- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
【熱門(mén)】平行四邊形教案3篇
作為一名教師,常常要根據(jù)教學(xué)需要編寫(xiě)教案,借助教案可以有效提升自己的教學(xué)能力。那么你有了解過(guò)教案嗎?以下是小編收集整理的平行四邊形教案3篇,歡迎閱讀,希望大家能夠喜歡。
平行四邊形教案 篇1
教學(xué)目的:
1、讓學(xué)生知道平行四邊形面積公式的推導(dǎo)過(guò)程,掌握平行四邊形面積的計(jì)算公式,并能應(yīng)用公式正確地計(jì)算平行四邊形面積。
2、通過(guò)操作、觀察與比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問(wèn)題的能力。
3、使學(xué)生初步感受到事物是相互聯(lián)系的,在一定條件下可以相互轉(zhuǎn)化。
4、培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
教學(xué)重點(diǎn):掌握平行四邊形面積公式。
教學(xué)難點(diǎn):平行四邊形面積公式的推導(dǎo)過(guò)程。
教具、學(xué)具準(zhǔn)備:1、多媒體計(jì)算機(jī)及課件;2、投影儀;3、硬紙板做成的可拉動(dòng)的長(zhǎng)方形框架;4、每個(gè)學(xué)生5張平行四邊形硬紙片及剪刀一把。
教學(xué)過(guò)程():
一、復(fù)習(xí)導(dǎo)入:
1、我們認(rèn)識(shí)的平面幾何圖形有哪些呢?(微機(jī)出示,圖形略)
2、在這幾個(gè)圖形中你們會(huì)求哪幾個(gè)的面積呢?(微機(jī)出示長(zhǎng)方形和正方形的面積公式)
3、大家想不想知道其他幾個(gè)圖形的面積怎么求呢?我們這個(gè)單元就來(lái)學(xué)習(xí)“多邊形面積的計(jì)算”。
二、質(zhì)疑引新:
1、老師知道同學(xué)們都很喜歡流氓兔,今天流氓兔遇到了一個(gè)難題,我們一起來(lái)幫它解決好不好?
2、微機(jī)顯示動(dòng)畫(huà)故事:有一天,流氓兔在跑步的時(shí)候,遇到了一個(gè)長(zhǎng)方形框架,它不小心踹了一腳,把長(zhǎng)方形變成了平行四邊形,流氓兔很奇怪:形狀改變了,面積改變了嗎?
3、演示教具:將硬紙板做成的長(zhǎng)方形框架,拉動(dòng)其一角,變?yōu)槠叫兴倪呅巍?/p>
4、解決這個(gè)問(wèn)題最好的辦法就是將兩個(gè)圖形的面積都求出來(lái)進(jìn)行比較,長(zhǎng)方形的面積我們會(huì)求了,平行四邊形的面積要怎么求呢?這節(jié)可我們就一起來(lái)學(xué)習(xí)平行四邊形面積的計(jì)算。(板書(shū)課題:平行四邊形面積的計(jì)算)
三、引導(dǎo)探求:
。ㄒ唬(fù)習(xí)鋪墊:
1、什么圖形是平行四邊形呢?
2、拿出一個(gè)準(zhǔn)備好的平行四邊形,找找它的底和高,并把高畫(huà)下來(lái),比比看誰(shuí)畫(huà)得多。
3、微機(jī)顯示并小結(jié):平行四邊形可以作無(wú)數(shù)條高,以不同的邊為底對(duì)應(yīng)的高是不同的。
。ǘ⑼茖(dǎo)公式:
1、小小魔術(shù)師:我們現(xiàn)在來(lái)做一個(gè)變一變的'小游戲(微機(jī)顯示一個(gè)不規(guī)則圖形),我們可以直接用所學(xué)過(guò)的求面積公式來(lái)求它的面積嗎?
2、能不能把它轉(zhuǎn)化成我們學(xué)過(guò)的圖形呢?(用割補(bǔ)法轉(zhuǎn)化為長(zhǎng)方形)
3、能不能用同樣的方法把一個(gè)平行四邊形轉(zhuǎn)化成長(zhǎng)方形呢?請(qǐng)同學(xué)們拿出準(zhǔn)備好的多個(gè)平行四邊形紙片及剪刀,自己動(dòng)手,運(yùn)用所學(xué)過(guò)的割補(bǔ)法將平行四邊形轉(zhuǎn)化為長(zhǎng)方形。
4、學(xué)生實(shí)驗(yàn)操作,教師巡視指導(dǎo)。
5、學(xué)生交流實(shí)驗(yàn)情況:
、拧⒄l(shuí)愿意把你的轉(zhuǎn)化方法說(shuō)給大家聽(tīng)呢?請(qǐng)上臺(tái)來(lái)交流!(用投影儀演示剪拼過(guò)程)
、、有沒(méi)有不同的剪拼方法?(繼續(xù)請(qǐng)同學(xué)演示)。
⑶、微機(jī)演示各種轉(zhuǎn)化方法。
6、歸納總結(jié)規(guī)律:
沿著平行四邊形的任意一條高剪開(kāi),都可以通過(guò)平移把平行四邊形拼合成一個(gè)長(zhǎng)方形。并引導(dǎo)學(xué)生形成以下概念:
⑴、平行四邊形剪拼成長(zhǎng)方形后,什么變了?什么沒(méi)變?
、、剪拼成的長(zhǎng)方形的長(zhǎng)與寬分別與平行四邊形的底和高有什么關(guān)系?
、恰⒓魳映傻膱D形面積怎樣計(jì)算?得出:
因?yàn)椋浩叫兴倪呅蔚拿娣e=長(zhǎng)方形的面積=長(zhǎng)×寬=底×高
所以:平行四邊形的面積=底×高
。ò鍟(shū)平行四邊形面積推導(dǎo)過(guò)程)
7、文字公式不方便,我們一起來(lái)學(xué)習(xí)用字母公式表示,如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么S=a×h(板書(shū))。同時(shí)強(qiáng)調(diào):在含有字母的式子中,字母和字母之間的乘號(hào)可以記作".",也可以省略不寫(xiě),所以平行四邊形的面積公式還可以記作S=a.h或S=ah(板書(shū))。
8、讓學(xué)生閉上眼睛,在輕柔的音樂(lè)中回憶平行四邊形面積計(jì)算的推導(dǎo)過(guò)程。
四、鞏固練習(xí):
1、剛才我們已經(jīng)推導(dǎo)出了平行四邊形的面積公式,那么,要求平行四邊形的面積,必須要知道哪幾個(gè)條件?(底和高,強(qiáng)調(diào)高是底邊上的高)
2、練習(xí):
。1)、(微機(jī)顯示例一)求平行四邊形的面積
。2)、判斷題(微機(jī)顯示,強(qiáng)調(diào)高是底邊上的高)
。3)、比較等底等高的平行四邊形面積的大。ㄓ们竺娣e的公式計(jì)算、比較,得出結(jié)論:等底等高的平行四邊形面積相等)
。4)、思考題:用求面積的公式解決流氓兔的難題(微機(jī)演示,得出結(jié)論:原長(zhǎng)方形與改變后的平行四邊形比較,長(zhǎng)方形的長(zhǎng)等于平行四邊形的底,長(zhǎng)方形的寬不等于平行四邊形的高,所以二者的面積不相等)。
五、問(wèn)答總結(jié):
1、通過(guò)這節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?
2、平行四邊形面積的計(jì)算公式是什么?
3、平行四邊形面積公式是如何推導(dǎo)得出的?
六、課后作業(yè):P67 1、2、3、5 《指導(dǎo)叢書(shū)》練習(xí)十六 1
平行四邊形教案 篇2
教學(xué)目的
1.使學(xué)生掌握用平行四邊形的定義判定一個(gè)四邊形是 平行四邊形;
2.理解并掌握用二組對(duì)邊分別相等的四邊形是平行四 邊形
3.能運(yùn)這兩種方法來(lái)證明一個(gè)四邊形是平行四邊形。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):平行四邊形的判定定理;
難點(diǎn):掌握平行四邊形的性 質(zhì)和判定的區(qū)別及熟練應(yīng)用。
教學(xué)過(guò)程
(一)復(fù)習(xí)提問(wèn):
1. 什么 叫平行四邊形 ?平行四邊形有什么性質(zhì)?(學(xué)生口答,教師板書(shū))
2. 將 以上的性質(zhì)定理,分別用命題形式 敘述出來(lái)。(如果……那么……)
根據(jù)平行四邊形的定義,我們研究了平行四邊形的`其它性質(zhì),那么如何來(lái)判定一個(gè)四邊形是平行四邊形呢?除了定義還有什么方法?平 行四邊形性質(zhì)定理的逆命題是否成立?
(二)新課
一.平行四邊形的判定:
方法一(定義法):兩組對(duì)邊分別平行的四邊形的平邊形。
幾何語(yǔ)言表達(dá)定義法:
∵AB∥C D,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個(gè)四邊形只要其兩組對(duì)邊 分別互相平行,
則可判定這個(gè)四邊形是一個(gè)平行四邊形。
活動(dòng):用做好的紙條拼成一個(gè)四邊形,其中強(qiáng)調(diào)兩組對(duì)邊分別相等。
方法二:兩組對(duì)邊分別相等的四邊形是平行四邊形。
設(shè)問(wèn):這個(gè)命題的前提和結(jié)論是什么?
已知:四邊形ABCD中,AB=CD,AD=BC
求 證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對(duì)邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易 證三角形全等。(見(jiàn)圖1)
板書(shū)證明過(guò)程。
小結(jié):用幾何語(yǔ)言 表達(dá)用定義法和剛才證明為正確的方法證明一個(gè)四邊形是平行四邊形的方法為:
判定一:二組對(duì)邊分別相等的四邊形是平行四邊形
∵AB=CD,AD=BC, ∴四邊形A BCD是平行四邊形
練習(xí):課本P103練習(xí)題第1題。
例題講解:
例1 已知:如圖3,E、F分別為平行四邊形ABCD兩邊AD、BC的中點(diǎn),連結(jié)BE、DF。
求證:
分析:由我們學(xué)過(guò)平行四邊形的性質(zhì)中,對(duì)角相 等,得若證明四邊形EBFD為平行四邊形,便可得到 ,哪么如何證明該四邊形為平行邊形呢?可通過(guò)證 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分別為AD和BC的中點(diǎn)得ED=FB。
練習(xí):2. 已知如 圖7, E、F、G、H分別是平行四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且AE=CG,BF=DH。
求證:四邊 形EFGH是平行四邊形。
平行四邊形教案 篇3
教學(xué)目的:
1、深入了解平行四邊形的不穩(wěn)定性;
2、理解兩條平行線間的距離定義(區(qū)別于兩點(diǎn)間的距離、點(diǎn)到直線的距離)
3、熟練掌握平行四邊形的定義,平行四邊形性質(zhì)定理1、定理2及其推論、定理3和四個(gè)平行四邊形判定定理,并運(yùn)用它們進(jìn)行有關(guān)的論證和計(jì)算;
4、在教學(xué)中滲透事物總是相互聯(lián)系又相互區(qū)別的辨證唯物主義觀點(diǎn),體驗(yàn)“特殊--一般--特殊”的辨證唯物主義觀點(diǎn)。
教學(xué)重點(diǎn):
平行四邊形的性質(zhì)和判定。
教學(xué)難點(diǎn):
性質(zhì)、判定定理的運(yùn)用。
教學(xué)程序:
一、復(fù)習(xí)創(chuàng)情導(dǎo)入
平行四邊形的性質(zhì):
邊:對(duì)邊平行(定義);對(duì)邊相等(定理2);對(duì)角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對(duì)角相等(定理1);鄰角互補(bǔ)。
平行四邊形的判定:
邊:兩組 對(duì)邊平行(定義);兩組對(duì)邊相等(定理2);對(duì)角線互相平分(定理3);一組對(duì)邊平行且相等(定理4);兩組對(duì)角分別相等(定理1)
二、授新
1、提出問(wèn)題:平行四邊形有哪些性質(zhì):判定平行四邊形有哪些方法:
2、自學(xué)質(zhì)疑:自學(xué)課本P79-82頁(yè),并提出疑難問(wèn)題。
3、分組討論:討論自學(xué)中不能解決的問(wèn)題及學(xué)生提出問(wèn)題。
4、反饋歸納:根據(jù)預(yù)習(xí)和討論的效果,進(jìn)行點(diǎn)撥指導(dǎo)。
5、嘗試練習(xí):完成習(xí)題,解答疑難。
6、深化創(chuàng)新:平行四邊形的性質(zhì):
邊:對(duì)邊平行(定義);對(duì)邊相等(定理2);對(duì)角線互相平分(定理3)夾在平行線間的平行線段相等。
角:對(duì)角相等(定理1);鄰角互補(bǔ)。
平行四邊形的判定:
邊:兩組 對(duì)邊平行(定義);兩組對(duì)邊相等(定理2);對(duì)角線互相平分(定理3);一組對(duì)邊平行且相等(定理4);兩組對(duì)角分別相等(定理1)
7、推薦作業(yè)
1、熟記“歸納整理的內(nèi)容”;
2、完成《練習(xí)卷》;
3、預(yù)習(xí):(1)矩形的.定義?
(2)矩形的性質(zhì)定理1、2及其推論的內(nèi)容是什么?
。3)怎樣證明?
。4)例1的解答過(guò)程中,運(yùn)用哪些性質(zhì)?
思考題
1、平行四邊形的性質(zhì)定理3的逆命題是否是真命題?根據(jù)題設(shè)和結(jié)論寫(xiě)出已 知求證; 2、如何證明性質(zhì)定理3的逆命題? 3、有幾種方法可以證明? 4、例2的證明中,運(yùn)用了哪些性質(zhì)及判定?是否有其他方法? 5、例3的證明中,運(yùn)用了哪些性質(zhì)及判定?是否有其他方法?
跟蹤練習(xí)
1、在四邊形ABCD中,AC交BD 于點(diǎn)O,若AO=1/2AC,BO=1/2BD,則四邊形ABCD是平行四邊形。( )
2、在四邊形ABCD中,AC交BD 于點(diǎn)O,若OC= 且 ,則四邊形ABCD是平行四邊形。
3、下列條件中,能夠判斷一個(gè)四邊形是平行四邊形的是( )
。ˋ)一組對(duì)角相等; (B)對(duì)角線相等;
。–)兩條鄰邊相等; (D)對(duì)角線互相平分。
創(chuàng)新練習(xí)
已知,如圖,平行四邊形ABCD的AC和BD相交于O點(diǎn),經(jīng)過(guò)O點(diǎn)的直線交BC和AD于E、F,求證:四邊形BEDF是平行四邊形。(用兩種方法)
達(dá)標(biāo)練習(xí)
1、已知如圖,O為平行四邊形ABCD的對(duì)角線AC的中點(diǎn),EF經(jīng)過(guò)點(diǎn)O,且與AB交于E,與CD 交于F。求證:四邊形AECF是平行四邊形。
2、已知:如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,M、N分別是OA、OC的中點(diǎn),求證:BM∥DN,且BM=DN 。
綜合應(yīng)用練習(xí)
1、下列條件中,能做出平行四邊形的是( )
。ˋ)兩邊分別是4和5,一對(duì)角線為10;
。˙)一邊為4,兩條對(duì)角線分別為2和5;
。–)一角為600,過(guò)此角的對(duì)角線為3,一邊為4;
。―)兩條對(duì)角線分別為3和5,他們所夾的銳角為450。
推薦作業(yè)
1、熟記“判定定理3”;
2、完成《練習(xí)卷》;
3、預(yù)習(xí):
。1)“平行四邊形的判定定理4”的內(nèi)容 是什么?
(2)怎樣證明?還有沒(méi)有其它證明方法?
(3)例4、例5還有哪些證明方法?
【平行四邊形教案】相關(guān)文章:
平行四邊形教案04-01
《平行四邊形的面積》教案06-23
平行四邊形面積教案03-09
《平行四邊形的性質(zhì)》教案01-20
平行四邊形教案優(yōu)秀11-05
《平行四邊形的面積》教案02-25
平行四邊形教案[熱]12-30
平行四邊形的面積教案01-23
【優(yōu)】平行四邊形教案03-26