欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實用文>教案>二次根式教案

      二次根式教案

      時間:2024-10-17 01:54:16 教案 我要投稿

      二次根式教案范文錦集7篇

        作為一名優(yōu)秀的教育工作者,總歸要編寫教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進而選擇恰當(dāng)?shù)慕虒W(xué)方法。那要怎么寫好教案呢?下面是小編整理的二次根式教案7篇,歡迎閱讀,希望大家能夠喜歡。

      二次根式教案 篇1

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的性質(zhì)。

        2.內(nèi)容解析

        本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

        對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點為:理解二次根式的性質(zhì).

        二、目標(biāo)和目標(biāo)解析

        1.教學(xué)目標(biāo)

       。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

       。2)會運用二次根式的性質(zhì)進行二次根式的化簡;

        (3)了解代數(shù)式的概念.

        2.目標(biāo)解析

       。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

       。2)學(xué)生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

       。3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

        三、教學(xué)問題診斷分析

        二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.

        本節(jié)課的教學(xué)難點為:二次根式性質(zhì)的靈活運用.

        四、教學(xué)過程設(shè)計

        1.探究性質(zhì)1

        問題1 你能解釋下列式子的含義嗎?

        師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

        【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.

        問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

        師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

        【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

        問題3 從以上的`結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

        師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

        【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

        例2 計算

       。1) ;(2) .

        師生活動:學(xué)生獨立完成,集體訂正.

        【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運用.

        2.探究性質(zhì)2

        問題4 你能解釋下列式子的含義嗎?

        師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

        【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

        問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

        師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

        【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

        問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

        師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

        【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

        例3 計算

        (1) ;(2) .

        師生活動:學(xué)生獨立完成,集體訂正.

        【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運用.

        3.歸納代數(shù)式的概念

        問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

        師生活動:學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

        【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

        4.綜合運用

        (1)算一算:

        【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

       。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時, 等于多少?當(dāng) 時, 又等于多少?

        【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

        (3)談一談你對 與 的認識.

        【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.

        5.總結(jié)反思

       。1)你知道了二次根式的哪些性質(zhì)?

        (2)運用二次根式性質(zhì)進行化簡需要注意什么?

       。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

       。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

        6.布置作業(yè):教科書習(xí)題16.1第2,4題.

        五、目標(biāo)檢測設(shè)計

        1. ; ; .

        【設(shè)計意圖】考查對二次根式性質(zhì)的理解.

        2.下列運算正確的是( )

        A. B. C. D.

        【設(shè)計意圖】考查學(xué)生運用二次根式的性質(zhì)進行化簡的能力.

        3.若 ,則 的取值范圍是 .

        【設(shè)計意圖】考查學(xué)生對一個數(shù)非負數(shù)的算術(shù)平方根的理解.

        4.計算: .

        【設(shè)計意圖】考查二次根式性質(zhì)的靈活運用.

      二次根式教案 篇2

        1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?

        2.學(xué)生觀察下面的例子,并計算:

        由學(xué)生總結(jié)上面兩個式的關(guān)系得:

        類似地,請每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:

        (≥0,b0)

        使學(xué)生回憶起二次根式乘法的運算方法的推導(dǎo)過程.

        類似地,請每個同學(xué)再舉一個例子,

        請學(xué)生們思考為什么b的取值范圍變小了?

        與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.

        對比二次根式的乘法推導(dǎo)出除法的運算方法

        增強學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.

        對學(xué)生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

        強化學(xué)生的'解題格式一定要標(biāo)準(zhǔn).

        教學(xué)過程設(shè)計

        問題與情境師生行為設(shè)計意圖

        活動二自我檢測

        活動三挑戰(zhàn)逆向思維

        把反過來,就得到

       。ā0,b0)

        利用它就可以進行二次根式的化簡.

        例2化簡:

        (1)

       。2)(b≥0).

        解:(1)(2)練習(xí)2化簡:

       。1)(2)活動四談?wù)勀愕氖斋@

        1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

        2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.

        找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計算,然后再找學(xué)生指出不足.

        二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

        找學(xué)生口述解題過程,教師將過程寫在黑板上.

        請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.

        請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

        為了更快地發(fā)現(xiàn)學(xué)生的錯誤之處,以便糾正.

        此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎(chǔ)理解并不難.

        讓學(xué)困生在自己做題時有一個參照.

        充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

      二次根式教案 篇3

        【教學(xué)目標(biāo)】

        1.運用法則

        進行二次根式的乘除運算;

        2.會用公式

        化簡二次根式。

        【教學(xué)重點】

        運用

        進行化簡或計算

        【教學(xué)難點】

        經(jīng)歷二次根式的乘除法則的探究過程

        【教學(xué)過程】

        一、情境創(chuàng)設(shè):

        1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的'哪些性質(zhì)?

        2.計算:

        二、探索活動:

        1.學(xué)生計算;

        2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?

        3.概括:

        得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。

        將上面的公式逆向運用可得:

        積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

        三、例題講解:

        1.計算:

        2.化簡:

        小結(jié):如何化簡二次根式?

        1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

        2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

        四、課堂練習(xí):

        (一).P62 練習(xí)1、2

        其中2中(5)

        注意:

        不是積的形式,要因數(shù)分解為36×16=242.

        (二).P67 3 計算 (2)(4)

        補充練習(xí):

        1.(x>0,y>0)

        2.拓展與提高:

        化簡:1).(a>0,b>0)

        2).(y

        2.若,求m的取值范圍。

        ☆3.已知:,求的值。

        五、本課小結(jié)與作業(yè):

        小結(jié):二次根式的乘法法則

        作業(yè):

        1).課課練P9-10

        2).補充習(xí)題

      二次根式教案 篇4

        教學(xué)目的:

        1、在二次根式的混合運算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

        2、會求二次根式的代數(shù)的值;

        3、進一步提高學(xué)生的綜合運算能力。

        教學(xué)重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

        教學(xué)難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值

        教學(xué)過程:

        一、二次根式的混合運算

        例1 計算:

        分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

        (2)題是含乘方、加、減和除法的混合運算,應(yīng)按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的計算。

        練習(xí)1:P206 / 8--① P207 / 1①②

        例2 計算

        問:計算思路是什么?

        答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。

        二、求代數(shù)式的值。 注意兩點:

        (1)如果已知條件為含二次根式的式子,先把它化簡;

        (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

        例3 已知,求的值。

        分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。

        例4 已知,求的值。

        觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。

        答:所求的代數(shù)式中,相減的兩個式子的`分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。

        三、小結(jié)

        1、對于二次根式的混合混合運算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。

        2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

        3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

        四、作業(yè)

        P206 / 7 P206 / 8---②③

      二次根式教案 篇5

        教材分析:

        本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學(xué)生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學(xué)解決實際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

        學(xué)生分析:

        本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當(dāng)?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

        設(shè)計理念:

        新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的.能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學(xué)習(xí)。

        教學(xué)目標(biāo)知識與技能目標(biāo):

        會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

        過程與方法目標(biāo):

        通過類比整式加減法運算體驗二次根式加減法運算的過程;學(xué)生經(jīng)歷由實際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

        情感態(tài)度與價值觀:

        通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗到成功的樂趣.

        重點、難點:重點:

        合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

        難點:

        二次根式加減法的實際應(yīng)用。

        關(guān)鍵問題 :

        了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

        教學(xué)方法:.

        1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵學(xué)生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

        2. 類比法:由實際問題導(dǎo)入二次根式加減運算;類比合并同類項合并同類二次根式。

        3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個別問題進行點撥指導(dǎo),實現(xiàn)全優(yōu)的教育效果。

      二次根式教案 篇6

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的概念.

        2.內(nèi)容解析

        本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運算打基礎(chǔ).

        教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.

        本節(jié)課的教學(xué)重點是:了解二次根式的概念;

        二、目標(biāo)和目標(biāo)解析

        1.教學(xué)目標(biāo)

       。1)體會研究二次根式是實際的需要.

        (2)了解二次根式的概念.

        2. 教學(xué)目標(biāo)解析

       。1)學(xué)生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的'必要性.

       。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

        三、教學(xué)問題診斷分析

        對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負性,”即被開方數(shù) ≥0是非負數(shù), 的算術(shù)平方根 ≥0也是非負數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷.

        本節(jié)課的教學(xué)難點為:理解二次根式的雙重非負性.

        四、教學(xué)過程設(shè)計

        1.創(chuàng)設(shè)情境,提出問題

        問題1你能用帶有根號的的式子填空嗎?

       。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

       。2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

       。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

        師生活動:學(xué)生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當(dāng)引導(dǎo)和評價.

        【設(shè)計意圖】讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

        問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

        師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術(shù)平方根.

        【設(shè)計意圖】為概括二次根式的概念作鋪墊.

        2.抽象概括,形成概念

        問題3 你能用一個式子表示一個非負數(shù)的算術(shù)平方根嗎?

        師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

        【設(shè)計意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

        追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?

        師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.

        【設(shè)計意圖】進一步加深學(xué)生對二次根式被開方數(shù)必須是非負數(shù)的理解.

        3.辨析概念,應(yīng)用鞏固

        例1 當(dāng) 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?

        師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負數(shù)的理解.

        例2 當(dāng) 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?

        師生活動:先讓學(xué)生獨立思考,再追問.

        【設(shè)計意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負數(shù)的理解.

        問題4 你能比較 與0的大小嗎?

        師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強化學(xué)生對二次根式本身為非負數(shù)的理解,

        【設(shè)計意圖】通過這一活動的設(shè)計,提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.

        4.綜合運用,鞏固提高

        練習(xí)1 完成教科書第3頁的練習(xí).

        練習(xí)2 當(dāng)x 是什么實數(shù)時,下列各式有意義.

       。1) ;(2) ;(3) ;(4) .

        【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

        【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

        5.總結(jié)反思

        教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.

       。1)本節(jié)課你學(xué)到了哪一類新的式子?

        (2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

       。3)二次根式與算術(shù)平方根有什么關(guān)系?

        師生活動:教師引導(dǎo),學(xué)生小結(jié).

        【設(shè)計意圖】:學(xué)生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學(xué)習(xí)重點,掌握解題方法.

        6.布置作業(yè):

        教科書習(xí)題16.1第1,3,5, 7,10題.

        五、目標(biāo)檢測設(shè)計

        1. 下列各式中,一定是二次根式的是( )

        A. B. C. D.

        【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).

        2. 當(dāng) 時,二次根式 無意義.

        【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

        3.當(dāng) 時,二次根式 有最小值,其最小值是 .

        【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.

        4.對于 ,小紅根據(jù)被開方數(shù)是非負數(shù),得 出的取值范圍是 ≥ .小慧認為還應(yīng)考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

        【設(shè)計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

      二次根式教案 篇7

        一、復(fù)習(xí)引入

        學(xué)生活動:請同學(xué)們完成下列各題:

        1.計算

       。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

        二、探索新知

        如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

        整式運算中的'x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.

        例1.計算:

        (1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.

        解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

       。1)(+6)(3-)(2)(+)(-)

        分析:剛才已經(jīng)分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.

        解:(1)(+6)(3-)

        =3-()2+18-6=13-3(2)(+)(-)=()2-()2

        =10-7=3

        三、鞏固練習(xí)

        課本P20練習(xí)1、2.

        四、應(yīng)用拓展

        例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

        化簡+,并求值.

        分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式教案優(yōu)秀06-26

      二次根式的加減教案01-19

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(經(jīng)典3篇)06-05

      二次根式教案匯總6篇05-07

      有關(guān)二次根式教案3篇05-06