- 相關(guān)推薦
《絕對值》教案集合(5篇)
作為一位杰出的老師,時常需要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。優(yōu)秀的教案都具備一些什么特點呢?以下是小編為大家整理的《絕對值》教案,希望能夠幫助到大家。
《絕對值》教案1
一、教學(xué)目標(biāo):
1、知識目標(biāo):
①能準(zhǔn)確理解絕對值的幾何意義和代數(shù)意義。
②能準(zhǔn)確熟練地求一個有理數(shù)的絕對值。
、凼箤W(xué)生知道絕對值是一個非負(fù)數(shù),能更深刻地理解相反數(shù)的概念。
2、能力目標(biāo):
①初步培養(yǎng)學(xué)生觀察、分析、歸納和概括的思維能力。
、诔醪脚囵B(yǎng)學(xué)生由抽象到具體再到抽象的思維能力。
3、情感目標(biāo):
①通過向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學(xué)生領(lǐng)略到數(shù)學(xué)的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學(xué)習(xí),使學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的快樂,從而增強他們的自信心。
二、教學(xué)重點和難點
教學(xué)重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。
教學(xué)難點:絕對值定義的得出、意義的理解及求一個負(fù)數(shù)的絕對值。
三、教學(xué)方法
啟發(fā)引導(dǎo)式、討論式和談話法
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)提問
問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?
(二)新授
1、引入
結(jié)合教材P63圖2-11和復(fù)習(xí)問題,講解6與-6的絕對值的意義。
2、數(shù)a的絕對值的意義
、賻缀我饬x
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的`點到原點的距離。數(shù)a的絕對值記作|a|。
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)
強調(diào):表示0的點與原點的距離是0,所以|0|=0。
指出:表示“距離”的數(shù)是非負(fù)數(shù),所以絕對值是一個非負(fù)數(shù)。
②代數(shù)意義
把有理數(shù)分成正數(shù)、零、負(fù)數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0。
《絕對值》教案2
導(dǎo)學(xué)目標(biāo)
1、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負(fù)數(shù)的大小。
2、通過應(yīng)用絕對值解決實際問題絕對值的意義和作用。
導(dǎo)學(xué)重點:
正確理解絕對值的概念?
導(dǎo)學(xué)難點:
負(fù)數(shù)大小比較??
導(dǎo)學(xué)過程
溫故:
1、下列各數(shù)中:
+7,—2,,—8?3,0,+0?01,—,1,哪些是正數(shù)?哪些是負(fù)數(shù)?哪些是非負(fù)數(shù)?
2、什么叫做數(shù)軸?畫一條數(shù)軸,并在數(shù)軸上標(biāo)出下列各數(shù):
—3,4,0,3,—1?5,—4,,2?
鏈接:
問題2中有哪些數(shù)互為相反數(shù)?從數(shù)軸上看,互為相反數(shù)的一對有理數(shù)有什么特點?
知新:
1、什么叫絕對值?
在數(shù)軸上,一個數(shù)所對應(yīng)的點與的叫做這個數(shù)的絕對值.例如+5的絕對值等于5,記作+5=5;—3的絕對值等于3,記作。
2、絕對值的特點有哪些?
(1)一個正數(shù)的絕對值是;例如,4=,+7。1=。
。2)一個負(fù)數(shù)的絕對值是;例如,-2=,-5。2=。
(3)0的絕對值是.
容易看出,兩個互為相反數(shù)的數(shù)的絕對值.如—5=+5=5.
練一練:
1、已知||=5,求的值。
2、填空:
。1)+3的符號是_____,絕對值是______;
。2)—3的符號是_____,絕對值是______;
。3)—的符號是____,絕對值是______;
。4)10—5的符號是_____,絕對值是______?
3、填空:
。1)符號是+號,絕對值是7的'數(shù)是________;
(2)符號是—號,絕對值是7的數(shù)是________;
(3)符號是—號,絕對值是0?35的數(shù)是________;
。4)符號是+號,絕對值是1的數(shù)是________;
4、
。1)絕對值是的數(shù)有幾個?各是什么?
。2)絕對值是0的數(shù)有幾個?各是什么?
。3)有沒有絕對值是—2的數(shù)?
3、理解:
若用a表示一個數(shù),當(dāng)a是正數(shù)時可以表示成a>0,當(dāng)a是負(fù)數(shù)時可以表示成a<0,這樣,上面的絕對值的特點可用用符號語言可表示為:
(1)如果a>0,那么a=a;
(2)如果a<0,那么a=-a;
。3)如果a=0,那么a=0。
4、比較兩個負(fù)數(shù)的大小
由于絕對值是表示數(shù)的點到原點的距離,則離原點越遠的點表示的數(shù)的絕對值越大.負(fù)數(shù)的絕對值越大,表示這個數(shù)的點就越靠左邊,因此,兩個負(fù)數(shù)比較,絕對值大的反而小
《絕對值》教案3
教學(xué)目標(biāo)
1、知識與技能。
、倌芨鶕(jù)一個數(shù)的絕對值表示距離,初步理解絕對值的概念,能求一個數(shù)的絕對值。
、谕ㄟ^應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用。
2、過程與方法
經(jīng)歷絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學(xué)式子的過程中,培養(yǎng)學(xué)生運用數(shù)學(xué)轉(zhuǎn)化思想指導(dǎo)思維活動的能力。
3、情感、態(tài)度與價值觀
、偻ㄟ^解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想。
、隗w驗運用直觀知識解決數(shù)學(xué)問題的成功。
教學(xué)重點難點
重點:給出一個數(shù),會求它的絕對值。
難點:絕對值的幾何意義、代數(shù)定義的導(dǎo)出。
教與學(xué)互動設(shè)計
。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課
活動:請兩同學(xué)到講臺前,分別向左、向右行3米。
交流:
、偎麄兯叩穆肪相同嗎?
、谌粝蛴覟檎,分別可怎樣表示他們的位置?
、鬯麄兯叩穆烦痰倪h近是多少?
(二)合作交流,解讀探究
觀察出示一組數(shù)6與—6,3。5與—3。5,1和—1,它們是一對互為________,它們的__________不同,__________相同。
總結(jié):例如6和—6兩個數(shù)在數(shù)軸上的兩點雖然分布在原點的兩邊,但它們到原點的距離相等,如果我們不考慮兩點在原點的哪一邊,只考慮它們離開原點的.距離,這個距離都是6,我們就把這個距離叫做6和—6的絕對值。
絕對值:在數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作│a│。
想一想—3的絕對值是什么?
《絕對值》教案4
教學(xué)目標(biāo)
1、了解絕對值的概念,會求有理數(shù)的絕對值;
2、會利用絕對值比較兩個負(fù)數(shù)的大小;
3、在絕對值概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學(xué)生的思維能力。
教學(xué)建議
一、重點、難點分析
絕對值概念既是本節(jié)的教學(xué)重點又是教學(xué)難點。關(guān)于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質(zhì)——非負(fù)性,也就是說,任何一個有理數(shù)的絕對值都是非負(fù)數(shù),即無論a取任意有理數(shù),都有。
教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。
二、知識結(jié)構(gòu)
絕對值的定義;
絕對值的表示方法;
用絕對值比較有理數(shù)的大小。
三、教法建議
用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數(shù)軸定義絕對值,從理論上講都是可以的.初學(xué)絕對值用語言敘述的定義,好像更便于學(xué)生記憶和運用,以后逐步改用解析式表示絕對值的定義,即在教學(xué)中,只能突出一種定義,否則容易引起混亂?梢园牙脭(shù)軸給出的定義作為絕對值的一種直觀解釋。
此外,要反復(fù)提醒學(xué)生:一個有理數(shù)的絕對值不能是負(fù)數(shù),但不能說一定是正數(shù)!胺秦(fù)數(shù)”的概念視學(xué)生的情況,逐步滲透,逐步提出。
四、有關(guān)絕對值的一些內(nèi)容
1。絕對值的代數(shù)定義
一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零。
2。絕對值的幾何定義
在數(shù)軸上表示一個數(shù)的點離開原點的距離,叫做這個數(shù)的絕對值。
3。絕對值的主要性質(zhì)
(2)一個實數(shù)的絕對值是一個非負(fù)數(shù),即|a|≥0,因此,在實數(shù)范圍內(nèi),絕對值最小的數(shù)是零。
。4)兩個相反數(shù)的絕對值相等。
五、運用絕對值比較有理數(shù)的大小
1、兩個負(fù)數(shù)大小的比較,因為兩個負(fù)數(shù)在數(shù)軸上的位置關(guān)系是:絕對值較大的負(fù)數(shù)一定在絕對值較小的負(fù)數(shù)左邊,所以,兩個負(fù)數(shù),絕對值大的反而小。
比較兩個負(fù)數(shù)的方法步驟是:
。1)先分別求出兩個負(fù)數(shù)的絕對值;
。2)比較這兩個絕對值的大小;
(3)根據(jù)“兩個負(fù)數(shù),絕對值大的反而小”作出正確的判斷。
2、兩個正數(shù)大小的比較,與小學(xué)學(xué)習(xí)的方法一致,絕對值大的較大。
《絕對值》教案5
教學(xué)目標(biāo):
知識目標(biāo):
。1)理解絕對值的概念及表示法。
(2)理解數(shù)的絕對值的幾何意義。
能力目標(biāo):
(1)掌握求一個數(shù)的絕對值及有關(guān)的簡單計算,(2)掌握絕對值等于某一正數(shù)的有理數(shù)的求法,探索絕對值的簡單應(yīng)用。
情感目標(biāo):讓學(xué)生經(jīng)歷絕對值的產(chǎn)生過程,體會數(shù)形結(jié)合思想。
教學(xué)重點、難點:
重點:絕對值的概念和求一個數(shù)的絕對值。
難點:絕對值的幾何意義。
教學(xué)手段:
多媒體(powerpoint)教學(xué)與板書相結(jié)合。
教學(xué)過程:
一、新課引入
我們已經(jīng)知道有理數(shù)在日常生活中應(yīng)用廣泛,與生產(chǎn)實踐聯(lián)系緊密,用正、負(fù)數(shù)可以來表示相反意義的量,而數(shù)軸使我們直觀的感受到有理數(shù)中正、負(fù)數(shù)的區(qū)別和數(shù)在數(shù)軸上相應(yīng)的位置。
乘城市中的出租車去逛商店是我們經(jīng)常經(jīng)歷的事,其中的數(shù)量關(guān)系與我們所學(xué)的有理數(shù)、數(shù)軸有密切聯(lián)系。例如有2位同學(xué)在書店購買書籍后回家,一位同學(xué)乘上甲出租車向東行駛10Km到達A處,另一位同學(xué)乘上乙出租車向西行駛10Km到達B處。
二、合作學(xué)習(xí)
把全班同學(xué)分4—5組分組討論完成下面的三個問題
1:描述請大家用數(shù)軸來表示這一過程(記向東行駛的里程數(shù)為正)
2:思考兩位同學(xué)付費額度是否一樣?為什么?
3:結(jié)論付費額度與行駛方向有沒有關(guān)系?
然后請各組代表總結(jié)發(fā)言:(鼓勵學(xué)生積極參與,并給予高度的評價)
這兩位同學(xué)由于乘車離開書店的距離一樣,所以付費額度也是一樣的,與行駛方向無關(guān)。說明在數(shù)軸上的A(+10)、B(—10)兩點到原點(書店)的`距離是一樣的,都是10。同樣數(shù)軸上+5和—5兩點到原點的距離也是一樣的。
我們把一個數(shù)在數(shù)軸上對應(yīng)的點到原點的距離叫做這個數(shù)的絕對值。(注意是離開原點的距離)
如數(shù)軸上表示-5的點到原點的距離是5,所以—5的絕對值是5,記作;+5的絕對值也是5,記作。其實際意義是:數(shù)軸上+5這個點到原點的距離為5。(強調(diào)絕對值符號的書寫格式)
三、課內(nèi)練習(xí)
1、求下列各數(shù)的絕對值:-1。60-10+10同時說出它們的幾何意義。
2、說出下列各數(shù)的絕對值:-7-2。0501000
由上述兩題可概括出:(在教師的引導(dǎo)下讓學(xué)生得出結(jié)論)
一個正數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),零的絕對值是零,互為相反的兩個數(shù)的絕對值相等。(注意一個數(shù)的絕對值不可能是負(fù)數(shù),而是非負(fù)數(shù)。)
五、探究學(xué)習(xí)
1、某人因工作需要租出租車從A站出發(fā),先向南行駛6Km至B處,后向北行駛10Km至C處,接著又向南行駛7Km至D處,最后又向北行駛2Km至E處。
請通過列式計算回答下列兩個問題:
。1)這個人乘車一共行駛了多少千米?
。2)這個人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米?
2、寫出絕對值小于3的整數(shù),并把它們記在數(shù)軸上。
六、小結(jié)
一頭牛耕耘在一塊田地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因為它所走過的距離之和,有時候我們是無法想象的。這就是今天所學(xué)的絕對值的意義所在。所以絕對值是不考慮方向意義時的一種數(shù)值表示。
七、布置作業(yè)
做作業(yè)本中相應(yīng)的部分。