欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>二次根式教案

      二次根式教案

      時(shí)間:2024-06-10 19:48:53 教案 我要投稿

      二次根式教案范文合集七篇

        作為一位無私奉獻(xiàn)的人民教師,往往需要進(jìn)行教案編寫工作,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。來參考自己需要的教案吧!以下是小編精心整理的二次根式教案7篇,歡迎閱讀與收藏。

      二次根式教案范文合集七篇

      二次根式教案 篇1

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的性質(zhì)。

        2.內(nèi)容解析

        本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

        對(duì)于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

        二、目標(biāo)和目標(biāo)解析

        1.教學(xué)目標(biāo)

        (1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

       。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

       。3)了解代數(shù)式的概念.

        2.目標(biāo)解析

       。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

       。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);

       。3)學(xué)生能從已學(xué)過的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

        三、教學(xué)問題診斷分析

        二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

        本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

        四、教學(xué)過程設(shè)計(jì)

        1.探究性質(zhì)1

        問題1 你能解釋下列式子的含義嗎?

        師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

        【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

        問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

        師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

        【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

        問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

        師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

        【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

        例2 計(jì)算

       。1) ;(2) .

        師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

        【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

        2.探究性質(zhì)2

        問題4 你能解釋下列式子的含義嗎?

        師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

        【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

        問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

        師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

        【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

        問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

        師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

        【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

        例3 計(jì)算

       。1) ;(2) .

        師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

        【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

        3.歸納代數(shù)式的概念

        問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

        師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

        【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

        4.綜合運(yùn)用

       。1)算一算:

        【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的`題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

       。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

        【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

       。3)談一談你對(duì) 與 的認(rèn)識(shí).

        【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.

        5.總結(jié)反思

       。1)你知道了二次根式的哪些性質(zhì)?

        (2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?

       。3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

       。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對(duì)代數(shù)式的認(rèn)識(shí).

        6.布置作業(yè):教科書習(xí)題16.1第2,4題.

        五、目標(biāo)檢測(cè)設(shè)計(jì)

        1. ; ; .

        【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.

        2.下列運(yùn)算正確的是( )

        A. B. C. D.

        【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.

        3.若 ,則 的取值范圍是 .

        【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

        4.計(jì)算: .

        【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

      二次根式教案 篇2

        【教學(xué)目標(biāo)】

        1.運(yùn)用法則

        進(jìn)行二次根式的乘除運(yùn)算;

        2.會(huì)用公式

        化簡(jiǎn)二次根式。

        【教學(xué)重點(diǎn)】

        運(yùn)用

        進(jìn)行化簡(jiǎn)或計(jì)算

        【教學(xué)難點(diǎn)】

        經(jīng)歷二次根式的乘除法則的探究過程

        【教學(xué)過程】

        一、情境創(chuàng)設(shè):

        1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?

        2.計(jì)算:

        二、探索活動(dòng):

        1.學(xué)生計(jì)算;

        2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?

        3.概括:

        得出:二次根式相乘,實(shí)際上就是把被開方數(shù)相乘,而根號(hào)不變。

        將上面的公式逆向運(yùn)用可得:

        積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

        三、例題講解:

        1.計(jì)算:

        2.化簡(jiǎn):

        小結(jié):如何化簡(jiǎn)二次根式?

        1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

        2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

        四、課堂練習(xí):

        (一).P62 練習(xí)1、2

        其中2中(5)

        注意:

        不是積的形式,要因數(shù)分解為36×16=242.

        (二).P67 3 計(jì)算 (2)(4)

        補(bǔ)充練習(xí):

        1.(x>0,y>0)

        2.拓展與提高:

        化簡(jiǎn):1).(a>0,b>0)

        2).(y

        2.若,求m的.取值范圍。

        ☆3.已知:,求的值。

        五、本課小結(jié)與作業(yè):

        小結(jié):二次根式的乘法法則

        作業(yè):

        1).課課練P9-10

        2).補(bǔ)充習(xí)題

      二次根式教案 篇3

        【 學(xué)習(xí)目標(biāo) 】

        1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

        2、過程與方法:進(jìn)一步體會(huì)分類討論的數(shù)學(xué)思想。

        3、情感、態(tài)度與價(jià)值觀:通過小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

        【 學(xué)習(xí)重難點(diǎn) 】

        1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。

        2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

        【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

        【 學(xué)習(xí)流程 】

        一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

        學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

        二、 課堂教學(xué)

        (一)合作學(xué)習(xí)階段。

        教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的.形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問題做好記錄。

        (二)集體講授階段。(15分鐘左右)

        1. 各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

        2. 教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。

        3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。

        (三)當(dāng)堂檢測(cè)階段

        為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。

        (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

        三、 課后作業(yè)(課后作業(yè)見附件2)

        教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

        四、板書設(shè)計(jì)

        課題:二次根式(1)

        二次根式概念 例題 例題

        二次根式性質(zhì)

        反思:

      二次根式教案 篇4

        教學(xué)目的

        1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;

        2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

        教學(xué)重點(diǎn)

        最簡(jiǎn)二次根式的定義。

        教學(xué)難點(diǎn)

        一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。

        教學(xué)過程

        一、復(fù)習(xí)引入

        1.把下列各根式化簡(jiǎn),并說出化簡(jiǎn)的根據(jù):

        2.引導(dǎo)學(xué)生觀察考慮:

        化簡(jiǎn)前后的根式,被開方數(shù)有什么不同?

        化簡(jiǎn)前的被開方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。

        3.啟發(fā)學(xué)生回答:

        二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

        二、講解新課

        1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

        滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

        (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

        (2)被開方數(shù)中不含能開得盡的'因數(shù)或因式。

        最簡(jiǎn)二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

        2.練習(xí):

        下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說明原因:

        3.例題:

        例1 把下列各式化成最簡(jiǎn)二次根式:

        例2 把下列各式化成最簡(jiǎn)二次根式:

        4.總結(jié)

        把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

        當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

        當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

        此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

        三、鞏固練習(xí)

        1.把下列各式化成最簡(jiǎn)二次根式:

        2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

      二次根式教案 篇5

        目 標(biāo)

        1. 熟練地運(yùn)用二次根式的性質(zhì)化簡(jiǎn)二次根式;

        2. 會(huì)運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問題;

        3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。

        教學(xué)設(shè)想

        本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。

        教 學(xué) 程序 與 策 略

        一、預(yù)習(xí)檢測(cè)

        1.解決節(jié)前問題:

        如圖,架在消防車上的云梯AB長(zhǎng)為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

        歸納:

        在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一 些問題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問題時(shí)經(jīng)常用到二次根式及其運(yùn)算。

        二、合作交流:

        1、:如圖,扶梯AB的坡比(BE與AE的長(zhǎng)度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)

        讓學(xué)生有充分的時(shí)間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的.長(zhǎng)是已知的?哪些線段的長(zhǎng)是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡(jiǎn)嗎?

        注意解題格式

        教 學(xué) 程 序 與 策 略

        三、鞏固練習(xí):

        完成課本P17、1,組長(zhǎng)檢查反饋;

        四、拓展提高:

        1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

        師生共同分析解題思路,請(qǐng)學(xué)生寫出解題過程。

        五、課堂小結(jié):

        1.談一談:本節(jié)課你有什么收獲?

        2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問題時(shí)應(yīng)注意的的問題

        六、堂堂清

        1: 作業(yè)本(2)

        2:課本P17頁:第4、5題選做。

      二次根式教案 篇6

        1.請(qǐng)同學(xué)們回憶(≥0,b≥0)是如何得到的?

        2.學(xué)生觀察下面的例子,并計(jì)算:

        由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

        類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

        (≥0,b0)

        使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過程.

        類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,

        請(qǐng)學(xué)生們思考為什么b的取值范圍變小了?

        與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.

        對(duì)比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法

        增強(qiáng)學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.

        對(duì)學(xué)生進(jìn)一步強(qiáng)化被開方數(shù)的.取值范圍,以及分母不能為零.

        強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).

        教學(xué)過程設(shè)計(jì)

        問題與情境師生行為設(shè)計(jì)意圖

        活動(dòng)二自我檢測(cè)

        活動(dòng)三挑戰(zhàn)逆向思維

        把反過來,就得到

       。ā0,b0)

        利用它就可以進(jìn)行二次根式的化簡(jiǎn).

        例2化簡(jiǎn):

        (1)

       。2)(b≥0).

        解:(1)(2)練習(xí)2化簡(jiǎn):

       。1)(2)活動(dòng)四談?wù)勀愕氖斋@

        1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

        2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).

        找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.

        二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

        找學(xué)生口述解題過程,教師將過程寫在黑板上.

        請(qǐng)學(xué)生仿照例題自己解決這兩道小題,組長(zhǎng)檢查本組的學(xué)習(xí)情況.

        請(qǐng)學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

        為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.

        此處進(jìn)行簡(jiǎn)單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.

        讓學(xué)困生在自己做題時(shí)有一個(gè)參照.

        充分發(fā)揮組長(zhǎng)的作用,盡可能在課堂上將問題解決.

      二次根式教案 篇7

        教學(xué)目標(biāo)

        1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;

        2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

        教學(xué)重點(diǎn)和難點(diǎn)

        重點(diǎn):含二次根式的式子的混合運(yùn)算.

        難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子.

        教學(xué)過程設(shè)計(jì)

        一、復(fù)習(xí)

        1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

        指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式.

        2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

        指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,

        計(jì)算結(jié)果要把分母有理化.

        3.在二次根式的'化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:

        4.在含有二次根式的式子的化簡(jiǎn)及求值等問題中,常運(yùn)用三個(gè)可逆的式子:

        二、例題

        例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:

        分析:

        (1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;

        (3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;

        (4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.

        x-2且x0.

        解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以

        例3

        分析:第一個(gè)二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

        解 因?yàn)?-a>0,3-a0,所以

        a<1,|a-2|=2-a.

        (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

        這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

        問:上面的代數(shù)式中的兩個(gè)二次根式的被開方數(shù)的式子如何化為完全平方式?

        分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.

        注意:

        所以在化簡(jiǎn)過程中,

        例6

        分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷.

        a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

        三、課堂練習(xí)

        1.選擇題:

        A.a(chǎn)2B.a(chǎn)2

        C.a(chǎn)2D.a(chǎn)<2

        A .x+2 B.-x-2

        C.-x+2D.x-2

        A.2x B.2a

        C.-2x D.-2a

        2.填空題:

        4.計(jì)算:

        四、小結(jié)

        1.本節(jié)課復(fù)習(xí)的五個(gè)基本問題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.

        2.在一次根式的化簡(jiǎn)、計(jì)算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

        3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.

        4.通過例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問題.

        五、作業(yè)

        1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

        2.把下列各式化成最簡(jiǎn)二次根式:

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式教案優(yōu)秀06-26

      二次根式的加減教案01-19

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(經(jīng)典3篇)06-05

      二次根式教案匯總6篇05-07

      有關(guān)二次根式教案3篇05-06