fā)現(xiàn)三角形的內(nèi)角和有什么特點?你是怎樣發(fā)現(xiàn)的?

        B、你認為三角形的內(nèi)角和與三角形的大小、形狀有關嗎?為什么?

       。4)集體交流,小結規(guī)律:

        在組織學生交流實驗的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學生進行實驗匯報,并在學生提出疑問時進行合理的解釋與調(diào)控,尤其是要對一些通過量一量得出180度左右的結論進行“誤差解釋”。最后與學生一起小結歸納出:“三角形的內(nèi)角和是180°,而且與它的大小、形狀無關”這一數(shù)學規(guī)律,從中感悟由特殊到一般的證明方法。

        3.聯(lián)系生活,實踐應用(實踐家)

        有效教學理論指出練習要考慮它的實效性。在這個環(huán)節(jié),我設計讓學生扮演實踐家,通過三個有層次有針對性的練習實踐把探索得出的知識應用于生活問題之中。

        第一,基本運用。即書本中“試一試”的第3題和“練一練”的第1、第2題。通過這個3練習讓學生形成運用三角形內(nèi)角和的知識求出未知角度數(shù)的基本技能。

        第二,綜合運用。即書本中“做一做”的第3題,這道題在讓學生知道其中一個角等于60度的情況下,綜合運用三角形內(nèi)角和是180度和三角形分類知識來進行解決。

        第三,拓展延伸。我設計了讓學生求四邊形和五邊形等多邊形的內(nèi)角和的問題,讓學生通過量、拼、分等辦法嘗試求多邊形內(nèi)角和,并找出其中的規(guī)律。

        4.自我反思,評價延伸

        在這個環(huán)節(jié),我會讓學生自己說說:“這節(jié)課你有什么收獲?”“在扮演三個角色時,哪一個角色完成得最好,為什么?”

        為了突出本課的重點,我設計了簡潔明了的板書:

        三角形的內(nèi)角和

        量角撕拼折角拼圖

        三角形的內(nèi)角和是180度。

      《三角形內(nèi)角和》說課稿8

      尊敬的各位老師:

        你們好!

        今天我說課的內(nèi)容是北師大版小學數(shù)學四年級下第二單元“認識圖形”中探索與發(fā)現(xiàn)部分的“三角形的內(nèi)角和”這部分知識。本課指導學生通過直觀操作的方法,探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。讓學生在實驗活動中,體驗探索的過程和方法。能使學生應用三角形內(nèi)角和的性質(zhì)解決一些簡單問題。在認真學習《數(shù)學課程標準》,深入鉆研教材,充分了解學生的基礎上,我準備從以下幾方面進行說課。

        一、說教材

        “認識圖形”是“空間與圖形”的重要內(nèi)容之一。學生在此之前已經(jīng)對三角形有了一定的認識。因為教材的小標題為“探索與發(fā)現(xiàn)”,所以我主要是通過讓學生在自主探索中學習本課內(nèi)容。先讓學生明確“內(nèi)角”的意義,然后引導學生探索三角形內(nèi)角和等于多少。

        結合學生已經(jīng)有的知識經(jīng)驗,對于本課我確立了以下幾個教學目標:

        1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

        2、滲透猜想--驗證--結論--運用--引申的學習方法,培養(yǎng)學生動手操作和合作交流的能力,培養(yǎng)學生的探究意識。

        3、培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應用數(shù)學的興趣,體驗學習數(shù)學的快樂。

        把教學重難點設定為驗證三角形的內(nèi)角和是180°,并學會應用。

        二、說教法學法

        本堂課我采取了“開放型的探究式”教學模式,運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,使學生全面參與、全員參與、全程參與,真正確立其主體地位。讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。在在具體活動中,我讓學生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。

        三、說教學過程

        本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。因此我依據(jù)學生的認知規(guī)律將教學過程分為以下幾個環(huán)節(jié):

        (一)復習舊知

        由于學生在此之前已經(jīng)學過了一些關于三角形的一些知識,為了讓學生在學習上有一定的連貫性,我首先設計了一個問題“你對三角形有哪些了解?”,讓學生在復習當中加深對三角形的認識,自然引出“內(nèi)角”一詞,為后面的探索奠定基礎。

        (二)創(chuàng)設情境,激趣導入

        教育家葉圣陶先生也曾經(jīng)說過:“興趣是最好的老師!币虼耍竟(jié)課一開始,我采用故事導入,用兩個大小不同的三角形,創(chuàng)設一個擬人化的對話情境,“大”對“小”說:“你看我個大所以我的內(nèi)角和一定比你大。”“小”問到:“那可不一定,我雖然個小可我的內(nèi)角和不一定比你小啊!”兩人爭論不休,請同學們幫忙解決問題,引入今天所要學習的內(nèi)容。在這一環(huán)節(jié)中把問題隱藏在情景之中,將會引起學生迫不及待探索研究的興趣,引發(fā)學生的思考,要比較內(nèi)角和的大小,就要知道各自的`內(nèi)角的度數(shù),從而引導學生開始對“三角形的內(nèi)角和是多少”進行思索,引發(fā)學生探知欲望,也為下一步的教學架橋鋪路。

       。ㄈ﹦邮植僮,自主探究

        由于學生對三角形的內(nèi)角和已經(jīng)產(chǎn)生了一定的求知欲,在此我首先設計了一個問題“什么是三角形的內(nèi)角和?怎樣才能求出三角形的內(nèi)角和?”從而引起學生的繼續(xù)思考。在此問題提出的基礎上,我又分別設計了兩個活動。

        活動一:讓每組同學分別畫出大小,形狀不同的若干個三角形,并分別量出三個內(nèi)角的度數(shù),并求出它們的和。填入記錄表中;顒佣鹤寣W生分組匯報己的記錄表,闡述發(fā)現(xiàn)了什么。

        由于本節(jié)課是一節(jié)發(fā)現(xiàn)探索的課程,所以我在此環(huán)節(jié)進行了這樣的設計。通過這樣的活動,引導學生從“實際操作”到“具體感知”,再從“具體感知”到“抽象概念”,讓學生初步理解三角形的內(nèi)角和是180度。在量一量、算一算中產(chǎn)生猜想,在探索中發(fā)現(xiàn),在活動中思考,經(jīng)歷三角形內(nèi)角和的研究方法,體會活動結果,進一步激發(fā)學生的學習興趣,同時也培養(yǎng)了學生與他人合作交流的意識。

       。ㄋ模炞C結論

        學生完成探究活動之后,已經(jīng)知道了三角形內(nèi)角和。我做了這樣的提問“除了測量計算出三角形內(nèi)角和,你還有什么方法可以驗證三角形內(nèi)角和是180??”學生可以通過:量一量、拼一拼、折一折的方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。體會驗證三角形內(nèi)角和的數(shù)學思想方法,加深學生對這部分知識的記憶。

       。ㄎ澹╈柟叹毩

        在鞏固練習中,我遵循由易到難的規(guī)律,設計了分層訓練。第一層:基本訓練,通過練習明確,會求簡單的三角形內(nèi)角和。第二層:綜合訓練,通過學生觀察、分析,從紛繁復雜的條件中獲取有價值的信息解決問題。最后一道實踐活動讓學生根據(jù)三角形的內(nèi)角和探索經(jīng)驗去探索四邊形的內(nèi)角和,對知識進行遷移,使學生得到了發(fā)展。

       。┛偨Y評價

        回顧這節(jié)課,評價一下自己:你學到了什么知識?學習的快樂嗎?你覺得小組里誰在哪方面比較出色或者你有什么建議想對他說的?

      《三角形內(nèi)角和》說課稿9

        一、 說教材

        “三角形的內(nèi)角和”是九年義務教育六年制小學四年級下冊第六單元第3節(jié)的內(nèi)容!叭切蔚膬(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。經(jīng)過第一學段以及本單元的學習,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎。

        為方便教師領會教材編寫的意圖與理念,開展有效的教學,更好的發(fā)展學生的空間觀念,培養(yǎng)學生的各種能力,教材在呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現(xiàn)在:概念的形成不直接給出結論,而是提供豐富的動手實踐的素材,設計思考性較強的問題,讓學生通過探索、實驗、發(fā)現(xiàn)、討論、交流獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力,不斷提高自己的思維水平;趯滩囊陨系恼J識及課程標準的要求,我擬定本節(jié)課的教學目標為:

        1、知識目標:知道三角形內(nèi)角和是180°。

        2、 能力目標:①通過學生猜、測、拼、折、觀察等活動,培養(yǎng)學生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。②能運用三角形內(nèi)角和是180°這一規(guī)律解決實際問題。

        3、情感目標:①讓學生在探索活動中產(chǎn)生對數(shù)學的好奇心,發(fā)展學生的空間觀念;②體驗探索的樂趣和成功的快樂,增強學好數(shù)學的信心。

        教學重點:三角形內(nèi)角和是180°的實際應用。

        教學難點:探索三角形的內(nèi)角和是180°

        二、說教法

        新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的.機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態(tài)度,促使學生向著預定的目標發(fā)展的作用”。因此,我運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。

        三、說學法

        學法是學生再生知識的法寶。為了使在整節(jié)課的探索活動中,我的設計有獨立活動、二人活動及分小組活動。在具體活動中,我讓學生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。

        “將課堂還給學生,讓課堂煥發(fā)生命的活力”,“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創(chuàng)造者,落實學生的主體地位,促進學生的自主學習和探究。”秉著這樣的指導思想,在整個教學設計上力求充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入—— 猜想——驗證{自主探究}——鞏固內(nèi)化——拓展延伸”,努力構建探索型的課堂教學模式。

        四、說教學程序

        1、 談話激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,我就以兩個三角形的爭論為的知識“三為切入點,讓學生來評理,當一回公正的法官{激趣},你認為哪一個三角形的內(nèi)角和大呢?用什么方法知道誰大誰小呢{設疑}?這樣,我在很短的時間內(nèi)最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,為學生進一步學習打好基礎。

        2、 猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,這時我讓學生大膽猜想,形成統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。

        3、 驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{既驗證三角形的內(nèi)角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,不是隨意放開讓學生盲目的操作,而是把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——折一折——看一看。

        4、 鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如:設計讓學生用所學的知識說一說三角形內(nèi)角和與三角形的大小有關系嗎,又如:師說兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;讓學生判斷有兩個直角三角形拼成的三角形的內(nèi)角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。

        5、 拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我設計了這樣一道題目:學了三角形的內(nèi)角和后,你知道五邊形、六邊形的內(nèi)角和是多少度嗎?請小組合作選擇一個圖形求內(nèi)角和。這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。

        總之,本節(jié)課教學活動中我力求充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。教師是學生學習的組織者、引導者、合作者,而非知識的灌輸者,因而對一個問題的解決不是要教師將現(xiàn)成的方法傳授給學生,而是教給學生解決問題的策略,給學生一把在知識的海洋中行舟的槳,讓學生在積極思考,大膽嘗試,主動探索中,獲取成功并體驗成功的喜悅。

      《三角形內(nèi)角和》說課稿10

        一、說教材

        1、說課內(nèi)容

        今天我說課的內(nèi)容是人教版九年義務教育小學數(shù)學四年級下冊第五單元第67頁的《三角形的內(nèi)角和》。

        2、教材分析

        《三角形的內(nèi)角和》是探索型的教材。是在學生學習了三角形、長方形等基本圖形,以及角的度量、三角形的特征、分類的基礎上進行教學的,學生對這一知識的理解和掌握又將為進一步學習幾何知識打下堅實的基礎。

        教材的知識它是分成3個部分來呈現(xiàn)的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗證問題,再到運用規(guī)律,充分體現(xiàn)了知識結構的有序性和強烈的數(shù)學建模思想,既符合四年級學生的認知規(guī)律,又突出了本課教學的重點。

        3、教學目標

        根據(jù)小學數(shù)學教學大綱對四年級學生的具體要求,結合教材特點及學生年齡特征,將本節(jié)課的目標制定為以下幾點:

        知識與技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。

        過程與方法:在操作實驗中,讓學生感受圖形的轉(zhuǎn)化過程及數(shù)學建模思想,初步培養(yǎng)學生的空間思維觀念。解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養(yǎng)學生的應用意識。

        情感態(tài)度:通過各種實驗活動,激發(fā)學習興趣,體驗學習成功感,并在教學中,感受生活與數(shù)學的密切聯(lián)系。

        4、教學重點難點

        根據(jù)本節(jié)課的教學目標及對編者意圖的理解。將運用各種實驗方法探究三角形內(nèi)角和為180度的過程并掌握規(guī)律,運用規(guī)律解決實際問題確定為本節(jié)課的教學重點。而同時學生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學難點。

        5、教學具準備

        每個4人小組準備三個不同的三角形(銳角三角形、鈍角三角形、直角三角形的紙片一個,且要求大小不一)、實驗報告單一份;量角器、白板。

        二、說教法學法我要說的第二塊是教法學法。

        新課程標準的基本理念就是要讓學生"人人學有價值的數(shù)學"。強調(diào)"教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程"。

        因此,我運用猜想驗證,自主探究,動手操作,直觀演示的教學法,讓學生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式。

        在整個教學設計上力求充分體現(xiàn)"以學生發(fā)展為本"教育理念,將教學思路擬定為"故事設疑導入--猜想驗證{自主探究}--鞏固新知—數(shù)學文化—課堂總結",努力構建探索型的課堂教學模式。當然,一堂課的效果如何,還要看課堂結構是否合理。接下來,我就來說說我的教學程序設計。

        三、說教學流程

        根據(jù)我對教材的把握和對學情的了解,設計了5個環(huán)節(jié)展開教學。

        四、創(chuàng)設情境,發(fā)現(xiàn)問題

        一天,圖形王國舉行了一場盛大的宴會,正在大家聊得熱火朝天的.時候,突然下面?zhèn)鱽砹艘魂嚦臭[聲,圖形王國的國王“點”來到爭吵的地方一看,原來是三角形家族在爭吵,只聽一個鈍角三角形說:“我有一個內(nèi)角是最大的,所以我的三角和也是最大的!,這時候一個銳角三角形說“我長得比你大,所以說我的內(nèi)角和才是最大的!”,這時,一個直角三角形弱弱的說了一句:“誰長的大,誰的內(nèi)角和就最大,這不公平!!”,于是他們就讓國王來評理,聽到這里國王的也糊涂了:“你們說的都是什么呀?什么是三角形的內(nèi)角,什么是三角形的內(nèi)角和呀?”

        五、合作交流,引導探究

       。1)學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關系都接近180度。

       。2)教師要組織學生進行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個內(nèi)角并計算出它們的總和是多少?

        (3)記錄小組測量結果及討論結果

        實驗名稱:三角形內(nèi)角和

        實驗目的:探究三角形內(nèi)角和是多少度。

        實驗材料:量角器,銳角三角形紙片,直角三角形紙片,鈍角三角形紙片。

       。4)學生匯報量的方法,師請同學評價這種方法。

        師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

        (一)剪拼法

        學生匯報后師小結:能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)

        師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°?

       。ǘ┱燮捶

        學生匯報后師小結:我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180度,都是借助我們學過的平角解決的問題。

        這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

       。ㄈ┭堇[推理法

        (借助學過的長方形,把一個長方形沿對角線分成兩個三角形。)

        師:你認為這種方法好不好?我們看看是不是這么回事。

        (演示課件:兩個完全相同的三角形內(nèi)角和等于360°,一個三角形內(nèi)角和等于180°)

        師小結:這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準確的說明了三角形的內(nèi)角和一定是180度。

       。▽W生通過小組合作的方式學到方法,分享經(jīng)驗,更重要的是領悟到科學研究問題的方法。就學生的發(fā)展而言,探究的過程比探究獲得的結論更有價值。)

        學生用的方法會非常多,但它們的思維水平是不平行的。

        直接測量法是學生利用已有的知識,測量出每個角的度數(shù),再用加法求和;

        拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理法,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考。

        前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內(nèi)角和是原來長方形的四個內(nèi)角之和360度,所以一個三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內(nèi)角和,它有嚴密性和精確性。

        六、訓練提高

        使用課本兩道題,以及以下習題

       。1)∠1=35°∠2=47°∠3=()

       。2)∠1=50°∠2=40°∠3=()

       。3)∠1=20°∠2=45°∠3=()

        按著難易程度逐漸提高,鞏固新知。

        七、數(shù)學文化

        帕斯卡(BlaisePascal,1623~1662),法國數(shù)學家、物理學家、近代概率論的奠基者。早在300多年前這位法國著名的科學家就已經(jīng)發(fā)現(xiàn)了任何三角形的內(nèi)角和是180度,而他當時才12歲。

        八、課堂總結

        我們用三角形內(nèi)角和的知識知道了六邊形內(nèi)角和,那么五邊形、七邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,你能用學到的知識和方法去探究問題,相信你還會有一些精彩的發(fā)現(xiàn)。

        九、反思

        整節(jié)課都在比較愉快的氛圍中展開的,但在小組合作中因為要求不夠明確,導致在合作中出現(xiàn)了問題,不過好在由于我給孩子們足夠的時間,他們能說出:所有三角形都是180度,證明孩子們是學會了的。所以,如果你給孩子足夠的時間,他們會給你意想不到的驚喜。

      《三角形內(nèi)角和》說課稿11

        ★教材與學情分析

        《三角形的內(nèi)角和》是人教版四年級下冊的教學內(nèi)容,這一內(nèi)容是三角形的一個重要性質(zhì)。它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習的基礎。經(jīng)過第一學段以及本單元的學習,學生已具備了一些相應的三角形知識和技能,初步的動手操作能力、主動探究能力以及合作學習的習慣,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎。

        ★教學目標、重難點

        以建構主義理論以及有效教學的理念為指導,結合對教材的認識以及學生的情況分析我將本節(jié)課的教學目標定為下列幾點:

        1、知識與技能目標:通過量、剪、拼等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。

        2、過程與方法目標:通過對三角形的內(nèi)角和轉(zhuǎn)化為平角的探究與體驗,滲透“轉(zhuǎn)化”、“變中找不變”的數(shù)學思想。

        3、情感與態(tài)度目標:體驗成功的喜悅,激發(fā)主動學習數(shù)學的興趣。

        教學重點:經(jīng)歷“三角形的內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。

        教學難點:驗證“三角形的內(nèi)角和是180°”以及對這一知識規(guī)律的靈活運用。

        學具準備:量角器、三角尺、剪刀和準備一個喜歡的三角形(可以畫在紙上,也可以剪下來)

        ★教學環(huán)節(jié)

        下面向大家重點介紹我對這節(jié)課教學環(huán)節(jié)的設計:

        建構主義理論學習觀提倡以學生為中心,強調(diào)學習者對知識意義的主動建構。本節(jié)課我設計采用支架式教學方法,以猜想→驗證→應用→評價四個活動環(huán)節(jié)為主線,引導學生通過自主探究學習實現(xiàn)對“三角形內(nèi)角和是180°”這一知識規(guī)律的數(shù)學理解。同時,每一個活動環(huán)節(jié)都讓學生嘗試扮演一種角色,激發(fā)他們投入課堂活動的興趣。

        一.大膽設疑,提出猜想(猜想家)

        在這節(jié)課之前,有不少學生通過各種渠道了解了三角形的內(nèi)角和是180°。因此,第一個環(huán)節(jié)我就讓學生根據(jù)已有的知識經(jīng)驗進行大膽設疑,提出猜想,做一個猜想家。

        首先,我向?qū)W生出示一個長方形,向?qū)W生講解長方形的四個內(nèi)角,從長方形的角的特征可知它的`四個內(nèi)角都是直角,將這四個內(nèi)角的度數(shù)相加就算出長方形的內(nèi)角和是360°。接著,我把長方形拆成兩個三角形,讓學生指出其中一個三角形的三個內(nèi)角,設問:這個三角形的三個內(nèi)角和是多少?讓學生說說各自的看法和理由,并提出“三角形的內(nèi)角和是180°”的猜想。通過這一環(huán)節(jié),學生首先獲得對“三角形內(nèi)角和是什么”這一陳述性知識的數(shù)學理解。

        二、科學驗證,探索規(guī)律(科學家)

        有了大膽的猜想,就要進行科學的驗證,第二個角色就是扮演科學家,對剛才的猜想進行科學驗證,自主探索規(guī)律,這也就是本節(jié)課的第二個環(huán)節(jié)。

        第二個環(huán)節(jié)的活動步驟如下:

       。1)提供實驗活動需要操作的工具,如:量角器、三角尺、剪刀等,讓學生說說:“要知道三角形的內(nèi)角和,怎樣利用好這些工具?”

       。2)明確提出操作要求:先在自己準備的三角形上作好內(nèi)角的符號,選擇合適的工具開展實驗,遇到操作困難可以與同伴商量或請老師幫助解決。

        (3)學生操作后在小組內(nèi)交流,出示交流提綱:

        A、通過實驗操作,你發(fā)現(xiàn)三角形的內(nèi)角和有什么特點?你是怎樣發(fā)現(xiàn)的?

        B、你認為三角形的內(nèi)角和與三角形的大小、形狀有關嗎?為什么?

       。4)集體交流,小結規(guī)律:

        在組織學生交流實驗的過程與成果時,我會挑選出研究不同形狀或不同大小的三角形的學生進行實驗匯報,并在學生提出疑問時進行合理的解釋與調(diào)控,最后與學生一起小結歸納出:“三角形的內(nèi)角和是180°,而且與它的大小、形狀無關”這一數(shù)學規(guī)律,從中感悟由特殊到一般的證明方法。

        建構主義心理學認為,學習的過程是學習者用自己的觀點去解讀教材的內(nèi)容,從而在自己頭腦中建構出一個新的概念。在第二個環(huán)節(jié),學生通過動手實驗,用自己適用的方式將“三角形內(nèi)角和是180°”這一知識規(guī)律建構起來,也就是獲得了對“三角形內(nèi)角和是多少、為什么”這些程序性知識的數(shù)學理解。

        三、聯(lián)系生活,實踐應用(實踐家)

        俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。有效教學理論指出練習要考慮它的實效性。在這個環(huán)節(jié),我設計讓學生扮演實踐家,通過三個有層次有針對性的練習實踐把探索得出的知識應用于生活問題之中。

        第一,基本運用。即書本中的“做一做”這個練習,通過這個練習讓學生形成運用三角形內(nèi)角和的知識求出未知角度數(shù)的基本技能。我設計讓學生先嘗試獨立完成,在匯報交流時,鼓勵學生注意傾聽、領會同伴的解法,從而反思自己解法。

        第二,綜合運用。即書本中練習十四的第9題,這道題目的是讓學生在求特殊三角形的未知角的度數(shù)的過程中,綜合運用之前所學的各種三角形的特征與三角形內(nèi)角和的知識,對知識的運用提高了一個層次。因此做這道題時,我會先引導學生說說自己的看法,找出特殊三角形中隱藏的已知條件。我估計學生可能會混淆了等腰三角形的頂角和底角,因此在匯報交流時重點放在等腰三角形這個圖形的求解,讓學生首先明確已知的是頂角的度數(shù),因此從180°中減去頂角的度數(shù),再平分成兩份,才能得出一個底角的度數(shù)。這時,我再提出一個反例,如果知道的是底角的度數(shù),你能求出頂角是多少度嗎?以此引出練習十四的第10題。

        第三,拓展延伸。我設計了將一個大三角形拆分成兩個小三角形,其中一個三角形的內(nèi)角和是不是用180°除以2得到?然后再出示兩個三角形拼成一個大三角形,這個大三角形的內(nèi)角和是不是用180°乘2得到?以這樣的一個變式練習讓學生進一步感悟“三角形的內(nèi)角和與它的形狀、大小沒有關系”的知識規(guī)律。

        通過三個層次的練習,學生應用“三角形內(nèi)角和是180°”這個知識規(guī)律回到現(xiàn)實問題中,用自己的思維方式對各種現(xiàn)實問題進行解釋,這是學生不斷完善對三角形內(nèi)角和知識的內(nèi)涵與外延的數(shù)學理解,實現(xiàn)了對數(shù)學理解的提升。

        四、自我反思,評價延伸

        在這個環(huán)節(jié),我會讓學生自己說說:“這節(jié)課你有什么收獲?”“在扮演三個角色時,哪一個角色完成得最好,為什么?”“在今后的課堂活動中哪方面可以做得更好?”對學生的各種自我評價,同伴和老師都可以發(fā)表自己的看法,讓學生發(fā)現(xiàn)、總結開展本次課堂活動的經(jīng)驗與不足,明確今后努力的方向。

        ★教學特色

        一、滲透數(shù)學思想

        通過探究活動,學生將三個內(nèi)角和轉(zhuǎn)化為一個平角,得出三角形的內(nèi)角和是180°,滲透了“轉(zhuǎn)化”的數(shù)學思想;通過實驗小結,學生發(fā)現(xiàn)無論三角形的形狀、大小怎樣變,三角形的內(nèi)角和不變,都是180°,滲透了“變中找不變”的數(shù)學思想。

        二、利用課程資源

        1、挖掘?qū)W生資源

        有效教學有時需要教師保持“無為而教”的自我克制,不過多地干擾學生的自由學習空間。在設計這節(jié)課時,我利用學生已有的知識經(jīng)驗,對三角形的內(nèi)角和進行猜想,然后通過大膽的實驗激起同伴之間的互相影響,作為教師,我更多的是為學生提供大量的課程資源,喚醒和激勵學生親自去接觸、體驗知識和規(guī)律的產(chǎn)生過程。

        2、善用教材資源

        新課標數(shù)學實驗教材倡導人人學“有用”的數(shù)學,它把原教材繁、難、雜、偏的內(nèi)容刪去。因此,我在設計練習鞏固時,不作無謂的浪費,直接使用教材中習題,作為基礎性練習和綜合性練習。考慮學生學習基礎、能力的差異,在練習的最后一層拓展性練習,我利用三角形的拆分與組合為學生提供多層次的思考,以滿足不同層次學生均發(fā)展的需要,讓人人都獲得不同程度的提高,得到成功的體驗。

      《三角形內(nèi)角和》說課稿12

        《三角形的內(nèi)角和》說課稿

        一、 說教材:

        今天我說課的內(nèi)容是小學數(shù)學人教版實驗教材四年級下冊的《三角形的內(nèi)角和》。三角形的內(nèi)角和是180°是三角形的一個重要性質(zhì),也是“空間與圖形”領域中的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何知識的基礎。三角形是常見的一種圖形,在平面圖形中,三角形是最簡單的多邊形,也是最基本的多邊形。學生對三角形已經(jīng)有了直觀的認識,能夠從平面圖形中分辨出三角形,還認識了三角形的特性,知道三角形任意兩邊之和大于第三邊以及三角形的分類等有關三角形的知識。這些都是學生感受、理解、抽象“三角形的內(nèi)角和”的概念的基礎。我們把握好“三角形的內(nèi)角和是180°”這部分內(nèi)容的教學不僅可以加深學生對三角形特征的理解,發(fā)展學生的空間觀念,而且可以通過動手操作,獲取新知,發(fā)展學生的思維能力和解決實際問題的能力。同時也為以后學習更復雜的幾何圖形知識打下堅實的基礎。

        二、說教學目標:

        1、知識目標:知道三角形內(nèi)角和是180°。

        2、能力目標:①通過學生測量、撕拼、折疊、觀察等活動,培養(yǎng)學生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。

       、谀苓\用三角形內(nèi)角和是180°這一規(guī)律解決實際問題。

        3、情感目標:①讓學生在探索活動中產(chǎn)生對數(shù)學的好奇心,發(fā)展學生的空間觀念;

        ②體驗探索的樂趣和成功的快樂,增強學好數(shù)學的信心。

        三、說重點和難點:

        重點:探索和發(fā)現(xiàn)三角形內(nèi)角的度數(shù)和等于180°。

        難點:通過小組討論、動手操作等方式,讓學生自己探索和發(fā)現(xiàn)三角形內(nèi)角的度數(shù)和等于180°,并能應用這一規(guī)律解決實際問題。

        四、說教法和學法

        新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗。因此,我主要采用的教學方法是:直觀教學法和動手操作實驗法。在教學中,根據(jù)學生的年齡特征,整節(jié)課我以學生為主的 “活動教學”貫穿全過程。設計有獨立活動、同桌活動及分小組活動。在具體活動中,雖然小學生的遺忘性較強,但不得不承認學生已學過了三角形的內(nèi)角和,所以一開始我大膽放手讓學生說,從學生說中導入故事,“三角形三兄弟的爭吵”,引出與學生要學習的內(nèi)容——三角形的內(nèi)角,然后設疑:三角形內(nèi)角和是多少?由于學生在小學學過這樣的知識,所以很輕松地就可以答出。所以我直接讓學生分小組討論:有什么辦法可以驗證得出這樣的結論。讓學生大膽猜想,自主探索三角形的內(nèi)角和。再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角和是180度。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又培養(yǎng)了學生動手操作能力和創(chuàng)新精神。

        五、 說教學過程:

        本節(jié)課的教學過程我設計了六個教學環(huán)節(jié):一是創(chuàng)設情境,導入新課;二是自主探究,證實規(guī)律;三是應用延伸,解決問題;四是深化思維,拓展知識;五是課堂總結;六是作業(yè)布置。下面就具體的教學環(huán)節(jié)說說我的設想。

        (一)創(chuàng)設情境,導入新課:

        教學的.藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。開始上課,我就大膽放手讓學生說三角形的特性、分類等有關知識,從學生說中導入故事,“三角形三兄弟的爭吵”,引出與學生要學習的內(nèi)容——三角形的內(nèi)角和,然后設疑:三角形內(nèi)角和是多少?從而激發(fā)學生探究數(shù)學的愿望和興趣。

        (二)自主探究,證實規(guī)律:

        1、理解標目:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結果,所以一開始我先不急于動手探索,先讓學生明白什么是三角形的內(nèi)角和。

        2、 猜想:目標明確后,我就讓學生大膽猜想,形成統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。

        3、 驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{既驗證三角形的內(nèi)角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,不是隨意放開讓學生盲目的操作,而是把放和引有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量量、拼一拼、折一折――說說、議議――小結。

        4、 鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如:根據(jù)普遍三角形兩個角求一個角,根據(jù)特殊的三角形求出三角形的三個角的度數(shù){具體在練習一,第二、應用延伸練習一中都有體現(xiàn)},從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。

        5、 拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我給學生出了一道通過對本節(jié)課所學知識的遷移就可以完成的問題,對學生進行思維訓練,既培養(yǎng)了學生應用知識的能力,又培養(yǎng)了學生的創(chuàng)新意識和創(chuàng)新精神。

        6、說課堂總結

        采用用先讓學生歸納補充,然后教師再補充的方式進行:⑴這節(jié)課我們學了什么知識?你有什么收獲?(2)看書設疑。充分發(fā)揮學生的主體意識,培養(yǎng)學生的語言概括能力。

        六.說教學板書

        這是一節(jié)操作課,學生要掌握的概念較少,所以整個板書我以表格為主,主要把學生大量的驗證成果展示出,讓學生親自動手后再通過觀察,一目了然,得出結論——三角形的內(nèi)角和是180度。簡間但又層層涉及,形式活潑,色彩也較豐富。

        總之,本節(jié)課教學活動中我力求充分體現(xiàn)一下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。

      《三角形內(nèi)角和》說課稿13

      各位評委、老師大家好:

        我說課的題目是《三角形內(nèi)角和》,內(nèi)容選自人教版九年義務教育七年級下冊第七章第二節(jié)第一課時。

        一、設計理念:

        數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。

        應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。

        我認為教師角色的轉(zhuǎn)變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調(diào)達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調(diào)動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、支持性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應新一輪基礎教育課程改革的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。

        二、教材分析與處理:

        三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

        三、學生分析:

        處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。

        四、教學目標:

        1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學生親身經(jīng)歷知識的發(fā)生過程,并能進行簡單應用。能夠探索具體問題中的數(shù)量關系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進行富有個性的學習。

        2.能力目標:通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。

        3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。

        4.情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

        五、重難點的確立:

        1.重點:三角形的內(nèi)角和定理探究與證明。

        2.難點:三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

        六、教法、學法和教學手段:

        采用“問題情境-建立模型-解釋、應用與拓展”的模式展開教學。

        采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。

        七、教學過程設計:

        (一)、創(chuàng)設情境,懸念引入

        一堂新課的引入是老師與學生交往活動的開始,是學生學習新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關鍵。一個成功的引入,是讓學生感覺到他熟知的生活,可使學生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學活動將成為他們樂此不疲的快事了。

        具體做法:拋出問題:“學校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學生思考片刻后,我因勢利導,指出學習了本節(jié)課你便能夠回答這個問題了。從而引入新課。

        (二)、探索新知

        1.動手實踐,嘗試發(fā)現(xiàn):要求學生將事先準備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的.學生會發(fā)現(xiàn),三者拼成一個平角。此時讓學生互相觀察拼圖,驗證結果。從觀察交流中,互學方法,達到生生互動。待交流充分,分小組張貼所拼圖形,教師點評,總結分類,將所拼圖形分為∠A、∠B分別在∠C同側(cè)和兩側(cè)兩種情況。對有合作精神的小組給與表揚。

        (將拼圖展示在黑板上)

        2.嘗試猜想:教師提問,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學生中去,對有困難的小組給與適當?shù)囊龑АV笥蓪W生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。

        3.證明猜想:先幫助學生回憶命題證明的基本步驟,然后讓學生獨立完成畫圖、寫出已知、求證的步驟,其他同學補充完善。下面讓學生對照剛才的動手實踐,分小組探求證明方法。此環(huán)節(jié)應留給學生充分的思考、討論、發(fā)現(xiàn)、體驗的時間,讓學生在交流中互取所長,合作探索,找到證明的切入點,體驗成功。對有困難的學生要多加關注和指導,不放棄任何一個學生,借此增進教師與學有困難學生之間的關系,為繼續(xù)學習奠定基礎。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達到證明的目的。

        4.學以致用,反饋練習

        (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

        解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

        ∴∠B+∠C=100°在△ABC中,

        (2)已知:∠A=80°,∠B=52°,則∠C=?

        解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

        又∵∠A=80°∠B=52°(已知)

        ∴∠C=48°

        (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

        (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

        (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

        解:設∠A=x°,則∠B=3x°,∠C=5x°

        由三角形內(nèi)角和定理得,x+3x+5x=180

        解得,x=20

        ∴∠A=20°∠B=60°∠C=100°

        (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

        第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學生以圖形由簡單到繁的直觀演示。

        通過這組練習滲透把圖形簡單化的思想,繼續(xù)滲透統(tǒng)一思想,用代數(shù)方法解決幾何問題。

        5.鞏固提高,以生為本

        (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

        (2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

        本組練習是三角形內(nèi)角和定理與平角定義及角平分線等知識的綜合應用.能較好的培養(yǎng)學生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗。

        6.思維拓展,開放發(fā)散

        如圖,已知△PAD中,∠APD=120°,B、C為AD上的點,△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關系。

        本題旨在激發(fā)學生獨立思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實踐能力,發(fā)展個性思維。

        (三)、歸納總結,同化順應

        1.學生談體會

        2.教師總結,出示本節(jié)知識要點

        3.教師點評,對學生在課堂上的積極合作,大膽思考給與肯定,提出希望。

        (四)、作業(yè):

        1、必做題:習題3.1第10、11、12題

        2、選做題:習題3.1第13、14題

        (五)、板書設計

        三角形內(nèi)角和

        學生拼圖展示

        已知:

        求證:

        證明:

        開放題:

      《三角形內(nèi)角和》說課稿14

        一、說教材

        (一)教材的地位和作用

        《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關系》、《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習、掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

       。ǘ┙虒W目標

        基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能、教學過程與方法、情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

        1.通過“量一量”、“算一算”、“拼一拼”、“折一折”的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應用這一知識解決一些簡單問題。

        2.通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透“轉(zhuǎn)化”的數(shù)學思想。

        3.通過數(shù)學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。

       。ㄈ┙虒W重、難點

        因為學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內(nèi)角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內(nèi)角和是180°。在整個過程中學生要了解的是“內(nèi)角”的概念,如何驗證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內(nèi)角和是180°。

        二、說教法、學法

        本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量、折一折、撕一撕、畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°。

        因為《課程標準》明確指出:“要結合有關內(nèi)容的教學,引導學生進行觀察、操作、猜想,培養(yǎng)學生初步的思維能力”。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。

        三、說教學過程

        我以引入、猜測、證實、深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。

       。ㄒ唬┮

        呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是“內(nèi)角”。(把圖形中相鄰兩邊的夾角稱為內(nèi)角)長方形有幾個內(nèi)角?(四個)它的內(nèi)角有什么特點?(都是直角)這四個內(nèi)角的和是多少?(360°)三角形有幾個內(nèi)角呢?從而引入課題。

        【設計意圖】讓學生整體感知三角形內(nèi)角和的知識,這樣的教學,將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。

       。ǘ┎聹y

        提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢?

        【設計意圖】引導學生提出合理猜測:三角形的內(nèi)角和是180°。

        三)驗證

       。1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度?

        (2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角?請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

       。3)折-拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°。

       。4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°。

        一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

        【設計意圖】利用已經(jīng)學過的知識構建新的數(shù)學知識,這不僅有助于學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內(nèi)角和規(guī)律的教學中,注意引導學生將三角形內(nèi)角和與平角、長方形四個內(nèi)角的和等知識聯(lián)系起來,并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系。在整個探索過程中,學生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮。

       。ㄋ模┥罨

        質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎?

        觀察:(指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了,但角的.大小沒有變。)

        結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。

        實驗:教師先在黑板上固定小棒,然后用活動角與小棒組成一個三角形,教師手拿活動角的頂點處,往下壓,形成一個新的三角形,活動角在變大,而另外兩個角在變小。這樣多次變化,活動角越來越大,而另外兩個角越來越小。最后,當活動角的兩條邊與小棒重合時,

        結論:活動角就是一個平角180°,另外兩個角都是0°。

        【設計意圖】小學生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯(lián)系起來,通過讓學生觀察利用“角的大小與邊的長短無關”的舊知識來理解說明。

        對于利用精巧的小教具的演示,讓學生通過觀察、交流、想象,充分感受三角形三個角之間的聯(lián)系和變化,感悟三角形內(nèi)角和不變的原因。

       。ㄎ澹⿷

        1.基礎練習:書本練習十四的習題9,求出三角形各個角的度數(shù)。

        2.變式練習:一個三角形可能有兩個直角嗎?一個三角形可能有兩個鈍角嗎?你能用今天所學的知識說明嗎?

        3.(1)將兩個完全一樣的直角三角形拼成一個大三角形,這個大三角形的內(nèi)角和是多少?

        (2)將一個大三角形分成兩個小三角形,這兩個小三角形的內(nèi)角和分別是多少?

        4.智力大挑戰(zhàn):你能求出下面圖形的內(nèi)角和嗎?書本練習十四的習題

        【設計意圖】習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中,能充分注意溝通知識之間的內(nèi)在聯(lián)系,使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知,構建自己的認知結構,從而發(fā)展思維,提高綜合運用知識解決問題的能力。

        第一題將三角形內(nèi)角和知識與三角形特征結合起來,引導學生綜合運用內(nèi)角和知識和直角三角形、等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

        第二題將三角形內(nèi)角和知識與三角形的分類知識結合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系。

        第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的變化情況,進一步理解三角形內(nèi)角和的知識。

        第四題是對三角形內(nèi)角和知識的進一步拓展,引導學生進一步研究多邊形的內(nèi)角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律,以此促進學生對多邊形內(nèi)角和知識的整體構建。

        四、說課板書設計:

        三角形內(nèi)角和

        引入:

        猜測:

        量——算

        撕——拼

        驗證折——拼

        畫

        深化

        應用

      《三角形內(nèi)角和》說課稿15

        一、說教材

        “三角形的內(nèi)角和”是義務教育課程標準實驗教科書數(shù)學四年級下冊85頁內(nèi)容。經(jīng)過前幾節(jié)課的學習,學生已經(jīng)學習了有關三角形的知識。

        教材在呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現(xiàn)在:概念的形成不直接給出結論,而是提供豐富的動手實踐的素材,設計思考性較強的問題,讓學生通過探索、實驗、發(fā)現(xiàn)、討論、交流獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力,不斷提高自己的思維水平;趯滩囊陨系恼J識及課程標準的要求,我擬定本節(jié)課的教學目標為:

        1、知識目標:知道三角形內(nèi)角和是180°。

        2、能力目標:

       、偻ㄟ^學生算、拼、折、觀察等活動,培養(yǎng)學生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。

       、谀苓\用三角形內(nèi)角和是180°這一規(guī)律解決實際問題。

        3、情感目標:

       、僮寣W生在探索活動中產(chǎn)生對數(shù)學的好奇心,發(fā)展學生的空間觀念;②體驗探索的樂趣和成功的快樂,增強學好數(shù)學的信心。

        教學重點:三角形內(nèi)角和是180°的實際應用。

        教學難點:探索三角形的內(nèi)角和是180°。

        二、說教法

        在教學中,我主要采用激趣法、實驗法、直觀演示法、啟發(fā)式教學,以觀察法和練習法為輔助教學,(以學生為主體,教師為主導。

        新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。)強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者。

        在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態(tài)度,促使學生向著預定的目標發(fā)展的作用”。因此,我運用“量一量——算一算——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。

        三、說學法

        在學習中,以學生自己學習為主,充分開發(fā)學生的思維,通過實驗觀察,培養(yǎng)學生動手、動腦、分析、比較、綜合的能力。在整節(jié)課的探索活動中,我設計有獨立活動、分小組活動。在具體活動中,我讓學生自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。

        四、說教學程序

        1、談話激趣設疑導入:

        教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,我設計了兩個三角形哪一個三角形的內(nèi)角和大,用什么方法知道誰大誰小呢{設疑},這樣的問題。能最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,為學生進一步學習打好基礎。學生有了探索的愿望和興趣,可是不能沒有目標的去探索。

        2、驗證自主探索:

        把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動,即既驗證三角形的內(nèi)角和是否是180度?在活動中,把放開和引導有機的結合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——折一折。

        3、鞏固內(nèi)化:

        俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,練習題的設計有易到難,使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。

        4、拓展創(chuàng)新:

        數(shù)學具有嚴密的'邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我設計了這樣一道題目:學了三角形的內(nèi)角和后,你知道五邊形、六邊形的內(nèi)角和是多少度嗎?請小組合作選擇一個圖形求內(nèi)角和。這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。

        總之,本節(jié)課教學活動中我力求充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。教師是學生學習的組織者、引導者、合作者,而非知識的灌輸者,因而對一個問題的解決不是要教師將現(xiàn)成的方法傳授給學生,而是教給學生解決問題的策略,給學生一把在知識的海洋中行舟的槳,讓學生在積極思考,大膽嘗試,主動探索中,獲取成功并體驗成功的喜悅。

      【《三角形內(nèi)角和》說課稿】相關文章:

      三角形內(nèi)角和說課稿05-20

      《三角形的內(nèi)角和》說課稿01-25

      《三角形內(nèi)角和》說課稿03-04

      《三角形內(nèi)角和》說課稿模板(通用5篇)06-12

      三角形內(nèi)角和教案02-19

      《三角形的內(nèi)角和》教案03-01

      《三角形的內(nèi)角和》教案05-17

      三角形內(nèi)角和教案09-12

      《三角形的內(nèi)角和》教學反思06-23