欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教學(xué)計(jì)劃>高一數(shù)學(xué)教學(xué)計(jì)劃

      高一數(shù)學(xué)教學(xué)計(jì)劃

      時(shí)間:2022-12-24 19:08:19 教學(xué)計(jì)劃 我要投稿

      高一數(shù)學(xué)教學(xué)計(jì)劃15篇

        光陰的迅速,一眨眼就過去了,又將迎來新的工作,新的挑戰(zhàn),寫好計(jì)劃才不會(huì)讓我們努力的時(shí)候迷失方向哦?墒堑降资裁礃拥挠(jì)劃才是適合自己的呢?以下是小編為大家整理的高一數(shù)學(xué)教學(xué)計(jì)劃,僅供參考,希望能夠幫助到大家。

      高一數(shù)學(xué)教學(xué)計(jì)劃15篇

      高一數(shù)學(xué)教學(xué)計(jì)劃1

        教學(xué)計(jì)劃可以幫助教師理清教學(xué)思路,提高課堂效率。

        ●教學(xué)目標(biāo)

        (一)教學(xué)知識(shí)點(diǎn)

        1.了解全集的意義.

        2.理解補(bǔ)集的概念.

        (二)能力訓(xùn)練要求

        1.通過概念教學(xué),提高學(xué)生邏輯思維能力.

        2.通過教學(xué),提高學(xué)生分析、解決問題能力.

        (三)德育滲透目標(biāo) 滲透相對(duì)的觀點(diǎn).

        ●教學(xué)重點(diǎn) 補(bǔ)集的`概念.

        ●教學(xué)難點(diǎn)

        補(bǔ)集的有關(guān)運(yùn)算.

        ●教學(xué)方法 發(fā)現(xiàn)式教學(xué)法 通過引入實(shí)例,進(jìn)而對(duì)實(shí)例的分析,發(fā)現(xiàn)尋找其一般結(jié)果,歸納其普遍規(guī)律.

        ●教具準(zhǔn)備

        第一張:(記作1.2.2 A)

        ●教學(xué)過程 Ⅰ.復(fù)習(xí)回顧

        1.集合的子集、真子集如何尋求?其個(gè)數(shù)分別是多少? 2.兩個(gè)集合相等應(yīng)滿足的條件是什么?

        Ⅱ.講授新課 [師]事物都是相對(duì)的,集合中的部分元素與集合之間關(guān)系就是部分與整體的關(guān)系.

        請(qǐng)同學(xué)們由下面的例子回答問題: 投影片:(1.2.2 A)

        [生]集合B就是集合S中除去集合A之后余下來的集合. 即為如圖陰影部分

        由此借助上圖總結(jié)規(guī)律如下: 投影片:(1.2.2 B)

       、.課時(shí)小結(jié)

        1.能熟練求解一個(gè)給定集合的補(bǔ)集.

        2.注意一些特殊結(jié)論在以后解題中的應(yīng)用. Ⅴ.課后作業(yè)

      高一數(shù)學(xué)教學(xué)計(jì)劃2

        一、指導(dǎo)思想:

        在學(xué)校教學(xué)工作意見指導(dǎo)下,認(rèn)真落實(shí)學(xué)校對(duì)備課組工作的各項(xiàng)要求,嚴(yán)格執(zhí)行學(xué)校的各項(xiàng)教育教學(xué)制度和要求,強(qiáng)化數(shù)學(xué)教學(xué)研究,提高全組老師的教學(xué)、教研水平,明確任務(wù),團(tuán)結(jié)協(xié)作,圓滿完成教學(xué)教研任務(wù)。

        二、教材簡析

        本學(xué)期仍然使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》教材,在堅(jiān)持我校數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,在學(xué)生九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高學(xué)生所必要的數(shù)學(xué)素養(yǎng),以滿足學(xué)生的發(fā)展與社會(huì)進(jìn)步的需要,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。

        三、教學(xué)任務(wù)

        本學(xué)期授課內(nèi)容:必修一、必修二

        四、學(xué)生基本情況及教學(xué)目標(biāo)

        學(xué)生基本情況:本屆學(xué)生普遍基礎(chǔ)較差,學(xué)習(xí)自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。其次,學(xué)生的計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),因?yàn)閷W(xué)生底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。

        教學(xué)目標(biāo):認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅(jiān)持“抓兩頭、帶中間、整體推進(jìn)”,使每個(gè)學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。高一學(xué)生共有20個(gè)班,分兩個(gè)教學(xué)層次,每層個(gè)10個(gè)班。實(shí)驗(yàn)班的學(xué)生可根據(jù)實(shí)際情況提高教學(xué)目標(biāo)。平行班學(xué)生的主要任務(wù)有兩點(diǎn),第一點(diǎn):保證重點(diǎn)學(xué)生的數(shù)學(xué)成績穩(wěn)步上升,成為學(xué)生的優(yōu)勢(shì)科目;第二點(diǎn):加強(qiáng)數(shù)學(xué)學(xué)習(xí)比較困難學(xué)生的輔導(dǎo)培養(yǎng),增加其信息并逐步縮小數(shù)學(xué)成績差距。

        五、教法分析:

        1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的課堂素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

        2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。 3、在教學(xué)中引導(dǎo)學(xué)生通過類比,推廣,特殊化,化歸等方法,盡可能培養(yǎng)學(xué)生邏輯思維的習(xí)慣。

        六、教學(xué)措施:

        1、認(rèn)真落實(shí),搞好集體備課。每周進(jìn)行一次集體備課。各位老師根據(jù)自已承擔(dān)的.任務(wù),提前一周進(jìn)行單元式的備課,并出好本周的練習(xí)活頁。教研會(huì)時(shí),由一名老師作主要發(fā)言人,對(duì)本周的教材內(nèi)容作分析,然后大家研究討論其中的重點(diǎn)、難點(diǎn)、教學(xué)方法等。

        2、詳細(xì)計(jì)劃,保證練習(xí)質(zhì)量。教學(xué)中用配備資料《導(dǎo)學(xué)案》,要求學(xué)生按教學(xué)進(jìn)度完成相應(yīng)的習(xí)題,教師要提前向?qū)W生指出不做的題,以免影響學(xué)生的時(shí)間,每周以內(nèi)容“滾動(dòng)式”編一份練習(xí)試卷,學(xué)生完成后老師要收齊批改,對(duì)存在的普遍性問題要安排時(shí)間講評(píng)。

        3、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。尖尖班的教學(xué)進(jìn)度可適當(dāng)調(diào)整,教學(xué)難度要有所提升;其他各班要培育好本班的優(yōu)生,注意激發(fā)學(xué)生的學(xué)習(xí)興趣,隨時(shí)注意學(xué)生學(xué)習(xí)方法的指導(dǎo)。備課組也將組織學(xué)生上培優(yōu)班。

        4、加強(qiáng)輔導(dǎo)工作。對(duì)已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對(duì)性地進(jìn)行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學(xué)生。

        附:教學(xué)進(jìn)度計(jì)劃

        第一周集合

        第二周函數(shù)及其表示

        第三周函數(shù)的基本性質(zhì)

        第四周指數(shù)函數(shù)

        第五周對(duì)數(shù)函數(shù)

        第六周冪函數(shù)

        第七周函數(shù)與方程

        第八周函數(shù)的應(yīng)用

        第九周期中考試

        第十至十一周空間幾何體

        第十二周點(diǎn),直線,面之間的位置關(guān)系

        第十三至十四周直線與平面平行與垂直的判定與性質(zhì)

        第十五至十六周直線與方程

        第十七至十八周周圓與方程

        第十九至二十周期末考試

      高一數(shù)學(xué)教學(xué)計(jì)劃3

      日期





      周次





      學(xué)時(shí)





      內(nèi)容





      重點(diǎn)、難點(diǎn)





      9.1-9.7





      1





      5





      集合的含義與表示、





      集合間的基本關(guān)系、





      集合的基本運(yùn)算





      會(huì)求兩個(gè)簡單集合的并集與交集;會(huì)求給定子集的補(bǔ)集;能使用Venn圖表達(dá)集合的關(guān)系及運(yùn)算。難點(diǎn):理解概念





      9.8-9.14





      2





      5





      函數(shù)的概念、





      函數(shù)的表示法





      會(huì)求一些簡單函數(shù)的定義域和值域;能簡單應(yīng)用





      9.15-9.21





      3





      5





      函數(shù)的基本性質(zhì)、





      學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義





      9.22-9.28





      4





      3





      本章復(fù)習(xí)、測(cè)試






      9.29-10.5





      5






      國慶放假






      10.6-10.12





      6





      5





      指數(shù)與指數(shù)冪的運(yùn)算、





      指數(shù)函數(shù)及其性質(zhì)





      掌握冪的運(yùn)算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。難點(diǎn):理解概念





      10.13-10.19





      7





      5





      對(duì)數(shù)與對(duì)數(shù)運(yùn)算、





      對(duì)數(shù)函數(shù)及其性質(zhì)





      理解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式;探索并了解對(duì)數(shù)函數(shù)單調(diào)性與特殊點(diǎn);知道指數(shù)函數(shù)與對(duì)數(shù)函數(shù)互為反函數(shù)





      10.20-10.26





      8





      5





      冪函數(shù),復(fù)習(xí)、測(cè)試





      從五個(gè)具體的冪函數(shù)(y=x,y=x2,y=x3,y=x-1,y=x1/2)圖象中認(rèn)識(shí)冪函數(shù)的一些性質(zhì)





      10.27-11.2





      9





      5





      方程的根與函數(shù)零點(diǎn),





      二分法求方程近似解,





      幾類不同增長的模型、函數(shù)模型應(yīng)用舉例





      能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;





      對(duì)比指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會(huì)直線上升、指數(shù)爆炸、對(duì)數(shù)增長等不同函數(shù)類型增長的含義





      日期





      周次





      學(xué)時(shí)





      內(nèi)容





      重點(diǎn)、難點(diǎn)





      11.3-11.9





      10






      期中復(fù)習(xí)及考試






      11.10-11.16





      11





      5





      講評(píng)試卷





      分析知識(shí)點(diǎn)的掌握情況





      11.17-11.23





      12





      5





      任意角和弧度制,





      任意角的三角函數(shù)





      了解任意角的概念和弧度制,能進(jìn)行弧度與度的互化,借助單位圓理解任意角三角函數(shù)的定義。





      11.24-11.30





      13





      5





      三角函數(shù)的誘導(dǎo)公式,





      三角函數(shù)的圖象與性質(zhì)





      借助單位圓中的三角函數(shù)推導(dǎo)出誘導(dǎo)公式,能畫出








      的圖象,理解三角函數(shù)的周期性、單調(diào)性、最值等性質(zhì)

      12.1-12.7





      14





      5





      函數(shù)








      的圖象,

      三角函數(shù)模型的簡單應(yīng)用





      了解函數(shù)








      的實(shí)際意義,能借助計(jì)算器畫出函數(shù)




      的圖象,并觀察參數(shù)對(duì)圖象的影響。會(huì)用三角函數(shù)解決一些簡單實(shí)際問題。

      12.8-12.14





      15





      5





      復(fù)習(xí)、測(cè)試





      平面向量的實(shí)際背景及基本概念





      通過力的`分析,了解向量的實(shí)際背景,理解平面向量和向量相等的含義,理解向量的幾何表示





      12.15-12.21





      16





      5





      平面向量的線性運(yùn)算,





      平面向量的基本定理及坐標(biāo)表示





      掌握向量加、減法的運(yùn)算,數(shù)乘運(yùn)算,并理解其幾何意義以及兩個(gè)向量共線的含義。了解向量的基本定理、運(yùn)算性質(zhì)及其幾何意義。掌握平面向量的正交分解及其坐標(biāo)表示





      12.22-12.28





      17





      5





      平面向量的數(shù)量積





      平面向量的應(yīng)用舉例





      本章復(fù)習(xí)、測(cè)試





      理解向量數(shù)量積的含義及其物理意義,會(huì)進(jìn)行數(shù)量積的運(yùn)算,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。用向量解決某些簡單的幾何問題。





      12.29-1.4





      18





      5





      兩角和與差的正弦、余弦和正切公式





      用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式,并能用兩角差的余弦公式導(dǎo)出兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式





      1.5-1.11





      19





      5





      簡單的三角恒等變換,期末復(fù)習(xí)





      能運(yùn)用上述公式進(jìn)行簡單的恒等變換。進(jìn)行知識(shí)的梳理。





      1.12-1.18





      20






      復(fù)習(xí)及期未考試






      高一數(shù)學(xué)教學(xué)計(jì)劃4

        一、制定的依據(jù)

        隨著高一新教材的全面實(shí)施,本年級(jí)數(shù)學(xué)學(xué)科的教學(xué)進(jìn)入了新課程改革實(shí)際階段,

        本計(jì)劃制定的依據(jù)主要是以下三個(gè):

        (1)二期課改的理念:一個(gè)為本、三類課程、三維目標(biāo)

        (2)新數(shù)學(xué)課程標(biāo)準(zhǔn)

        (3)三本書:課本、教參、練習(xí)冊(cè)

        (4)本校教研組對(duì)本學(xué)期學(xué)科的要求

        二、基本情況分析

        高一(3)全班共52人,男生24人,_28人。上學(xué)期期末為區(qū)統(tǒng)測(cè),平均分為54.1分,合格率為5%,優(yōu)秀率為0%,低分率為56%。高一(4)全班共53人,男生26人,_27人。上學(xué)期期末為區(qū)統(tǒng)測(cè),平均分為50.3分,合格率為3%,優(yōu)秀率為0%,低分率為62%。

        從上學(xué)期期末統(tǒng)測(cè)來看,我班的學(xué)生在數(shù)學(xué)學(xué)習(xí)上可以說既有優(yōu)勢(shì)也有不足。優(yōu)勢(shì)是:1、有潛力;2、師生關(guān)系比較融洽,互相信任,配合默契。存在的不足是:1、聰明有余,而努力不足;2、男生聰明,上課積極,但不夠勤奮、踏實(shí);_認(rèn)真,但上課效率不高,學(xué)得不夠靈活。3、從期末統(tǒng)測(cè)來看,差生的比重大;4、個(gè)別學(xué)生懶惰成性,學(xué)習(xí)態(tài)度、學(xué)習(xí)習(xí)慣極差;5、平時(shí)學(xué)習(xí)不夠用心,自覺,專心思考、鉆研的時(shí)間太少;6、一些同學(xué)學(xué)習(xí)成績起伏大,不穩(wěn)定;7、一些好學(xué)生滿足現(xiàn)狀,驕傲自滿,思想放松,導(dǎo)致成績退步;8、學(xué)習(xí)興趣,動(dòng)力,上進(jìn)心不足。

        三、本學(xué)期力爭(zhēng)達(dá)到的目標(biāo)

        1、完成三類課程的教學(xué)任務(wù);A(chǔ)性課程要扎扎實(shí)實(shí),夯實(shí)基礎(chǔ);拓展性課程要適當(dāng)延伸和補(bǔ)充,進(jìn)一步提高學(xué)生的能力和水平;研究性課程要重過程,不重結(jié)果,培養(yǎng)學(xué)生自主學(xué)習(xí),探索研究的習(xí)慣與品質(zhì)。

        2、完成新數(shù)學(xué)課程標(biāo)準(zhǔn)規(guī)定的教學(xué)目標(biāo)。

        3、進(jìn)一步規(guī)范學(xué)生的學(xué)習(xí)習(xí)慣(包括預(yù)習(xí)、上課、作業(yè)、復(fù)習(xí)等)。

        4、轉(zhuǎn)化學(xué)困生,提高成績。有些學(xué)生成績總是上不去,以為不是塊讀數(shù)學(xué)的料,久而久之,產(chǎn)生放棄數(shù)學(xué),討厭數(shù)學(xué)的心理。由此,我在學(xué)習(xí)中,要多方面激發(fā)其學(xué)習(xí)興趣,耐心指導(dǎo),不斷激勵(lì)。讓其感受到成功的喜悅,增強(qiáng)自信心,讓其喜歡數(shù)學(xué),找到學(xué)習(xí)數(shù)學(xué)的樂趣。

        5、一手提高優(yōu)秀率,一手減少不及格人數(shù),力爭(zhēng)班與班之間無明顯差距。

        四、具體措施

        1、從期末統(tǒng)測(cè)來看,學(xué)困生的比重大,優(yōu)秀率沒有。為此要進(jìn)行分層教學(xué),學(xué)困生要注重基本題、常規(guī)題的反復(fù)操練,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的信心和興趣。好學(xué)生要避免無謂失分的情況,注重?cái)?shù)學(xué)思想、方法、能力的培養(yǎng),著眼于高三?偠灾瑢W(xué)困生還是繼續(xù)注重雙基的訓(xùn)練,將做過,講過的題目再反復(fù)操練。另外也不能忽略了高分學(xué)生的培養(yǎng),給好學(xué)生布置一些有質(zhì)量的課外題,定期查閱,批改,答疑。這樣,通過抓兩頭,促中間,帶動(dòng)整體水平的提高。

        2、提高教學(xué)質(zhì)量,要抓好課堂教學(xué)這一主陣地。根據(jù)課程標(biāo)準(zhǔn),教參,切實(shí)落實(shí)教學(xué)目標(biāo),做到全面不遺漏,要以考綱為標(biāo)準(zhǔn)。另外,每節(jié)課要安排必要的練習(xí)時(shí)間,多安排隨堂測(cè)試是有好處的。試題講解時(shí)要突出方法,突出思考、分析過程,要暴露學(xué)生解題過程中思維、概念、計(jì)算等方面的錯(cuò)誤,對(duì)學(xué)生的錯(cuò)誤要有針對(duì)性的矯正,補(bǔ)償。不就題講題,注意適當(dāng)?shù)淖兪。幫助學(xué)生掌握解題的方法,積累解題經(jīng)驗(yàn),課后要引導(dǎo)學(xué)生進(jìn)行反思、訂正,以加深對(duì)概念的理解,方法的掌握。

        3、從期末統(tǒng)測(cè)看學(xué)生應(yīng)用能力明顯不足。教師要通過平時(shí)教學(xué)培養(yǎng)學(xué)生閱讀審題、數(shù)學(xué)建模的能力。讓學(xué)生熟悉一些常見的實(shí)際問題的背景,及解決這些問題的相關(guān)數(shù)學(xué)知識(shí)。

        4、期末統(tǒng)測(cè)中選擇題普遍得分不高,應(yīng)引起我們的'重視,《高一數(shù)學(xué)教學(xué)計(jì)劃》由于選擇題只有答案,所以解答選擇題的策略是:合理、迅速、檢驗(yàn),要善于轉(zhuǎn)化,避免機(jī)械套用公式、定理和“小題大做,舍近求遠(yuǎn),簡單問題復(fù)雜化”的不良習(xí)慣。另外,由填空題的錯(cuò)誤表達(dá)和解答題的計(jì)算粗心、考慮不全面而造成的無謂失分,導(dǎo)致了分?jǐn)?shù)上不去和好學(xué)生考不出高分。所以,為保證得到該得的分?jǐn)?shù),要求必須認(rèn)真審題,明確要求,弄清概念,思考全面,正確表達(dá)。

        5、注重講練結(jié)合。要多安排課堂練習(xí),當(dāng)堂檢測(cè)。當(dāng)日作業(yè),周練,月考要及時(shí)安排時(shí)間進(jìn)行講評(píng)。平時(shí)要注意練習(xí)的有效性(適當(dāng)題量,恰當(dāng)難度,精選精練),規(guī)范書寫,認(rèn)真批改,及時(shí)講評(píng),反饋矯正(建立錯(cuò)題集,進(jìn)行再認(rèn)識(shí))。堅(jiān)決反對(duì)只練不講,只講不練。評(píng)講中要針對(duì)學(xué)生的錯(cuò)因進(jìn)行分析,找出存在的問題,有針對(duì)性地加以彌補(bǔ)缺漏,發(fā)現(xiàn)問題要跟蹤到題,跟蹤到人。本次統(tǒng)測(cè)中許多試題平時(shí)講過,練過,考過,但錯(cuò)誤仍然很多,值得我們重視與反思。

        五、保障措施和可行性

        1、關(guān)愛學(xué)生,嚴(yán)格要求,用情實(shí)現(xiàn)師與生的溝通,用景實(shí)現(xiàn)教與學(xué)的融合;

        2、加強(qiáng)基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué)和基本能力的培養(yǎng),精心組織教學(xué)內(nèi)容,難度要適當(dāng),要追求最有效的訓(xùn)練,要清楚哪些學(xué)生需要哪些訓(xùn)練,切實(shí)注重部分學(xué)生的補(bǔ)差和提高,關(guān)注全體學(xué)生的學(xué),基本教學(xué)要求要有效落實(shí)到位;

        3、注重加強(qiáng)知識(shí)之間的聯(lián)系和綜合,內(nèi)容和方式要更新,有層次推進(jìn),多角度理解,反思總結(jié),重視教與學(xué)的方式多樣化;

        4、激發(fā)興趣,重視過程教學(xué),重視錯(cuò)誤分析型學(xué)習(xí);

        5、重視開放性、研究性問題的教學(xué),關(guān)注主觀評(píng)判性問題的學(xué)習(xí),研究新題型,真正發(fā)展學(xué)生的數(shù)學(xué)素質(zhì),培養(yǎng)其數(shù)學(xué)能力。

        6、結(jié)合二期課改新課程標(biāo)準(zhǔn)、教參,扎實(shí)落實(shí)集體備課,通過集體討論,抓住教學(xué)內(nèi)容的實(shí)質(zhì),形成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題、月考題。

        7、加大課堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。

        8、加強(qiáng)課外輔導(dǎo),利用中午和晚間休息時(shí)間輔導(dǎo)學(xué)生答疑解惑、找學(xué)生談話等等。課外輔導(dǎo)是課堂的有力補(bǔ)充,是提高數(shù)學(xué)成績的有力手段。

        9、搞好單元考試、階段性考試的分析。學(xué)生只有通過不斷的練習(xí)才能提高成績,單元考試、階段性考試是的練習(xí),每次都要做好分析,并指導(dǎo)學(xué)生糾錯(cuò)。在分析過程中要遵循自主的思維習(xí)慣,使學(xué)生真正理解,過關(guān)。

        10、學(xué)生除配套練習(xí)冊(cè)外,每人訂一本《一課一練》作為補(bǔ)充練習(xí),并要求每周寫學(xué)習(xí)感悟與學(xué)習(xí)疑惑,每人準(zhǔn)備一本錯(cuò)題本收集錯(cuò)題,每人在課本留白處做好課堂筆記。另外,我自己有充足的時(shí)間與資料,進(jìn)行習(xí)題精選與練習(xí)補(bǔ)充。

        六、總目標(biāo)達(dá)成度與現(xiàn)階段教學(xué)目標(biāo)達(dá)成度的相關(guān)分析

        本學(xué)期一定要在如何提高課堂效率上下功夫,同時(shí)抓平時(shí)的學(xué)習(xí)習(xí)慣,學(xué)習(xí)規(guī)范,作業(yè)質(zhì)量等細(xì)節(jié)問題,切實(shí)提高學(xué)習(xí)的有效性。另外,在上學(xué)期的基礎(chǔ)上,本學(xué)期力爭(zhēng)消滅不及格,并使那些因無謂失分而導(dǎo)致分?jǐn)?shù)起伏不定的學(xué)生能穩(wěn)定下來,從而進(jìn)一步提高優(yōu)秀率。

        目前,我班面臨的困難與問題還非常多,好在學(xué)生的學(xué)習(xí)勢(shì)頭保持良好。我和我們班的全體學(xué)生,將盡我們所能,力爭(zhēng)在本學(xué)期能有所收獲,更進(jìn)一步。

        七、課堂教學(xué)改革與創(chuàng)新、信息技術(shù)的應(yīng)用與整合

        1、結(jié)合二期課改,將“接受式學(xué)習(xí)”變?yōu)椤爸鲃?dòng)式學(xué)習(xí)”,“啟發(fā)式學(xué)習(xí)”,將“要我學(xué)”變?yōu)椤拔乙獙W(xué)”,并積極開展拓展性課程,研究性課程,培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力。

        2、加強(qiáng)基礎(chǔ)訓(xùn)練,但要避免“題海”戰(zhàn)術(shù),要精講精練,舉一反三,突出方法,總結(jié)經(jīng)驗(yàn),采取變式訓(xùn)練,專題訓(xùn)練等多種方式。

        3、針對(duì)本學(xué)期三角公式多的特點(diǎn),設(shè)計(jì)一些學(xué)生學(xué)習(xí)支持材料,如公式默寫表,公式背誦口訣,公式記憶方法,公式小卡片等。

        4、借助“TI圖形計(jì)算器”強(qiáng)大的圖形功能以及多媒體教學(xué)設(shè)備,制作精美課件,輔助教學(xué),使教學(xué)內(nèi)容更加形象直觀,通俗易懂。

        5、利用“Bb”系統(tǒng)建設(shè)e課堂,建設(shè)網(wǎng)絡(luò)學(xué)習(xí)包。

        6、寫數(shù)學(xué)感悟或一周問題,與學(xué)生進(jìn)行書面討論交流,答疑解惑,給予學(xué)法指導(dǎo)。

        7、對(duì)不同層次的學(xué)生進(jìn)行分層輔導(dǎo),分層補(bǔ)充課外練習(xí)。

        8、進(jìn)行數(shù)學(xué)演講,了解數(shù)學(xué)史,寫寫數(shù)學(xué)周記等,提升學(xué)生的數(shù)學(xué)素養(yǎng)與興趣。

      高一數(shù)學(xué)教學(xué)計(jì)劃5

        (一)教學(xué)目標(biāo)

        1.知識(shí)與技能

        (1)理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡單集合的并集和交集.

        (2)能使用Venn圖表示集合的并集和交集運(yùn)算結(jié)果,體會(huì)直觀圖對(duì)理解抽象概念的作用。

        (3)掌握的關(guān)的術(shù)語和符號(hào),并會(huì)用它們正確進(jìn)行集合的并集與交集運(yùn)算。

        2.過程與方法

        通過對(duì)實(shí)例的分析、思考,獲得并集與交集運(yùn)算的法則,感知并集和交集運(yùn)算的實(shí)質(zhì)與內(nèi)涵,增強(qiáng)學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識(shí)和能力.

        3.情感、態(tài)度與價(jià)值觀

        通過集合的并集與交集運(yùn)算法則的發(fā)現(xiàn)、完善,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)思想認(rèn)識(shí)客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

        (二)教學(xué)重點(diǎn)與難點(diǎn)

        重點(diǎn):交集、并集運(yùn)算的含義,識(shí)記與運(yùn)用.

        難點(diǎn):弄清交集、并集的含義,認(rèn)識(shí)符號(hào)之間的區(qū)別與聯(lián)系

        (三)教學(xué)方法

        在思考中感知知識(shí),在合作交流中形成知識(shí),在獨(dú)立鉆研和探究中提升思維能力,嘗試實(shí)踐與交流相結(jié)合.

        (四)教學(xué)過程

        教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動(dòng) 設(shè)計(jì)意圖

        提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實(shí)數(shù)加法運(yùn)算,探究集合能否進(jìn)行類似“加法”運(yùn)算.

        (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

        (2)A = {x | x是有理數(shù)},

        B = {x | x是無理數(shù)},

        C = {x | x是實(shí)數(shù)}.

        師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實(shí)數(shù)能進(jìn)行加減運(yùn)算,探究集合是否有相應(yīng)運(yùn)算.

        生:集合A與B的元素合并構(gòu)成C.

        師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運(yùn)算. 生疑析疑,

        導(dǎo)入新知

        形成

        概念

        思考:并集運(yùn)算.

        集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.

        定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:

        師:請(qǐng)同學(xué)們將上述兩組實(shí)例的共同規(guī)律用數(shù)學(xué)語言表達(dá)出來.

        學(xué)生合作交流:歸納→回答→補(bǔ)充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

        應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.

        例2 設(shè)集合A = {x | –1

        例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

        例2解:A∪B = {x |–1

        師:求并集時(shí),兩集合的相同元素如何在并集中表示.

        生:遵循集合元素的.互異性.

        師:涉及不等式型集合問題.

        注意利用數(shù)軸,運(yùn)用數(shù)形結(jié)合思想求解.

        生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時(shí)注意集合元素的互異性. 學(xué)生嘗試求解,老師適時(shí)適當(dāng)指導(dǎo),評(píng)析.

        固化概念

        提升能力

        探究性質(zhì) ①A∪A = A, ②A∪ = A,

       、跘∪B = B∪A,

       、 ∪B, ∪B.

        老師要求學(xué)生對(duì)性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.

        形成概念 自學(xué)提要:

       、儆蓛杉系乃性睾喜⒖傻脙杉系牟⒓,而由兩集合的公共元素組成的集合又會(huì)是兩集合的一種怎樣的運(yùn)算?

        ②交集運(yùn)算具有的運(yùn)算性質(zhì)呢?

        交集的定義.

        由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.

        即A∩B = {x | x∈A且x∈B}

        Venn圖表示

        老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識(shí),自我體會(huì)交集運(yùn)算的含義. 并總結(jié)交集的性質(zhì).

        生:①A∩A = A;

       、贏∩ = ;

       、跘∩B = B∩A;

       、蹵∩ ,A∩ .

        師:適當(dāng)闡述上述性質(zhì).

        自學(xué)輔導(dǎo),合作交流,探究交集運(yùn)算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).

        應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},

        B = {3,5,8,12},C = {8}.

        (2)新華中學(xué)開運(yùn)動(dòng)會(huì),設(shè)

        A = {x | x是新華中學(xué)高一年級(jí)參加百米賽跑的同學(xué)},

        B = {x | x是新華中學(xué)高一年級(jí)參加跳高比賽的同學(xué)},求A∩B.

        例2 設(shè)平面內(nèi)直線l1上點(diǎn)的集合為L1,直線l2上點(diǎn)的集合為L2,試用集合的運(yùn)算表示l1,l2的位置關(guān)系. 學(xué)生上臺(tái)板演,老師點(diǎn)評(píng)、總結(jié).

        例1 解:(1)∵A∩B = {8},

        ∴A∩B = C.

        (2)A∩B就是新華中學(xué)高一年級(jí)中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級(jí)既參加百米賽跑又參加跳高比賽的同學(xué)}.

        例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點(diǎn),平行或重合.

        (1)直線l1,l2相交于一點(diǎn)P可表示為 L1∩L2 = {點(diǎn)P};

        (2)直線l1,l2平行可表示為

        L1∩L2 = ;

        (3)直線l1,l2重合可表示為

        L1∩L2 = L1 = L2. 提升學(xué)生的動(dòng)手實(shí)踐能力.

        歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}

        交集:A∩B = {x | x∈A且x∈B}

        性質(zhì):①A∩A = A,A∪A = A,

       、贏∩ = ,A∪ = A,

       、跘∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)

        老師點(diǎn)評(píng)、闡述 歸納知識(shí)、構(gòu)建知識(shí)網(wǎng)絡(luò)

        課后作業(yè) 1.1第三課時(shí) 習(xí)案 學(xué)生獨(dú)立完成 鞏固知識(shí),提升能力,反思升華

        備選例題

        例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

        【解析】法一:∵A∩B = {–2},∴–2∈B,

        ∴a – 1 = –2或a + 1 = –2,

        解得a = –1或a = –3,

        當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

        當(dāng)a = –3時(shí),A = {–1,10,6},A不合要求,a = –3舍去

        ∴a = –1.

        法二:∵A∩B = {–2},∴–2∈A,

        又∵a2 + 1≥1,∴a2 – 3 = –2,

        解得a =±1,

        當(dāng)a = 1時(shí),A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

        當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

        例2 集合A = {x | –1

        (1)若A∩B = ,求a的取值范圍;

        (2)若A∪B = {x | x<1},求a的取值范圍.

        【解析】(1)如下圖所示:A = {x | –1

        ∴數(shù)軸上點(diǎn)x = a在x = – 1左側(cè).

        ∴a≤–1.

        (2)如右圖所示:A = {x | –1

        ∴數(shù)軸上點(diǎn)x = a在x = –1和x = 1之間.

        ∴–1

        例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實(shí)數(shù)時(shí),A∩B 與A∩C = 同時(shí)成立?

        【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

        由A∩B 和A∩C = 同時(shí)成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

        當(dāng)a = 5時(shí),A = {x | x2 – 5x + 6 = 0} = {2,3},此時(shí)A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.

        當(dāng)a = –2時(shí),A = {x | x2 + 2x – 15 = 0} = {3,5},此時(shí)A∩B 與A∩C = ,同時(shí)成立,∴滿足條件的實(shí)數(shù)a = –2.

        例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

        【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

        當(dāng)x = 3時(shí),A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.

        當(dāng)x = –3時(shí),A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.

        當(dāng)x = 5時(shí),A = {25,9,– 4},B = {0,– 4,9},此時(shí)A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.

        綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

      高一數(shù)學(xué)教學(xué)計(jì)劃6

        一、具體目標(biāo):

        1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

        2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

        3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的'實(shí)際問題的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

        4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

        5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

        6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)

        二、本學(xué)期要達(dá)到的教學(xué)目標(biāo)

        1.雙基要求:

        在基礎(chǔ)知識(shí)方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照一定的程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、能使用計(jì)數(shù)器及簡單的推理、畫圖。

        2.能力培養(yǎng):

        能運(yùn)用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì);會(huì)根據(jù)法則、公式正確的進(jìn)行運(yùn)算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計(jì)運(yùn)算途徑;會(huì)提出、分析和解決簡單的帶有實(shí)際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,形成數(shù)學(xué)的意思;從而通過獨(dú)立思考,會(huì)從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。

        3. 思想教育:

        三、進(jìn)度授課計(jì)劃及進(jìn)度表(略)

        高中是人生中的關(guān)鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級(jí)上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃,希望大家喜歡。

      高一數(shù)學(xué)教學(xué)計(jì)劃7

        一、高考要求

        ①了解映射的概念,理解函數(shù)的概念;

       、诹私夂瘮(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡單函數(shù)單調(diào)性奇偶性的方法;

       、哿私夥春瘮(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會(huì)求一些簡單函數(shù)的反函數(shù);

       、芾斫夥?jǐn)?shù)指數(shù)冪的概念,掌握有理數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì);

       、堇斫鈱(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);⑥能夠應(yīng)用函數(shù)的`性質(zhì)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)性質(zhì)解決某些簡單實(shí)際問題.

        二、兩點(diǎn)解讀

        重點(diǎn):①求函數(shù)定義域;②求函數(shù)的值域或最值;③求函數(shù)表達(dá)式或函數(shù)值;④二次函數(shù)與二次方程、二次不等式相結(jié)合的有關(guān)問題;⑤指數(shù)函數(shù)與對(duì)數(shù)函數(shù);⑥求反函數(shù);⑦利用原函數(shù)和反函數(shù)的定義域值域互換關(guān)系解題.

        難點(diǎn):①抽象函數(shù)性質(zhì)的研究;②二次方程根的分布.

        三、課前訓(xùn)練

        1.函數(shù)的定義域是 ( D )

        (A) (B) (C) (D)

        2.函數(shù)的反函數(shù)為 ( B )

        (A) (B)

        (C) (D)

        3.設(shè)則 .

        4.設(shè),函數(shù)是增函數(shù),則不等式的解集為 (2,3)

        四、典型例題

        例1 設(shè),則的定義域?yàn)?( )

        (A) (B)

        (C) (D)

        解:∵在中,由,得, ∴,

        ∴在中,.

        故選B

        例2 已知是上的減函數(shù),那么a的取值范圍是 ( )

        (A) (B) (C) (D)

        解:∵是上的減函數(shù),當(dāng)時(shí),,∴;又當(dāng)時(shí),,∴,∴,且,解得:.∴綜上,,故選C

        例3 函數(shù)對(duì)于任意實(shí)數(shù)滿足條件,若,則

        解:∵函數(shù)對(duì)于任意實(shí)數(shù)滿足條件,

        ∴,即的周期為4,

      高一數(shù)學(xué)教學(xué)計(jì)劃8

        一、內(nèi)容及其解析

        1。內(nèi)容:這是一節(jié)建立直線的點(diǎn)斜式方程(斜截式方程)的概念課。學(xué)生在此之前已學(xué)習(xí)了在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素,已知直線上的一點(diǎn)和直線的傾斜角(斜率)可以確定一條直線,已知兩點(diǎn)也可以確定一條直線。本節(jié)要求利用確定一條直線的幾何要素直線上的一點(diǎn)和直線的傾斜角,建立直線方程,通過方程研究直線。

        2。解析:直線方程屬于解析幾何的基礎(chǔ)知識(shí),是研究解析幾何的開始。從整體來看,直線方程初步體現(xiàn)了解析幾何的實(shí)質(zhì)用代數(shù)的知識(shí)研究幾何問題。從集合與對(duì)應(yīng)的角度構(gòu)建了平面上的直線與二元一次方程的一一對(duì)應(yīng)關(guān)系,是學(xué)習(xí)解析幾何的基礎(chǔ)。對(duì)后續(xù)圓、直線與圓的位置關(guān)系等內(nèi)容的學(xué)習(xí),無論是知識(shí)上還是方法上都有著積極的意義。從本節(jié)來看,學(xué)生對(duì)直線既是熟悉的,又是陌生的。熟悉是學(xué)生知道一次函數(shù)的圖像是直線,陌生是用解析幾何的方法求直線的方程。直線的點(diǎn)斜式方程是推導(dǎo)其它直線方程的基礎(chǔ),在直線方程中占有重要地位。

        二、目標(biāo)及其解析

        1。目標(biāo)

        掌握直線的點(diǎn)斜式和斜截式方程的推導(dǎo)過程,并能根據(jù)條件熟練求出直線的點(diǎn)斜式方程和斜截式方程。

        2。解析

       、僦乐本上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。知道建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。

       、诶斫饨⒅本點(diǎn)斜式方程就是用直線上任意一點(diǎn)與已知點(diǎn)這兩個(gè)點(diǎn)的坐標(biāo)表示斜率。

       、劢(jīng)歷直線的點(diǎn)斜式方程的推導(dǎo)過程,體會(huì)直線和直線方程之間的關(guān)系,滲透解析幾何的基本思想。

       、茉谟懻撝本的點(diǎn)斜式方程的應(yīng)用條件與建立直線的斜截式方程中,體會(huì)分類討論的思想,體會(huì)特殊與一般思想。

        ⑤在建立直線方程的過程中,體會(huì)數(shù)形結(jié)合思想。在直線的斜截式方程與一次函數(shù)的比較中,體會(huì)兩者區(qū)別與聯(lián)系,特別是體會(huì)兩者數(shù)形結(jié)合的區(qū)別,進(jìn)一步體會(huì)解析幾何的基本思想。

        三、教學(xué)問題診斷分析

        1。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù),知道一次函數(shù)的圖像是一條直線,因此學(xué)生對(duì)研究直線的方程可能心存疑慮,產(chǎn)生疑慮的原因是學(xué)生初次接觸到解析幾何,不明確解析幾何的實(shí)質(zhì),因此應(yīng)跟學(xué)生講請(qǐng)解析幾何與函數(shù)的區(qū)別。

        2。學(xué)生能聽懂建立直線的點(diǎn)斜式的過程,但可能會(huì)不知道為什么要這么做。因此還是要跟學(xué)生講清坐標(biāo)法的實(shí)質(zhì)把幾何問題轉(zhuǎn)化成代數(shù)問題,用代數(shù)運(yùn)算研究幾何圖形性質(zhì)。

        3。由于學(xué)生沒有學(xué)習(xí)曲線與方程,因此學(xué)生難以理解直線與直線的方程,甚至認(rèn)為驗(yàn)證直線是方程的直線是多余的。這里讓學(xué)生初步理解就行,隨著后面教學(xué)的深入和反復(fù)滲透,學(xué)生會(huì)逐步理解的。

        四、教法與學(xué)法分析

        1、教法分析

        新課標(biāo)指出,學(xué)生是教學(xué)的主體。教師要以學(xué)生活動(dòng)為主線。在原有知識(shí)的基礎(chǔ)上,構(gòu)建新的知識(shí)體系。本節(jié)課可采用啟發(fā)式問題教學(xué)法教學(xué)。通過問題串,啟發(fā)學(xué)生自主探究來達(dá)到對(duì)知識(shí)的發(fā)現(xiàn)和接受。通過縱向挖掘知識(shí)的深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新精神。并且使學(xué)生的有效思維量加大,隨著對(duì)新知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行,使學(xué)生在解決問題的同時(shí),形成方法。

        2、學(xué)法分析

        改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅僅限于對(duì)概念結(jié)論和技能的記憶、模仿和積累。獨(dú)立思考,自主探索,動(dòng)手實(shí)踐,合作交流,閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動(dòng)性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的再創(chuàng)造的過程。為學(xué)生形成積極主動(dòng)的、多樣的學(xué)習(xí)方式創(chuàng)造有利的條件。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨(dú)立思考,積極探索的習(xí)慣。

        通過直線的點(diǎn)斜式方程的推導(dǎo),加深對(duì)用坐標(biāo)求方程的`理解;通過求直線的點(diǎn)斜式方程,理解一個(gè)點(diǎn)和方向可以確定一條直線;通過求直線的斜截式方程,熟悉用待定系數(shù)法求的過程,讓學(xué)生利用圖形直觀啟迪思維,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性思維質(zhì)的飛躍。讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

        五、教學(xué)過程設(shè)計(jì)

        問題1:在直角坐標(biāo)系內(nèi)確定直線一條直線幾何要素是什么?如何將這些幾何要素代數(shù)化?

        [設(shè)計(jì)意圖]讓學(xué)生理解直線上的一點(diǎn)和直線的傾斜角的代數(shù)含義是這個(gè)點(diǎn)的坐標(biāo)和這條直線的斜率。

        問題2:建立直線方程的實(shí)質(zhì)是什么?

        [設(shè)計(jì)意圖]建立直線方程就是將確定直線的幾何要素用代數(shù)形式表示出來。也就是將直線上點(diǎn)的坐標(biāo)滿足的條件用方程表示出來。

        引例:若直線經(jīng)過點(diǎn),斜率為,點(diǎn)在直線上運(yùn)動(dòng),那么點(diǎn)的坐標(biāo)滿足什么條件?

        [設(shè)計(jì)意圖]讓學(xué)生通過具體例子經(jīng)歷求直線的點(diǎn)斜式方程的過程,初步了解求直線方程的步驟。

        問題2。1要得到坐標(biāo)滿足什么條件,就是找出與、斜率為之間的關(guān)系,它們之間有何種關(guān)系?

       。ㄟ^與兩點(diǎn)的直線的斜率為)

        [設(shè)計(jì)意圖]讓學(xué)生尋找確定直線的條件,體會(huì)動(dòng)中找靜。

        問題2。2如何將上述條件用代數(shù)形式表示出來?

        [設(shè)計(jì)意圖]讓學(xué)生理解和體會(huì)用坐標(biāo)表示確定直線的條件。

        用代數(shù)式表示出來就是,即。

        問題2。3為什么說是滿足條件的直線方程?

        [設(shè)計(jì)意圖]讓學(xué)生初步感受直線與直線方程的關(guān)系。

        此時(shí)的坐標(biāo)也滿足此方程。所以當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),其坐標(biāo)滿足。

        另外以方程的解為坐標(biāo)的點(diǎn)也在直線上。

        所以我們得到經(jīng)過點(diǎn),斜率為的直線方程是。

        問題2。4:能否說方程是經(jīng)過,斜率為的直線方程?

        [設(shè)計(jì)意圖]讓學(xué)生初步感受直線(曲線)方程的完備性。盡管學(xué)生不可能深刻理解直線(曲線)方程的完備性,但在這里仍要滲透,為后因理解曲線方程的埋下伏筆。

        問題3:推廣:已知一直線過一定點(diǎn),且斜率為k,怎樣求直線的方程?

        [設(shè)計(jì)意圖]由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的是歸納概括能力。

        問題4:直線上有無數(shù)個(gè)點(diǎn),如何才能選取所有的點(diǎn)?以前學(xué)習(xí)中有沒有類似的處理問題的方法?

        [設(shè)計(jì)意圖]引導(dǎo)學(xué)生掌握解析幾何取點(diǎn)的方法。

        引導(dǎo)學(xué)生求出直線的點(diǎn)斜式方程

        注:在求直線方程的過程中要說明直線上的點(diǎn)的坐標(biāo)滿足方程,也要說明以方程的解為坐標(biāo)的點(diǎn)在直線上,即方程的解與直線上的點(diǎn)的坐標(biāo)是一一對(duì)應(yīng)的。為以后學(xué)習(xí)曲線與方程打好基礎(chǔ)。教學(xué)中讓學(xué)生感覺到這一點(diǎn)就可以。不必做過多解釋。

        問題5:從求直線方程的過程中,你知道了求幾何圖形的方程的步驟有哪些嗎?

        [設(shè)計(jì)意圖]讓學(xué)生初步感受解析幾何求曲線方程的步驟。

       、僭O(shè)點(diǎn)———用表示曲線上任一點(diǎn)的坐標(biāo);

       、趯ふ覘l件————寫出適合條件;

       、哿谐龇匠獭米鴺(biāo)表示條件,列出方程

       、芑啞匠虨樽詈喰问;

       、葑C明————證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。

        例1分別求經(jīng)過點(diǎn),且滿足下列條件的直線的方程,并畫出直線。

       、艃A斜角

        ⑵斜率

       、桥c軸平行;

       、扰c軸平行。

        [設(shè)計(jì)意圖]讓學(xué)生掌握直線的點(diǎn)斜式的使用條件,把直線的點(diǎn)斜式方程作公式用,讓學(xué)生熟練掌握直線的點(diǎn)斜式方程,并理解直線的點(diǎn)斜式方程使用條件。

        注:⑴應(yīng)用直線的點(diǎn)斜式方程的條件是:①定點(diǎn),②斜率存在,即直線的傾斜角。

       、婆c的區(qū)別。后者表示過,且斜率為k的直線方程,而前者不包括。

        ⑶當(dāng)直線的傾斜角時(shí),直線的斜率,直線方程是。

        ⑷當(dāng)直線的傾斜角時(shí),此時(shí)不能直線的點(diǎn)斜式方程表示直線,直線方程是。

        練習(xí):1。。

        2。已知直線的方程是,則直線的斜率為,傾斜角為,這條直線經(jīng)過的一個(gè)已知點(diǎn)為。

        [設(shè)計(jì)意圖]在直線的點(diǎn)斜式方程的逆用過程中,進(jìn)一步體會(huì)和理解直線的點(diǎn)斜式方程。

        問題6:特別地,如果直線的斜率為,且與軸的交點(diǎn)坐標(biāo)為(0,b),求直線的方程。

        [設(shè)計(jì)意圖]由一般到特殊,培養(yǎng)學(xué)生的推理能力,同時(shí)引出截距的概念和直線斜截式方程。

        將斜率與定點(diǎn)代入點(diǎn)斜式直線方程可得:

        說明:我們把直線與y軸交點(diǎn)(0,b)的縱坐標(biāo)b叫做直線在y軸上的截距。這個(gè)方程是由直線的斜率與它在y軸上的截距b確定,所以叫做直線的斜截式方程。

        注(1)截距可取任意實(shí)數(shù),它不同于距離。直線在軸上截距的是。

       。2)斜截式方程中的k和b有明顯的幾何意義。

        (3)斜截式方程的使用范圍和斜截式一樣。

        問題7:直線的斜截式方程與我們學(xué)過的一次函數(shù)的類似。我們知道,一次函數(shù)的圖像是一條直線。你如何從直線方程的角度認(rèn)識(shí)一次函數(shù)?一次函數(shù)中k和b的幾何意義是什么?

        [設(shè)計(jì)意圖]讓學(xué)生理解直線方程與一次函數(shù)的區(qū)別與聯(lián)系,進(jìn)一步理解解析幾何的實(shí)質(zhì)。函數(shù)圖像是以形助數(shù),而解析幾何是以數(shù)論形。

        練習(xí):1。。

        2。直線的斜率為2,在軸上的截距為,求直線的方程。

        [設(shè)計(jì)意圖]讓學(xué)生明確截距的含義。

        3。直線過點(diǎn),它的斜率與直線的斜率相等,求直線的方程。

        [設(shè)計(jì)意圖]讓學(xué)生進(jìn)一步理解直線斜截式方程的結(jié)構(gòu)特征。

        4。已知直線過兩點(diǎn)和,求直線的方程。

        [設(shè)計(jì)意圖]讓學(xué)生能合理選擇直線方程的不同形式求直線方程,同時(shí)為下節(jié)學(xué)習(xí)直線的兩點(diǎn)式方程埋下伏筆。

        例2:已知直線,試討論

        (1)與平行的條件是什么?

       。2)與重合的條件是什么?

        (3)與垂直的條件是什么?

        說明:①平行、重合、垂直都是幾何上位置關(guān)系,如何用代數(shù)的數(shù)量關(guān)系來刻畫。

       、诮虒W(xué)中從兩個(gè)方面來說明,若兩直線平行,則且反過來,若且,則兩直線平行。

       、廴糁本的斜率不存在,與之平行、垂直的條件分別是什么?

        練習(xí):

        問題8:本節(jié)課你有哪些收獲?

        要點(diǎn):

       。1)直線方程的點(diǎn)斜式、斜截式的命名都是顧名思義的,要會(huì)加以區(qū)別。

        (2)兩種形式的方程要在熟記的基礎(chǔ)上靈活運(yùn)用。

        總結(jié):制定教學(xué)計(jì)劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵(lì)學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。

      高一數(shù)學(xué)教學(xué)計(jì)劃9

        一、教學(xué)分析

        1、分析教材

        本章教材整體主要分成三大部分:

        (1)、圓的標(biāo)準(zhǔn)方程與一般方程;

        (2)、直線與圓、圓與圓的位置關(guān)系;

        (3)、空間直角坐標(biāo)系以及空間兩點(diǎn)間的距離公式。

        圓的方程是在前一章直線方程基礎(chǔ)上引入的新的曲線方程,更進(jìn)一步要求“數(shù)與形”結(jié)合。所以學(xué)習(xí)有關(guān)圓的方程時(shí),仍仍然沿用直線方程中使用的坐標(biāo)法,繼續(xù)運(yùn)用坐標(biāo)法研究直線與圓、圓與圓的位置關(guān)系等幾何問題。此外還要學(xué)習(xí)空間直角坐標(biāo)系的有關(guān)知識(shí),以便為今后用坐標(biāo)法研究空間幾何對(duì)象奠定基礎(chǔ)。這些知識(shí)是進(jìn)一步學(xué)習(xí)圓錐曲線方程、導(dǎo)數(shù)和積分的基礎(chǔ)。

        2、分析學(xué)生

        高中一年級(jí)的學(xué)生還沒有建立起比較好的數(shù)形結(jié)合的思想,前面學(xué)習(xí)過直線知識(shí),只是使學(xué)生有了用坐標(biāo)法研究問題的基本思路,通過圓的概念的引入及其現(xiàn)實(shí)生活中圓的例子,啟發(fā)學(xué)生學(xué)習(xí)的興趣及研究問題的方法,培養(yǎng)學(xué)生分析探索問題的能力,熟練的掌握解決解析幾何問題的方法-坐標(biāo)法,滲透數(shù)形結(jié)合的思想研究問題時(shí)抓住問題的本質(zhì),研究細(xì)致思考,規(guī)范得出解答,體現(xiàn)運(yùn)動(dòng)變化,對(duì)立統(tǒng)一的思想

        3、教學(xué)重點(diǎn)與難點(diǎn)

        重點(diǎn):圓的標(biāo)準(zhǔn)方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系的基本認(rèn)識(shí)。

        難點(diǎn):直線與圓的方程的應(yīng)用;會(huì)求解簡單的直線與圓的相關(guān)曲線的方程;建立空間直角坐標(biāo)系。

        二、教學(xué)目標(biāo)

        1、掌握?qǐng)A的定義和圓標(biāo)準(zhǔn)方程、一般方程的概念;能根據(jù)圓的方程求圓心和半徑,初步掌握求圓的方程的方法。

        2、掌握直線與圓的位置關(guān)系的判定。

        3、在進(jìn)一步培養(yǎng)學(xué)生類比、數(shù)形結(jié)合、分類討論和化歸的數(shù)學(xué)思想方法的過程中,提高學(xué)生學(xué)習(xí)能力。

        4、培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和理論聯(lián)系實(shí)際思想。

        三、教學(xué)策略

        1、教學(xué)模式

        本節(jié)內(nèi)容是運(yùn)用“問題解決”課堂教學(xué)模式的一次嘗試,采用探究、討論的

        教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,掌握數(shù)學(xué)基本知識(shí)和基本能力,培養(yǎng)積極探索和團(tuán)結(jié)協(xié)作的.科學(xué)精神。

        2、教學(xué)方法與手段--充分利用信息技術(shù),合理整合課程資源

        采用探究、討論的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲采用多媒體技術(shù),目的在于充分利用其優(yōu)良的傳播功能,大容量信息的呈現(xiàn)和生動(dòng)形象的演示(尤其是動(dòng)畫效果)對(duì)提高學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維、加深概念理解有積極作用。制作中,采用交互技術(shù),使課件的機(jī)動(dòng)性得到加強(qiáng)。

        四、對(duì)內(nèi)容安排的說明

        本章分三部分:圓的標(biāo)準(zhǔn)方程與一般方程;直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系。

        1、建立圓的方程是本節(jié)的主要內(nèi)容之一。根據(jù)圓的幾何特征(主要是動(dòng)點(diǎn)與定點(diǎn)間距離恒定)建立適當(dāng)?shù)淖鴺?biāo)系,再根據(jù)曲線上的點(diǎn)所滿足的幾何條件,求出點(diǎn)的坐標(biāo)所滿足的曲線方程。

        通過研究方程來研究曲線的性質(zhì)是解析幾何的另一個(gè)主要內(nèi)容,這就是解析幾何通過代數(shù)方法研究幾何圖形的特點(diǎn),也就是坐標(biāo)法。始終強(qiáng)調(diào)曲線方程與曲線圖像之間的一一對(duì)應(yīng)。這一思想應(yīng)該貫穿于整個(gè)圓的教學(xué)。

        2.通過方程,研究直線與圓、圓與圓的位置關(guān)系是本章的主要內(nèi)容之一。判斷直線與圓、圓與圓的位置關(guān)系可以從兩個(gè)方面著手:

        (1)。兩條曲線有無公共點(diǎn),等價(jià)于由它們方程聯(lián)立的方程組有無實(shí)數(shù)解。方程組有幾組實(shí)數(shù)解,這兩條曲線就有幾個(gè)公共點(diǎn);方程組沒有實(shí)數(shù)解,這兩條曲線就沒有公共點(diǎn)。

        (2)。運(yùn)用平面幾何知識(shí),把直線與圓、圓與圓位置關(guān)系的結(jié)論轉(zhuǎn)化為相應(yīng)的代數(shù)結(jié)論。

        3、坐標(biāo)法是研究幾何問題的重要方法,在教學(xué)過程中,應(yīng)該始終貫穿坐標(biāo)法這一重要思想,不怕重復(fù);通過坐標(biāo)系,把點(diǎn)和坐標(biāo)、曲線和方程聯(lián)系起來,實(shí)現(xiàn)形和數(shù)的統(tǒng)一。

        用坐標(biāo)法解決幾何問題時(shí),先用坐標(biāo)和方程表示相應(yīng)的幾何對(duì)象,然后對(duì)坐標(biāo)和方程進(jìn)行代數(shù)討論;最后再把代數(shù)運(yùn)算結(jié)果翻譯成相應(yīng)的幾何結(jié)論。這就是用坐標(biāo)法解決平面幾何問題的“三步曲”:

        第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;

        第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

        第三步:把代數(shù)運(yùn)算結(jié)果翻譯成幾何結(jié)論。

        五、教學(xué)評(píng)價(jià)

       、暹^程性評(píng)價(jià)

        1、教學(xué)過程中,教師的講解和學(xué)生的練習(xí)緊扣教學(xué)目標(biāo),內(nèi)容深淺要分層次,設(shè)計(jì)的問題要照顧好、中、差。

        2、對(duì)于方程的推導(dǎo)運(yùn)用的方法,學(xué)生理解起來難度較大,主要采用讓學(xué)生理解的基礎(chǔ)上進(jìn)行檢測(cè)反饋

       、娼K結(jié)性評(píng)價(jià)

        1、課程內(nèi)容全部結(jié)束后,讓學(xué)生分組交流、討論后,選代表談收獲、體會(huì)和感想。

        2、留課后作業(yè)(扣教學(xué)目標(biāo)、分類型、分層次,落實(shí)學(xué)生為主體),讓學(xué)生認(rèn)真理解和鞏固,了解圓的標(biāo)準(zhǔn)方程和一般方程,以及直線與圓位置關(guān)系,做完課后習(xí)題,做好作業(yè)。

      高一數(shù)學(xué)教學(xué)計(jì)劃10

        本學(xué)期擔(dān)任高一xx兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個(gè)班的學(xué)生整體水平不高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評(píng)價(jià)自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。

        一、指導(dǎo)思想:

        使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。

        1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

        2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

        3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

        4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

        5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

        6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的`美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

        二、教學(xué)目標(biāo):

        (一)情意目標(biāo)

        (1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。

        (2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會(huì)數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識(shí)。

        (3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會(huì)交流、相互評(píng)價(jià),提高學(xué)生的合作意識(shí)

        (4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。

        (5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會(huì),在發(fā)展他們思維能力的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

        (6)讓學(xué)生體驗(yàn)“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。

        (二)能力要求培養(yǎng)學(xué)生記憶能力

        (1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對(duì)數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。

        (2)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對(duì)應(yīng)關(guān)系,培養(yǎng)記憶能力。

        2、培養(yǎng)學(xué)生的運(yùn)算能力

        (1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算能力。

        (2)加強(qiáng)對(duì)概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算能力。

        (3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡捷性能力。

        (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算能力,促使知識(shí)間的滲透和遷移。

        (5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算能力。

      高一數(shù)學(xué)教學(xué)計(jì)劃11

        教材分析:

        解不等式是不等式學(xué)習(xí)的主要內(nèi)容,是中學(xué)數(shù)學(xué)的一項(xiàng)重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎(chǔ),初中已經(jīng)學(xué)習(xí),二次不等式是重點(diǎn),也是學(xué)習(xí)的難點(diǎn)。作為數(shù)學(xué)重要的工具及方法,經(jīng)常運(yùn)用于其它數(shù)學(xué)知識(shí)之中。一元二次不等式的解法主要有二種,課本上介紹的是“數(shù)形結(jié)合”方法,這種方法將二次函數(shù),二次方程結(jié)合為一體,并且借助“圖形”直觀地得出答案,充分展現(xiàn)了數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,另外也展現(xiàn)了“數(shù)形結(jié)合”思想方法的巨大魅力。然而,個(gè)人認(rèn)為,還有一種更加自然的方法,將二次不等式轉(zhuǎn)化為一次不等式組的方法,這種方法思路自然,同時(shí)也體現(xiàn)了“轉(zhuǎn)化”思想,難度也不大,應(yīng)該更加符合學(xué)生的實(shí)際思維及思路。

        學(xué)情分析:

        初中已經(jīng)學(xué)習(xí)了一元一次不等式(或組)的解法,積累了一定的解題經(jīng)驗(yàn)。同時(shí),對(duì)于二次方程,二次函數(shù)等相關(guān)知識(shí)學(xué)生均較為熟悉。然而,根據(jù)自己的調(diào)查,一少部分學(xué)生對(duì)于一元一次不等式及不等式組的解法都表現(xiàn)出一定程度的陌生。進(jìn)而,可以先從復(fù)習(xí)簡單的一次不等式及不等式組入手加以展開教學(xué)。

        學(xué)生心理方面,學(xué)習(xí)積極性較高,對(duì)數(shù)學(xué)的學(xué)習(xí)興趣、信心也比較理想,有較強(qiáng)的學(xué)習(xí)動(dòng)機(jī)——考上大學(xué),盡管是外在的誘因。

        教學(xué)目標(biāo):

       、僦R(shí)與技能

        熟練掌握一元一次不等式及不等式組的解法,初步學(xué)會(huì)兩種方法求出一元二次不等式的解集

       、谶^程與方法

        經(jīng)歷不等式求解的探索及發(fā)現(xiàn)過程,體驗(yàn)“數(shù)形結(jié)合及轉(zhuǎn)化”思想的魅力,掌握方法,學(xué)會(huì)學(xué)習(xí)

       、矍楦小B(tài)度及價(jià)值觀

        在上述過程中,體驗(yàn)成功,激發(fā)了對(duì)數(shù)學(xué)學(xué)習(xí)的興趣及信心,發(fā)展了對(duì)數(shù)學(xué)學(xué)習(xí)的積極情感,增強(qiáng)了學(xué)習(xí)的內(nèi)在動(dòng)機(jī)

        教學(xué)重點(diǎn):

        一元二次不等式的解法

        教學(xué)難點(diǎn):

        解法的探索及發(fā)現(xiàn),關(guān)鍵在于“識(shí)圖能力”

        反思:

        今天的課堂,這個(gè)難點(diǎn)突破欠缺力量,主要緣于自己備課時(shí)對(duì)難點(diǎn)考慮不到位,進(jìn)而缺乏必要的設(shè)計(jì)。在課堂上,就難點(diǎn)特別與個(gè)別差生進(jìn)行了交流,并且給予了幫助及指導(dǎo)。在指導(dǎo)過程中,我找出了他們困難的二個(gè)環(huán)節(jié):

        首先,對(duì)平面曲線上點(diǎn)的橫坐標(biāo)與縱座標(biāo)之間的對(duì)應(yīng)關(guān)系表現(xiàn)陌生,進(jìn)而對(duì)它們的取值變化情況感到費(fèi)解。

        其次,是差生的思維能力尚處于“經(jīng)驗(yàn)思維”,辯證思維能力薄弱,進(jìn)而對(duì)運(yùn)動(dòng)中的點(diǎn)的坐標(biāo)取值范圍只能是“一籌莫展”。

        在了解情況后,遵循“最近發(fā)展區(qū)”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關(guān)。由此足以說明,從知識(shí)的角度而言,“沒有教不好的學(xué)生,只有不會(huì)教的教師:這句話還是相當(dāng)有道理的。當(dāng)然,這一切的前提就是對(duì)學(xué)生“學(xué)情”的掌握。美國著名心理學(xué)家、結(jié)構(gòu)主義學(xué)派的代表人布魯納也有類似觀點(diǎn):給我一打健康的兒童,我可以教會(huì)他任何任何學(xué)科任何年齡段的任何知識(shí)。

        教學(xué)程序:

        一、復(fù)習(xí)一元一次不等式及不等式組的解法

        以題組形式設(shè)計(jì)習(xí)題

       、2x+3>7

       、诓坏仁浇M

       、踑x>b

        二、創(chuàng)設(shè)二次不等式的生活背景實(shí)例,引入課題

        采用課本上的實(shí)例,有關(guān)網(wǎng)絡(luò)收費(fèi)問題

        三、一元二次不等式的解法探索

        (1)

        在教師的啟發(fā)引導(dǎo)下,從特殊到一般,學(xué)生經(jīng)歷“轉(zhuǎn)化”方法的探索及發(fā)現(xiàn)過程。

        由于這種方法課本沒有給出,進(jìn)而課堂上不作為重點(diǎn),重在引導(dǎo)學(xué)生自行歸納、體驗(yàn)及總結(jié)“轉(zhuǎn)化”思想,最后以課外思考題的形式設(shè)計(jì)相應(yīng)習(xí)題。

        (2)

        采取啟發(fā)式教學(xué),師生共同經(jīng)歷“數(shù)形結(jié)合”方法的探索及發(fā)現(xiàn)過程,引導(dǎo)學(xué)生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學(xué)生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認(rèn)為,只有學(xué)生自己親身體驗(yàn)的`知識(shí)才是有意義的知識(shí),盡管這些知識(shí)不完整,語言或許不規(guī)范,思維或許不嚴(yán)密。

        之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經(jīng)歷了前面的解題過程,這個(gè)環(huán)節(jié)全部放手讓學(xué)生完成,鼓勵(lì)他們通過或獨(dú)立或合作的方式解決學(xué)習(xí)任務(wù),完成課本上的表格。

        反思:根據(jù)課堂反饋,二個(gè)班級(jí)大約有70%的同學(xué)能夠勝任這個(gè)任務(wù)。于是,在大多數(shù)學(xué)生完成的基礎(chǔ)上,我又進(jìn)行了一次講解,特別加強(qiáng)了對(duì)“識(shí)圖”環(huán)節(jié)的講解力度,力求突破難點(diǎn)。

        四、練習(xí)環(huán)節(jié)

        可以說,即使到了高三,仍然有不少同學(xué)對(duì)于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點(diǎn),也是難點(diǎn)。從學(xué)習(xí)類型看,這節(jié)課顯然屬于技能課,對(duì)于技能的學(xué)習(xí)及掌握,關(guān)鍵是強(qiáng)化練習(xí),“力求熟能生巧”,達(dá)到自動(dòng)化的水平。

        課本上,配置了不少練習(xí)題。對(duì)于練習(xí),我采取多種方式,或叫學(xué)生上黑板板書,借助學(xué)生練習(xí)規(guī)范解題格式;或者口答,說解題思路及答案;或者下面獨(dú)立練習(xí)。

        五、課堂小結(jié)

        知識(shí),思想、方法及感悟等

        六、課后作業(yè)

        ①作業(yè)設(shè)計(jì):分成A、B兩層,難度不一,讓學(xué)生自主選擇,均來源于課本上的A組或B組

        ②課外思考題:

        1比較兩種解題方法即“轉(zhuǎn)化及數(shù)形結(jié)合”方法的優(yōu)劣,以及它們之間的異同

        2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍

        變式一:戓將R改為空集,此時(shí)結(jié)論如何

        變式二:仿上,自己改編條件,并解之。

        反思:課外思考題的設(shè)計(jì),可以提升課堂容量,深化課堂知識(shí),提高課堂思維含量,為優(yōu)生服務(wù),發(fā)展學(xué)生的思維能力,激發(fā)他們的學(xué)習(xí)興趣。同時(shí),加強(qiáng)變式教學(xué),可以充分拓展習(xí)題的潛在價(jià)值,期望實(shí)現(xiàn)“舉一反三”的目標(biāo)。

      高一數(shù)學(xué)教學(xué)計(jì)劃12

        一、上學(xué)期教學(xué)回顧

        高一共四個(gè)教學(xué)班,共計(jì)160余人。楊文國帶高一(一)班,高一(二)班;張忠杰帶高一(三)班和高一(四)班。其中各班期末八校聯(lián)考的成績分別為:50.6分,32.8分,27.2分,34.5分,總平36.9分。學(xué)期中途因張忠杰離開學(xué)校導(dǎo)致頻繁更換老師,(三)班、(四)班的成績因而受到影響。期末由王山任(三)班、(四)班的數(shù)學(xué)老師。

        上學(xué)期工作在學(xué)生學(xué)習(xí)的落實(shí)環(huán)節(jié)上做得不太扎實(shí),這將是本學(xué)期重點(diǎn)改進(jìn)的地方。

        二、本學(xué)期的措施及打算

        1.一周學(xué)習(xí)早知道。明確目標(biāo)更能確定努力的方向。為了讓學(xué)生學(xué)習(xí)更有目的性,有效性和積極性,每周第一節(jié)課給出一周的教學(xué)進(jìn)度,學(xué)習(xí)目標(biāo)和過關(guān)要求。不僅老師要做到對(duì)所教內(nèi)容清楚明了,也要讓學(xué)生對(duì)所學(xué)內(nèi)容做到每周學(xué)習(xí)目標(biāo)清晰化。

        2.落實(shí)每周測(cè)試過關(guān)制。周測(cè)內(nèi)容與一周學(xué)習(xí)目標(biāo)及一周的講授內(nèi)容緊密相連。未盡力而又沒有過關(guān)的學(xué)生將按事先說明的措施給予處罰。以便讓學(xué)生重視課堂學(xué)習(xí),重視平時(shí)作業(yè),重視一周的學(xué)習(xí)過程。做到讓學(xué)生每周學(xué)習(xí)過程精細(xì)化。 3.根據(jù)學(xué)生學(xué)力狀況進(jìn)行分層次的培優(yōu)補(bǔ)差。

        三、教學(xué)進(jìn)度安排

        周次,學(xué)習(xí)內(nèi)容

        目標(biāo)要求

        1. 必修4 第一章三角函數(shù):第1至3節(jié)

        周期,角的推廣及表示,弧度制及互化

        2. 軍訓(xùn)

        3. 第4節(jié):正弦函數(shù)

        單位圓,正弦函數(shù)定義,象限符號(hào),誘導(dǎo)公式,五點(diǎn)法畫圖像,圖像及性質(zhì)。

        4. 第5節(jié):余弦函數(shù),第6節(jié):正切函數(shù)

        余弦函數(shù)正切函數(shù)定義,象限符號(hào),誘導(dǎo)公式,圖像及性質(zhì)

        5. 第7節(jié):xAsiny的圖像,第8節(jié):同角的'基本關(guān)系。

        圖像變換規(guī)律,同角三角函數(shù)的基本關(guān)系及其運(yùn)用。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測(cè)試。

        6. 第二章:平面向量:第1節(jié)至第2節(jié)

        向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運(yùn)算

        7. 第3節(jié)至第5節(jié)

        數(shù)乘向量,基本定理,向量運(yùn)算的鞏固訓(xùn)練,平面向量的坐標(biāo)表示及運(yùn)算。數(shù)量積的應(yīng)用。

        8. 第5節(jié)至第7節(jié)

        數(shù)量積的應(yīng)用及坐標(biāo)表示,向量應(yīng)用舉例。習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測(cè)試。

        9. 第三章:三角恒等變換:第1節(jié)至第2節(jié)

        兩角和差的公式得推導(dǎo),記憶及靈活運(yùn)用,二倍角公式得來源及運(yùn)用。期中復(fù)習(xí)。

        10. 期中考試

        期中復(fù)習(xí),期中考試。

        11. 第三章 第3節(jié):三角函數(shù)的簡單應(yīng)用

        試卷講評(píng)改錯(cuò),簡單應(yīng)用,三角恒等變換的綜合習(xí)題課,練習(xí),章節(jié)復(fù)習(xí),必修4基本測(cè)試。

        12. 五一長假

        13. 必修3 第一章:統(tǒng)計(jì)。第1節(jié)至第5節(jié)

        統(tǒng)計(jì)的程序,統(tǒng)計(jì)圖,統(tǒng)計(jì)方案設(shè)計(jì),普查與抽樣,抽樣方法,分層抽樣與系統(tǒng)抽樣,花統(tǒng)計(jì)圖表及讀統(tǒng)計(jì)圖表,數(shù)字特征:平均數(shù),中位數(shù),眾數(shù),級(jí)差,方差的意義及計(jì)算分析,

        14. 第6節(jié)至第9節(jié)

        樣本對(duì)總本的估計(jì)及相應(yīng)的數(shù)字特征的計(jì)算分析,統(tǒng)計(jì)實(shí)踐活動(dòng),變量的相關(guān)性及例題分析,最小二乘估計(jì)。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測(cè)試。

        15. 第二章:算法初步:第1節(jié)至第3節(jié)

        基本思想,基本結(jié)構(gòu)及設(shè)計(jì),排序問題。

        16. 第4節(jié):幾種基本語句

        條件語句,循環(huán)語句,復(fù)習(xí)三角函數(shù)的基本內(nèi)容,章節(jié)復(fù)習(xí),三角函數(shù)與算法初步過關(guān)測(cè)試。

        17. 第三章:概率:第1節(jié)至第2節(jié)

        頻率,概率,古典概率,概率計(jì)算公式。

        18. 第2節(jié)至第3節(jié)

        建概率模型,互斥事件,習(xí)題課節(jié)復(fù)習(xí),章節(jié)過關(guān)測(cè)試。

        19. 期末復(fù)習(xí)

        20. 期末復(fù)習(xí),期末考試

      高一數(shù)學(xué)教學(xué)計(jì)劃13

        一、具體目標(biāo):

        1、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

        2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。

        3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的本事。

        4、發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。

        5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

        6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)……

        二、本學(xué)期要到達(dá)的教學(xué)目標(biāo)

        1、雙基要求:

        在基礎(chǔ)知識(shí)方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其資料反映出來的.數(shù)學(xué)思想和方法。在基本技能方面能按照必須的程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、能使用計(jì)數(shù)器及簡單的推理、畫圖。

        2、本事培養(yǎng):

        能運(yùn)用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,構(gòu)成良好的思維品質(zhì);會(huì)根據(jù)法則、公式正確的進(jìn)行運(yùn)算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計(jì)運(yùn)算途徑;會(huì)提出、分析和解決簡單的帶有實(shí)際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,構(gòu)成數(shù)學(xué)的意思;從而經(jīng)過獨(dú)立思考,會(huì)從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。

        3、思想教育:

        培養(yǎng)高一學(xué)生,學(xué)習(xí)數(shù)學(xué)的興趣、信心和毅力及實(shí)事求是的科學(xué)態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學(xué)的美學(xué)價(jià)值,并懂的數(shù)學(xué)來源于實(shí)踐又反作用于實(shí)踐的觀點(diǎn);數(shù)學(xué)中普遍存在的對(duì)立統(tǒng)一、運(yùn)動(dòng)變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn)。

        三、進(jìn)度授課計(jì)劃及進(jìn)度表

       。裕

      高一數(shù)學(xué)教學(xué)計(jì)劃14

        一、指導(dǎo)思想:

        使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。

        1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

        2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。

        3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。

        4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

        5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

        6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的'思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

        二、教材特點(diǎn):

        我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(A版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):

        1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

        2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神。

        3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

        4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。

        三、教法分析

        1.選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。

        2.通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。

        3.在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

        四、學(xué)情分析

        1、基本情況:12班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。

        14班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。

        2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級(jí)存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。

        五、教學(xué)措施:

        1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

        2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。

        3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

        4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

        5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。

        6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。

        六、教學(xué)進(jìn)度安排

      周 次


      時(shí)


      內(nèi) 容


      重 點(diǎn)、難 點(diǎn)


      第1周


      2.12~2.18


      5


      算法與程序框圖(2)基本算法語句(3)理解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu)。理解5種基本的算法語句。

      第2周


      2.19~2.25


      5


      算法案例(6)

      高一數(shù)學(xué)教學(xué)計(jì)劃15

       、瘢虒W(xué)內(nèi)容解析

        本節(jié)課的教學(xué)內(nèi)容,是指數(shù)函數(shù)的概念、性質(zhì)及其簡單應(yīng)用.教學(xué)重點(diǎn)是指數(shù)函數(shù)的圖像與性質(zhì).

        這是指數(shù)函數(shù)在本章的位置.

        指數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì)后,學(xué)習(xí)的第一個(gè)新的初等函數(shù).它是一種新的函數(shù)模型,也是應(yīng)用研究函數(shù)的一般方法研究函數(shù)的一次實(shí)踐.指數(shù)函數(shù)的學(xué)習(xí),一方面可以進(jìn)一步深化對(duì)函數(shù)概念的理解,另一方面也為研究對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等初等函數(shù)打下基礎(chǔ).因此,本節(jié)課的學(xué)習(xí)起著承上啟下的作用,也是學(xué)生體驗(yàn)數(shù)學(xué)思想與方法應(yīng)用的過程.

        指數(shù)函數(shù)模型在貸款利率的計(jì)算以及考古中年代的測(cè)算等方面有著廣泛地應(yīng)用,與我們的日常生活、生產(chǎn)和科學(xué)研究有著緊密的聯(lián)系,因此,學(xué)習(xí)這部分知識(shí)還有著一定的現(xiàn)實(shí)意義.

        Ⅱ.教學(xué)目標(biāo)設(shè)置

        1.學(xué)生能從具體實(shí)例中概括指數(shù)函數(shù)典型特征,并用數(shù)學(xué)符號(hào)表示,建構(gòu)指數(shù)函數(shù)的概念.

        2.學(xué)生通過自主探究,掌握指數(shù)函數(shù)的圖象特征與性質(zhì),能夠利用指數(shù)函數(shù)的性質(zhì)比較兩個(gè)冪的大小.

        3.學(xué)生運(yùn)用數(shù)形結(jié)合的思想,經(jīng)歷從特殊到一般、具體到抽象的研究過程,體驗(yàn)研究函數(shù)的一般方法.

        4.在探究活動(dòng)中,學(xué)生通過獨(dú)立思考和合作交流,發(fā)展思維,養(yǎng)成良好思維習(xí)慣,提升自主學(xué)習(xí)能力.

        Ⅲ.學(xué)生學(xué)情分析

        授課班級(jí)學(xué)生為南京師大附中實(shí)驗(yàn)班學(xué)生.

        1.學(xué)生已有認(rèn)知基礎(chǔ)

        學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),對(duì)函數(shù)有了初步的認(rèn)識(shí).學(xué)生已經(jīng)完成了指數(shù)取值范圍的擴(kuò)充,具備了進(jìn)行指數(shù)運(yùn)算的能力.學(xué)生已有研究一次函數(shù)、二次函數(shù)等初等函數(shù)的直接經(jīng)驗(yàn).學(xué)生數(shù)學(xué)基礎(chǔ)與思維能力較好,初步養(yǎng)成了獨(dú)立思考、合作交流、反思質(zhì)疑等學(xué)習(xí)習(xí)慣.

        2.達(dá)成目標(biāo)所需要的認(rèn)知基礎(chǔ)

        學(xué)生需要對(duì)研究的目標(biāo)、方法和途徑有初步的認(rèn)識(shí),需要具備較好的歸納、猜想和推理能力.

        3.難點(diǎn)及突破策略

        難點(diǎn):1. 對(duì)研究函數(shù)的一般方法的認(rèn)識(shí).

        2. 自主選擇底數(shù)不當(dāng)導(dǎo)致歸納所得結(jié)論片面.

        突破策略:

        1.教師引導(dǎo)學(xué)生先明確研究的內(nèi)容與方法,從總體上認(rèn)識(shí)研究的目標(biāo)與手段.

        2.組織匯報(bào)交流活動(dòng),展現(xiàn)思維過程,相互評(píng)價(jià),相互啟發(fā),促進(jìn)反思.

        3.對(duì)猜想進(jìn)行適當(dāng)?shù)刈C明或說明,合情推理與演繹推理相結(jié)合.

       、簦虒W(xué)策略設(shè)計(jì)

        根據(jù)學(xué)生已有學(xué)習(xí)基礎(chǔ),為提升學(xué)生的學(xué)習(xí)能力,本節(jié)課的教學(xué),采用自主學(xué)習(xí)方式.通過教師引領(lǐng)學(xué)生經(jīng)歷研究函數(shù)及其性質(zhì)的過程,認(rèn)識(shí)研究的目標(biāo)與策略,在研究的過程中逐漸完善研究的方法與手段.

        學(xué)生的自主學(xué)習(xí),具體落實(shí)在三個(gè)環(huán)節(jié):

        (1)建構(gòu)指數(shù)函數(shù)概念時(shí),學(xué)生自主舉例,歸納特征,并用符號(hào)表示,討論底數(shù)的取值范圍,完善概念.

        (2)探究指數(shù)函數(shù)圖象特征與性質(zhì)時(shí),學(xué)生自選底數(shù),開展自主研究,并通過匯報(bào)交流相互提升.

        (3)性質(zhì)應(yīng)用階段,學(xué)生自主舉例說明指數(shù)函數(shù)性質(zhì)的應(yīng)用.

        研究函數(shù)的性質(zhì),可以從形和數(shù)兩個(gè)方面展開.從圖形直觀和數(shù)量關(guān)系兩個(gè)方面,經(jīng)歷從特殊到一般、具體到抽象的過程。借助具體的指數(shù)函數(shù)的圖象,觀察特征,發(fā)現(xiàn)函數(shù)性質(zhì),進(jìn)而猜想、歸納一般指數(shù)函數(shù)的圖象特征與性質(zhì),并適時(shí)應(yīng)用函數(shù)解析式輔以必要的說明和證明.

       、酰虒W(xué)過程設(shè)計(jì)

        1.創(chuàng)設(shè)情境建構(gòu)概念

        師:我們已經(jīng)學(xué)習(xí)了函數(shù)的概念、圖象與性質(zhì),大家都知道函數(shù)可以刻畫兩個(gè)變量之間的關(guān)系.你能用函數(shù)的觀點(diǎn)分析下面的例子嗎?

        師:大家知道細(xì)胞分裂的規(guī)律嗎?(出示情境問題)

        [情境問題1]某細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),……如果細(xì)胞分裂x次,相應(yīng)的細(xì)胞個(gè)數(shù)為y,如何描述這兩個(gè)變量的關(guān)系?

        [情境問題2]某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過一年,這種物質(zhì)剩余的質(zhì)量是原來的84%.如果經(jīng)過x年,該物質(zhì)剩余的質(zhì)量為y,如何描述這兩個(gè)變量的關(guān)系?

        [師生活動(dòng)]引導(dǎo)學(xué)生分析,找到兩個(gè)變量之間的函數(shù)關(guān)系,并得到解析式y(tǒng)=2x和y=0.84x.

        師:這樣的函數(shù)你見過嗎?是一次函數(shù)嗎?二次函數(shù)?這樣的函數(shù)有什么特點(diǎn)?你能再舉幾個(gè)例子嗎?

        〖問題1類似的函數(shù),你能再舉出一些例子嗎?這些函數(shù)有什么共同特點(diǎn)?能否寫成一般形式?

        [設(shè)計(jì)意圖]通過列舉生活中指數(shù)函數(shù)的具體例子,感受指數(shù)函數(shù)與實(shí)際生活的聯(lián)系.引導(dǎo)學(xué)生從具體實(shí)例中概括典型特征,初步形成指數(shù)函數(shù)的概念,并用數(shù)學(xué)符號(hào)表示.初步得到y(tǒng)=ax這個(gè)形式后,引導(dǎo)學(xué)生關(guān)注底數(shù)的取值范圍,完成概念建構(gòu).指數(shù)范圍擴(kuò)充到實(shí)數(shù)后,關(guān)注x∈R時(shí),y=ax是否始終有意義,因此規(guī)定a>0.a≠1并不是必須的,常函數(shù)在高等數(shù)學(xué)里是基本函數(shù),也有重要的意義.為了使指數(shù)函數(shù)與對(duì)數(shù)函數(shù)能構(gòu)成反函數(shù),規(guī)定a≠1.此處不需對(duì)此解釋,只要補(bǔ)充說“1的任何次方總是1,所以通常還規(guī)定a≠1”.

        [師生活動(dòng)]學(xué)生舉例,教師引導(dǎo)學(xué)生觀察,其共同特點(diǎn)是自變量在指數(shù)位置,從而初步建立函數(shù)模型y=ax.

        [教學(xué)預(yù)設(shè)]學(xué)生能舉出具體的例子——y=3x,y=0.5x….如出現(xiàn)y=(-2)x最好,更便于引發(fā)對(duì)a的討論,但一般不會(huì)出現(xiàn).進(jìn)而提出這類函數(shù)一般形式y(tǒng)=ax.

        方案1:

        生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

        師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

        生:函數(shù)y=0.5x,y= x,y=(-2)x,y=1x…

        師:板書學(xué)生舉例(停頓),好像有不同意見.

        生:底數(shù)不能取負(fù)數(shù).

        師:為什么?

        生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.

        師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,我們希望這些函數(shù)的定義域就是R.

        (若沒有學(xué)生注意到底數(shù)的取值范圍,可引導(dǎo)學(xué)生關(guān)注例舉函數(shù)的定義域.若有同學(xué)提出情境中函數(shù)的定義域應(yīng)為N+,師:我們已經(jīng)將指數(shù)的取值范圍擴(kuò)充到了R,函數(shù)y=2x和y=0.84x中,能否將定義域擴(kuò)充為R?你們所舉的例子中,定義域是否為R?)

        師:這些函數(shù)有什么共同特點(diǎn)?

        生:都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.

        (若有學(xué)生舉出類似y=max的例子,引導(dǎo)學(xué)生觀察,它依然具有自變量在指數(shù)位置的'特征.而刻畫這一特點(diǎn)的最簡單形式就是y=ax,從而初步建立函數(shù)模型y=ax,初步體會(huì)基本初等函數(shù)的作用.)

        師:具備上述特征的函數(shù)能否寫成一般形式?

        生:可以寫成y=ax(a>0).

        師:當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對(duì)于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)

        方案2:

        生:(舉例)函數(shù)y=3x,y=4x,…(函數(shù)y=ax(a>1))

        師:板書學(xué)生舉例(稍停頓),能舉一個(gè)不太一樣的例子嗎?(提示:底數(shù)非得大于1嗎?)

        生:函數(shù)y=0.5x,y= x,…

        師:這些函數(shù)的自變量是什么?它們有什么共同特點(diǎn)?

        生:(可用文字語言或符號(hào)語言概括)都有指數(shù)運(yùn)算.底數(shù)是常數(shù),自變量在指數(shù)位置.可以寫成y=ax.

        師:y=ax中,自變量是x,底數(shù)a是常數(shù).以上例子的不同之處,是底數(shù)不同.那你覺得底數(shù)的取值范圍是什么呢?

        生:底數(shù)不能取負(fù)數(shù).

        師:為什么?

        生:如果底數(shù)取負(fù)數(shù)或0,x就不能取任意實(shí)數(shù)了.

        師:為了研究的方便,我們要求底數(shù)a>0.當(dāng)a=1時(shí),函數(shù)就是常數(shù)函數(shù)y=1.對(duì)于這個(gè)函數(shù),我們已經(jīng)比較了解了.通常我們還規(guī)定a≠1.今天我們就來了解一下這個(gè)新函數(shù).(出示指數(shù)函數(shù)定義)

        [階段小結(jié)]一般地,函數(shù)y=ax(a>0且a≠1)稱為指數(shù)函數(shù).它的定義域是R.

        [意圖分析]概念教學(xué)應(yīng)當(dāng)讓學(xué)生感受形成過程,了解知識(shí)的來龍去脈,那種直接拋出定義后輔以“三項(xiàng)注意”的做法剝奪了學(xué)生參與概念形成的過程.此處不宜糾纏于y=22x是否為指數(shù)函數(shù)等細(xì)枝末節(jié).指數(shù)函數(shù)的基本特征是自變量出現(xiàn)在指數(shù)上,應(yīng)促使學(xué)生對(duì)概念本質(zhì)的理解.指數(shù)函數(shù)概念的形成,經(jīng)歷了一個(gè)由粗到細(xì),由特殊到一般,由具體到抽象的漸進(jìn)過程,這樣更加符合人們的認(rèn)知心理.

        2.實(shí)驗(yàn)探索匯報(bào)交流

        (1)構(gòu)建研究方法

        師:我們定義了一個(gè)新的函數(shù),接下來,我們研究什么呢?

        生:研究函數(shù)的性質(zhì).

        〖問題2你打算如何研究指數(shù)函數(shù)的性質(zhì)?

        [設(shè)計(jì)意圖]學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念、函數(shù)的表示方法與函數(shù)的一般性質(zhì),對(duì)函數(shù)有了初步的認(rèn)識(shí).在此認(rèn)知基礎(chǔ)上,引導(dǎo)學(xué)生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題范圍,用提示語口頭提問啟發(fā).教師應(yīng)充分尊重學(xué)生的思維個(gè)性,提供自主探究的平臺(tái),通過匯報(bào)交流活動(dòng)達(dá)成共識(shí)實(shí)現(xiàn)殊途同歸.中學(xué)階段,特別是高一新授課階段,提倡學(xué)生以形象思維作為抽象思維的支撐.

        [師生活動(dòng)]師生經(jīng)過討論,解決啟發(fā)性提示問題,確定研究的內(nèi)容與方法.

        [教學(xué)預(yù)設(shè)]學(xué)生能夠根據(jù)已有知識(shí)和經(jīng)驗(yàn),在教師的啟發(fā)引導(dǎo)下,明確研究的內(nèi)容以及研究的方法.部分學(xué)生會(huì)提出先作出具體函數(shù)圖象,觀察圖象,概括性質(zhì),并進(jìn)而歸納出一般函數(shù)的圖象的分布特征等性質(zhì).另一部分學(xué)生可能從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.

        師:(稍等片刻)我們一般要研究哪些性質(zhì)呢?

        生:變量取值范圍(定義域、值域)、單調(diào)性、奇偶性.

        師:(板書學(xué)生回答)怎樣研究這些性質(zhì)呢?

        生:先畫出函數(shù)圖象,觀察圖象,分析函數(shù)性質(zhì).

        生:先研究幾個(gè)具體的指數(shù)函數(shù),再研究一般情況.

        師:板書“畫圖觀察”,“取特殊值”

        (若沒有學(xué)生提出從特殊到一般的思路.師:底數(shù)a的取值不同,函數(shù)的性質(zhì)可能也會(huì)有不同.一次函數(shù)y=kx(k≠0)中,一次項(xiàng)系數(shù)k不同,函數(shù)性質(zhì)就不同.底數(shù)a可以取無數(shù)多個(gè)值,那我們?cè)趺崔k呢?)

        (若有學(xué)生通過對(duì)y=2x解析式的分析,得到了性質(zhì),并提出從具體函數(shù)的解析式出發(fā),研究函數(shù)性質(zhì),猜想一般函數(shù)的性質(zhì),然后再作出圖象加以驗(yàn)證.師:你的想法也很有道理,不妨試一試.(仍引導(dǎo)學(xué)生從具體指數(shù)函數(shù)圖象入手.))

        [意圖分析]學(xué)習(xí)的過程就是一個(gè)不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學(xué)生提供由自己提出問題、確定研究方法的機(jī)會(huì),逐漸學(xué)會(huì)研究問題,促進(jìn)能力發(fā)展.

        (2)自主探究匯報(bào)交流

        師:我們確定了要研究的對(duì)象和具體做法,下面可以開始研究指數(shù)函數(shù)的性質(zhì)了.

        〖問題3選取數(shù)據(jù),畫出圖象,觀察特點(diǎn),歸納性質(zhì).

        [設(shè)計(jì)意圖]若直接規(guī)定底數(shù)取值,對(duì)于為什么要以y=2x,y=3x,y=0.5x為例,為什么要根據(jù)底數(shù)的大小分類討論,缺乏合理的解釋,學(xué)生對(duì)于圖象的認(rèn)識(shí)是被動(dòng)的.若在探究前經(jīng)討論確定底數(shù)取值,由于學(xué)生認(rèn)知水平的差異,仍可能會(huì)造成部分學(xué)生被動(dòng)接受.學(xué)生自主選擇底數(shù),雖有得到片面認(rèn)識(shí)的可能,但通過討論交流,學(xué)生能相互驗(yàn)證結(jié)論,仍能得到正確認(rèn)識(shí).并且學(xué)生能在過程中體會(huì)數(shù)據(jù)如何選擇,了解研究方法.

        由于描點(diǎn)作圖時(shí)列舉點(diǎn)的個(gè)數(shù)的限制,學(xué)生對(duì)x→∞時(shí)函數(shù)圖象特征缺乏直觀感受.而且由于所舉例子個(gè)數(shù)的限制,學(xué)生對(duì)于歸納的結(jié)論缺乏一般性的認(rèn)識(shí).教師應(yīng)利用繪圖軟件作出底數(shù)連續(xù)變化的圖象 ,驗(yàn)證猜想.

        數(shù)形結(jié)合、從特殊到一般的思維方法是概括歸納抽象對(duì)象的一般思維方法,本節(jié)課的重點(diǎn)是通過對(duì)指數(shù)函數(shù)圖象性質(zhì)的研究,總結(jié)研究函數(shù)的一般方法,應(yīng)充分發(fā)動(dòng)學(xué)生參與研究的每個(gè)過程,得到直接體驗(yàn).

        [師生活動(dòng)]學(xué)生選取不同的a的值,作出圖象,觀察它們之間的異同,總結(jié)指數(shù)函數(shù)的圖象特征與函數(shù)性質(zhì).

        [教學(xué)預(yù)設(shè)]學(xué)生通過觀察圖象,發(fā)現(xiàn)指數(shù)函數(shù)y=ax(a>0且a≠1)的性質(zhì).教師用實(shí)物投影儀展示學(xué)生所畫圖象,學(xué)生根據(jù)具體函數(shù)圖象說明具體函數(shù)性質(zhì).在學(xué)生說明過程中,教師引導(dǎo)學(xué)生對(duì)結(jié)論進(jìn)行適當(dāng)?shù)恼f明,進(jìn)而引導(dǎo)學(xué)生歸納一般指數(shù)函數(shù)的性質(zhì).教師引導(dǎo)學(xué)生關(guān)注列表描點(diǎn)作圖的過程,引導(dǎo)學(xué)生通過反思過程,并通過動(dòng)態(tài)圖象驗(yàn)證猜想,促進(jìn)學(xué)生體會(huì)數(shù)形結(jié)合的分析方法.教師尊重生成,但需引導(dǎo)學(xué)生區(qū)別指數(shù)函數(shù)本身的性質(zhì)與指數(shù)函數(shù)之間的性質(zhì).其中⑥⑦不強(qiáng)加于學(xué)生.對(duì)于⑥,要引導(dǎo)學(xué)生在同一坐標(biāo)系中畫出圖象,啟發(fā)學(xué)生觀察底數(shù)互為倒數(shù)的指數(shù)函數(shù)的圖象,先得到具體的例子.對(duì)于⑦,在例1第3小題中,會(huì)有學(xué)生提出利用不同底數(shù)指數(shù)函數(shù)圖象解決,可順勢(shì)利導(dǎo),也可布置為課后作業(yè),繼續(xù)研究.

        生:自主選擇數(shù)據(jù),在坐標(biāo)紙上列表作圖,列出函數(shù)性質(zhì).

        師:(巡視,必要時(shí)參與討論,及時(shí)提示任務(wù),待大部分學(xué)生有結(jié)論后,鼓勵(lì)學(xué)生交流,請(qǐng)學(xué)生匯報(bào).)有條理地整理一下結(jié)論,討論交流所得.(同時(shí)用實(shí)物投影儀展示學(xué)生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)

        生:(可能出現(xiàn)的情況)(1)在兩個(gè)坐標(biāo)系中畫圖;(2)所取底數(shù)均大于1;(3)兩個(gè)底數(shù)大于1,一個(gè)底數(shù)小于1;(4)關(guān)于y軸對(duì)稱的兩個(gè)指數(shù)函數(shù).

        師:(過程性引導(dǎo))底數(shù)你是怎么取的?你是怎樣觀察出結(jié)論的?在列表過程中,你有什么發(fā)現(xiàn)嗎?為什么要在兩個(gè)坐標(biāo)系中畫圖?為什么不也取兩個(gè)底數(shù)小于1?

        師:(用彩筆描粗圖象,故意出錯(cuò))錯(cuò)在哪里?為什么?

        生:指數(shù)函數(shù)是單調(diào)遞增的,過定點(diǎn)(0, 1).

        師:(引導(dǎo)學(xué)生規(guī)范表述,并板書)指數(shù)函數(shù)在(-∞, +∞)上單調(diào)遞增,圖象過定點(diǎn)(0, 1).

        師:指數(shù)函數(shù)還有其它性質(zhì)嗎?

        師:也就是說值域?yàn)?0, +∞).

        生:指數(shù)函數(shù)是非奇非偶函數(shù).

        師:有不同意見嗎?

        生:當(dāng)0

        (其它預(yù)設(shè):

        (1)當(dāng)a>1時(shí),若x>0,則y>1;若x<0,則y<1.

        當(dāng)00,則y<1;若x<0 y="">1.

        (2)學(xué)生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.

        (3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對(duì)稱.)

        師:(板書學(xué)生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學(xué)生試圖說明結(jié)論的合理性,可提供機(jī)會(huì).)大家認(rèn)為底數(shù)a>1或0

        [階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):

       、俣x域?yàn)镽.

       、谥涤?yàn)?0, +∞).

       、蹐D象過定點(diǎn)(0, 1).

       、芊瞧娣桥己瘮(shù).

        ⑤當(dāng)a>1時(shí),函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;

        當(dāng)0

        ⑥函數(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對(duì)稱.

       、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:

        x∈(-∞, 0)時(shí),y=ax圖象在y=bx圖象下方;

        x=0時(shí),兩圖象相交;

        x∈(0,+∞)時(shí),y=ax圖象在y=bx圖象上方.

        [意圖分析]通過探究活動(dòng),使學(xué)生獲得對(duì)指數(shù)函數(shù)圖象的直觀認(rèn)識(shí).學(xué)生觀察圖象,是對(duì)圖形語言的理解;根據(jù)圖象描述性質(zhì),是將圖形語言轉(zhuǎn)化為符號(hào)或文字語言.對(duì)函數(shù)的理解,是建立在三種語言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報(bào)過程中,一方面要通過對(duì)探究較深入學(xué)生的具體研究過程的剖析,總結(jié)提升學(xué)習(xí)方法,優(yōu)化學(xué)習(xí)策略;另一方面要關(guān)注部分探究意識(shí)與能力都薄弱的學(xué)生的表現(xiàn),鼓勵(lì)他們大膽發(fā)言,激勵(lì)他們主動(dòng)參與活動(dòng),讓全體學(xué)生成為真正的學(xué)習(xí)主體.自主探究活動(dòng)能充分激發(fā)學(xué)生的相互學(xué)習(xí)能力,能有效幫助學(xué)生突破難點(diǎn).

        3.新知運(yùn)用鞏固深化

        (方案一)(分析函數(shù)性質(zhì)的用途)

        師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

        師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運(yùn)用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對(duì)稱性簡化研究.指數(shù)函數(shù)過定點(diǎn)(0, 1),說明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?

        生:可以求最值,可以比較兩個(gè)函數(shù)值的大小.

        師:那你能舉出運(yùn)用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運(yùn)用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)

        生:(舉例并判斷大小.)

        師:你考察了哪個(gè)指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)

        師:以往我們計(jì)算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.(出示例1)

        (方案二)

        師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?

        師:(口述并板書)你能比較32與33的大小嗎?

        生:直接計(jì)算比較.

        師:那比較30.2與30.3的大小呢?能不能不計(jì)算呢?

        生:利用函數(shù)y=3x的單調(diào)性.

        師:能具體說明嗎?(引導(dǎo)學(xué)生規(guī)范表達(dá))我們?cè)僭囈辉?

        (出示例1)

        【例1】比較下列各組數(shù)中兩個(gè)值的大。

       、1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

        [設(shè)計(jì)意圖] 引導(dǎo)學(xué)生運(yùn)用指數(shù)函數(shù)性質(zhì).對(duì)于 32與33的大小比較,學(xué)生更可能計(jì)算出冪的值直接比較.變式后,學(xué)生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進(jìn)而運(yùn)用指數(shù)函數(shù)單調(diào)性,也可能直接運(yùn)用單調(diào)性.初步運(yùn)用新知解決問題,注重題意理解,擴(kuò)大知識(shí)遷移,感悟解題方法,達(dá)到對(duì)新知鞏固記憶,加深理解.

        [師生活動(dòng)]學(xué)生板演,教師組織學(xué)生點(diǎn)評(píng).

        [教學(xué)預(yù)設(shè)] ①②兩題,學(xué)生能運(yùn)用指數(shù)函數(shù)單調(diào)性解決.②題學(xué)生可能得到錯(cuò)誤答案,教師可組織相互點(diǎn)評(píng),規(guī)范表達(dá),正確運(yùn)用性質(zhì).③學(xué)生可能運(yùn)用不同方法,應(yīng)給予充分的時(shí)間,并在具體問題解決后引導(dǎo)學(xué)生總結(jié)一般方法.

        師:(引導(dǎo)學(xué)生規(guī)范表達(dá))你考察了哪個(gè)指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?

        師:(對(duì)③的引導(dǎo))你考慮利用哪個(gè)函數(shù)?是y=1.5x還是y=0.8x?這兩個(gè)函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學(xué)生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)

        生:它們都過點(diǎn)(0, 1).

        師:也就是說,可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來呢?

        生:比較1.50.3,0.81.2和1的大小.

        師:我們找到了一個(gè)比大小的中間量.以往我們計(jì)算出冪的值來比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.

        【例2】

        ①已知3x≥30.5,求實(shí)數(shù)x的取值范圍;

       、谝阎0.2x<25,求實(shí)數(shù)x的取值范圍.

        [設(shè)計(jì)意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時(shí)考查指數(shù)函數(shù)的定義域.

        4.概括知識(shí)總結(jié)方法

        〖問題4本節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你還學(xué)會(huì)了哪些方法?

        [設(shè)計(jì)意圖] 回顧所學(xué)內(nèi)容,深化認(rèn)知.開放式小結(jié),不同學(xué)生有不同的收獲.

        [師生活動(dòng)]學(xué)生發(fā)言總結(jié),交流所得.

        [教學(xué)預(yù)設(shè)]

        通過本節(jié)課對(duì)指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識(shí)和方法:

        ①指數(shù)函數(shù)的定義與性質(zhì);

       、谘芯亢瘮(shù)的一般方法和步驟.

        師:本節(jié)課我們學(xué)習(xí)了什么知識(shí)?

        生:指數(shù)函數(shù)的定義和性質(zhì).

        師:回顧我們的研究過程,我們是怎樣研究指數(shù)函數(shù)的?

        生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).

        生:然后從幾個(gè)具體的指數(shù)函數(shù)開始,畫出圖象,列出性質(zhì),最后得到一般情況.

        師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會(huì)運(yùn)用這樣的方法研究新的函數(shù).

        [意圖分析]課堂總結(jié)不是對(duì)所學(xué)知識(shí)的簡單回顧,應(yīng)讓學(xué)生在知識(shí)、方法和策略上多層次地整理,促進(jìn)學(xué)生理解所用學(xué)習(xí)方法的合理性與普遍性,使學(xué)生獲得知識(shí)與能力的共同進(jìn)步.

        5.分層作業(yè),因材施教

        (1)感受理解:課本第54頁,習(xí)題2.2(2):1,2,3,4;

        (2)思考運(yùn)用:運(yùn)用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?

        [設(shè)計(jì)意圖]分層布置作業(yè),“感受理解”面向全體學(xué)生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運(yùn)用”提供學(xué)生運(yùn)用函數(shù)研究的一般方法自主研究的機(jī)會(huì).

       、觯毯蠓此蓟仡

        一、對(duì)于指數(shù)函數(shù)概念的認(rèn)識(shí)

        指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點(diǎn)放在概念的合理性的理解以及體會(huì)模型思想.

        二、對(duì)于培養(yǎng)學(xué)生思維習(xí)慣的考慮

        在學(xué)生自主探索的過程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣.實(shí)際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對(duì)指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進(jìn)行觀察和歸納的良好的思維習(xí)慣.對(duì)所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識(shí)水平或教學(xué)要求進(jìn)行證明或合理的說明.學(xué)生不僅學(xué)到了數(shù)學(xué)知識(shí),也初步體驗(yàn)了研究問題的基本方法.

        三、關(guān)于設(shè)計(jì)定位的反思

        本節(jié)課的教學(xué)設(shè)計(jì),力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略.如果學(xué)生基礎(chǔ)相對(duì)薄弱,問題的提出可以分層次進(jìn)行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什么”等問話形式,促使學(xué)生暴露思維過程.、

      【高一數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:

      高一數(shù)學(xué)的教學(xué)計(jì)劃04-04

      高一數(shù)學(xué)教學(xué)計(jì)劃12-24

      高一數(shù)學(xué)教學(xué)計(jì)劃(15篇)12-28

      高一數(shù)學(xué)教學(xué)計(jì)劃集合15篇02-05

      高一數(shù)學(xué)教學(xué)計(jì)劃(通用15篇)02-05

      高一數(shù)學(xué)教學(xué)計(jì)劃(集錦15篇)01-13

      2021高一數(shù)學(xué)教學(xué)計(jì)劃(精選20篇)08-29

      高一上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃02-14

      高一下學(xué)期數(shù)學(xué)教學(xué)計(jì)劃04-04