- 相關(guān)推薦
絕對值教案優(yōu)秀
作為一名人民教師,時常要開展教案準備工作,借助教案可以更好地組織教學活動。教案應(yīng)該怎么寫才好呢?以下是小編為大家收集的絕對值教案優(yōu)秀,歡迎大家分享。
絕對值教案優(yōu)秀1
一、素質(zhì)教育目標
(一)知識教學點
1、能根據(jù)一個數(shù)的絕對值表示"距離",初步理解絕對值的概念。
2、給出一個數(shù),能求它的絕對值。
(二)能力訓練點
在把絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學式子的過程中,培養(yǎng)學生運用數(shù)學轉(zhuǎn)化思想指導思維活動的能力。
(三)德育滲透點
1、通過解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想。
2、從上節(jié)課學的`相反數(shù)到本節(jié)的絕對值,使學生感知數(shù)學知識具有普遍的聯(lián)系性。
(四)美育滲透點
通過數(shù)形結(jié)合理解絕對值的意義和相反數(shù)與絕對值的聯(lián)系,使學生進一步領(lǐng)略數(shù)學的和諧美。
二、學法引導
1、教學方法:采用引導發(fā)現(xiàn)法,輔之以講授,學生討論,力求體現(xiàn)"教為主導,學為主體"的教學要求,注意創(chuàng)設(shè)問題情境,使學生自得知識,自覓規(guī)律。
2、學生學法:研究+6和-6的不同點和相同點→絕對值概念→鞏固練習→歸納小結(jié)(絕對值代數(shù)意義)
三、重點、難點、疑點及解決辦法
1、重點:給出一個數(shù)會求出它的絕對值。
2、難點:絕對值的幾何意義,代數(shù)定義的導出。
3、疑點:負數(shù)的絕對值是它的相反數(shù)。
四、課時安排
2課時
五、教具學具準備
投影儀(電腦)、三角板、自制膠片。
六、師生互動活動設(shè)計
教師提出+6和-6有何相同點和不同點,學生研究討論得出絕對值概念;教師出示練習題,學生討論解答歸納出絕對值代數(shù)意義。
七、教學步驟
(一)創(chuàng)設(shè)情境,復(fù)習導入
師:以上我們學習了數(shù)軸、相反數(shù)。在練習本上畫一個數(shù)軸,并標出表示-6,0及它們的相反數(shù)的點。
學生活動:一個學生板演,其他學生在練習本上畫。
【教法說明】絕對值的學習是以相反數(shù)為基礎(chǔ)的,在學生動手畫數(shù)軸的同時,把相反數(shù)的知識進行復(fù)習,同時也為絕對值概念的引入奠定了基礎(chǔ),這里老師不包辦代替,讓學生自己練習。
(二)探索新知,導入新課
師:同學們做得非常好!-6與6是相反數(shù),它們只有符號不同,它們什么相同呢?
學生活動:思考討論,很難得出答案。
師:在數(shù)軸上標出到原點距離是6個單位長度的點。
學生活動:一個學生板演,其他學生在練習本上做。
師:顯然A點(表示6的點)到原點的距離是6,B點(表示-6的點)到原點距離是6個單位長嗎?
學生活動:產(chǎn)生疑問,討論。
師:+6與-6雖然符號不同,但表示這兩個數(shù)的點到原點的距離都是6,是相同的。我們把這個距離叫+6與-6的絕對值。
絕對值教案優(yōu)秀2
●教學目標
知識與能力:借助于數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,初步學會求絕對值等于某一個正數(shù)的有理數(shù)。
過程與方法:通過從數(shù)形兩個側(cè)面理解絕對值的意義,初步了解數(shù)形結(jié)合的思想方法。通過應(yīng)用絕對值解決實際問題,體會絕對值的意義。
情感態(tài)度與價值觀:通過應(yīng)用絕對值解決實際問題,培養(yǎng)學生濃厚的學習興趣,使學生能積極參與數(shù)學學習活動,對數(shù)學有好奇心與求知欲。
●教學重點與難點
教學重點:絕對值的概念和求一個數(shù)的絕對值
教學難點:絕對值的幾何意義及求絕對值等于某一個正數(shù)的有理數(shù)。
●教學準備
多媒體課件
●教學過程
一、創(chuàng)設(shè)問題情境
1、用多媒體動畫顯示:兩只小狗從同一點O出發(fā),在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規(guī)定向右為正,則A處記做__________,B處記做__________。
以O為原點,取適當?shù)膯挝婚L度畫數(shù)軸,并標出A、B的位置。
(用生動有趣的圖畫吸引學生,即復(fù)習了數(shù)軸和相反數(shù),又為下文作準備)。
。、這兩只小狗在跑的過程中,有沒有共同的地方?在數(shù)軸上的A、B兩
又有什么特征?(從形和數(shù)兩個角度去感受絕對值)。
3、在數(shù)軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?
小結(jié):在實際生活中,有時存在這樣的情況,無需考慮數(shù)的正負性質(zhì),比如:在計算小狗所跑的路程中,與小狗跑的方向無關(guān),這時所走的路程只需用正數(shù),這樣就必須引進一個新的概念———絕對值。
二、建立數(shù)學模型
絕對值的概念
。ń柚跀(shù)軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的`幾何定義:一個數(shù)在數(shù)軸上對應(yīng)的點到原點的距離叫做這個數(shù)的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。
注意:
、倥c原點的關(guān)系
、谑莻距離的概念
練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數(shù)絕對值。
。ㄍㄟ^應(yīng)用絕對值解決實際問題,體會絕對值的意義與作用,感受數(shù)學在生活中的價值。)
三、應(yīng)用深化知識
1、例題求解
例1、求下列各數(shù)的絕對值
。1.6, , 0, -10, +10
解:|-1.6|=1.6 ||= |0|=0
|-10|=10 |+10|=10
2、練習2:填表
相反數(shù) 絕對值 2.05 1000 0 - -1000 -2.05
。ㄒ员砀竦男问綄⒔^對值和相反數(shù)進行比較,為歸納絕對值的特征作準備)
3、根據(jù)上述題目,讓學生歸納總結(jié)絕對值的特點。(教師進行補充小結(jié))
特點:
1、一個正數(shù)的絕對值是它本身
2、一個負數(shù)的絕對值是它的相反數(shù)
3、零的絕對值是零
4、互為相反數(shù)的兩個數(shù)的絕對值相等
4、練習3:回答下列問題
①一個數(shù)的絕對值是它本身,這個數(shù)是什么數(shù)?
、谝粋數(shù)的絕對值是它的相反數(shù),這個數(shù)是什么數(shù)?
、垡粋數(shù)的絕對值一定是正數(shù)嗎?
、芤粋數(shù)的絕對值不可能是負數(shù),對嗎?
、萁^對值是同一個正數(shù)的數(shù)有兩個,它們互為相反數(shù),這句話對嗎?
(由學生口答完成,進一步鞏固絕對值的概念)
5、例2、求絕對值等于4的數(shù)。
。ㄗ寣W生考慮這樣的數(shù)有幾個,是怎樣得出這個結(jié)果的呢?對后一個問題由學生去討論,啟發(fā)學生從數(shù)與形兩個方面考慮,培養(yǎng)學生的發(fā)散思維能力。)
分析:
、購臄(shù)字上分析
∵|+4|=4|-4|=4 ∴絕對值等于4的數(shù)是+4和-4畫一個數(shù)軸(如下圖)
、趶膸缀我饬x上分析,畫一個數(shù)軸(如下圖)
∵數(shù)軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M
∴絕對值等于4的數(shù)是+4和-4
注意:說明符號“∵”讀作“因為”,“∴”讀作“所以”
6、練習本:做書上16頁課內(nèi)練習3、4兩題。
四、歸納小結(jié)
本節(jié)課我們學習了什么知識?
你覺得本節(jié)課有什么收獲?
由學生自行總結(jié)在自主探究,合作學習中的體會。
五、課后作業(yè)
讓學生去尋找一些生活中只考慮絕對值的實際例子。
課本16頁的作業(yè)題。
絕對值教案優(yōu)秀3
一、教學目標:
1.知識目標:
①能準確理解絕對值的幾何意義和代數(shù)意義。
、谀軠蚀_熟練地求一個有理數(shù)的絕對值。
、凼箤W生知道絕對值是一個非負數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標:
、俪醪脚囵B(yǎng)學生觀察、分析、歸納和概括的思維能力。
、诔醪脚囵B(yǎng)學生由抽象到具體再到抽象的思維能力。
3.情感目標:
、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學生領(lǐng)略到數(shù)學的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數(shù)學的快樂,從而增強他們的自信心。
二、教學重點和難點
教學重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。
教學難點:絕對值定義的得出、意義的理解及求一個負數(shù)的絕對值。
三、教學方法
啟發(fā)引導式、討論式和談話法
四、教學過程
(一)復(fù)習提問
問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?
(二)新授
1.引入
結(jié)合教材P63圖2-11和復(fù)習問題,講解6與-6的絕對值的'意義。
2.數(shù)a的絕對值的意義
、賻缀我饬x
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|。
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)
強調(diào):表示0的點與原點的距離是0,所以|0|=0。
指出:表示“距離”的數(shù)是非負數(shù),所以絕對值是一個非負數(shù)。
、诖鷶(shù)意義
把有理數(shù)分成正數(shù)、零、負數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。
【絕對值教案優(yōu)秀】相關(guān)文章:
《絕對值》教案02-26
絕對值教案03-16
《絕對值》教案集合(5篇)09-11
絕對值說課稿范文07-20
絕對值教學反思03-03
七年級數(shù)學《絕對值》教案07-12
優(yōu)秀教案優(yōu)秀09-25
優(yōu)秀的教案11-16