欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>因式分解教案

      因式分解教案

      時(shí)間:2024-07-04 23:32:03 教案 我要投稿

      關(guān)于因式分解教案錦集八篇

        作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來輔助教學(xué),教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么應(yīng)當(dāng)如何寫教案呢?以下是小編為大家收集的因式分解教案8篇,僅供參考,歡迎大家閱讀。

      關(guān)于因式分解教案錦集八篇

      因式分解教案 篇1

        第6.4因式分解的簡單應(yīng)用

        背景材料:

        因式分解是初中數(shù)學(xué)中的一個(gè)重點(diǎn)內(nèi)容,也是一項(xiàng)重要的基本技能和基礎(chǔ)知識,更是一種數(shù)學(xué)的變形方法,在今后的學(xué)習(xí)中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學(xué)問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復(fù)雜數(shù)值的計(jì)算,本節(jié)課的例題因式分解在數(shù)學(xué)題中的簡單應(yīng)用。

        教材分析:

        本節(jié)課是本章的最后一節(jié),是學(xué)生學(xué)習(xí)因式分解初步應(yīng)用,首先要使學(xué)生體會到因式分解在數(shù)學(xué)中應(yīng)用,其次給學(xué)生提供更多機(jī)會體驗(yàn)主動學(xué)習(xí)和探索的“過程”與“經(jīng)歷”,使多數(shù)學(xué)里擁有一定問題解決的經(jīng)驗(yàn)。

        教學(xué)目標(biāo):

        1、在整除的情況下,會應(yīng)用因式分解,進(jìn)行多項(xiàng)式相除。

        2、會應(yīng)用因式分解解簡單的一元二次方程。

        3、體驗(yàn)數(shù)學(xué)問題中的矛盾轉(zhuǎn)化思想。

        4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。

        教學(xué)重點(diǎn):

        學(xué)會應(yīng)用因式分解進(jìn)行多項(xiàng)式除法和解簡單一元二次方程。

        教學(xué)難點(diǎn):

        應(yīng)用因式分解解簡單的一元二次方程。

        設(shè)計(jì)理念:

        根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作控討式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的'思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

        教學(xué)過程:

        一、創(chuàng)設(shè)情境,復(fù)習(xí)提問

        1、將正式各式因式分解

       。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

       。3)2 a2b-8a2b (4)4x2-9

        [四位同學(xué)到黑板上演板,本課時(shí)用復(fù)習(xí)“練習(xí)引入”也不失為一種好方法,既先復(fù)習(xí)因式分解的提取分因式和公式法,又為下面解決多項(xiàng)式除法運(yùn)算作鋪墊]

        教師訂正

        提出問題:怎樣計(jì)算(2 a2b-8a2b)÷(4a-b)

        二、導(dǎo)入新課,探索新知

       。ㄏ茸寣W(xué)生思考上面所提出的問題,教師從旁啟發(fā))

        師:如果出現(xiàn)豎式計(jì)算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學(xué)生怎么得來的,運(yùn)算的依據(jù)是什么?這樣暴露學(xué)生的思維,讓學(xué)生自己發(fā)現(xiàn)錯(cuò)誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個(gè)因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項(xiàng)式除以單項(xiàng)式。

       。2 a2b-8a2b)÷(4a-b)

        =-2ab(4a-b)÷(4a-b)

        =-2ab

       。ㄗ寣W(xué)生自己比較哪種方法好)

        利用上面的數(shù)學(xué)解題思路,同學(xué)們嘗試計(jì)算

       。4x2-9)÷(3-2x)

        學(xué)生總結(jié)解題步驟:1、因式分解;2、約去公因式)

       。ㄈw學(xué)生動手動腦,然后叫學(xué)生回答,及時(shí)表揚(yáng),講練結(jié)合, [運(yùn)用多項(xiàng)式的因式分解和換元的思想,可以把兩個(gè)多項(xiàng)式相除,轉(zhuǎn)化為單項(xiàng)式的除法]

        練習(xí)計(jì)算

        (1)(a2-4)÷(a+2)

       。2)(x2+2xy+y2)÷(x+y)

       。3)[(a-b)2+2(b-a)] ÷(a-b)

        三、合作學(xué)習(xí)

        1、以四人為一組討論下列問題

        若A?B=0,下面兩個(gè)結(jié)論對嗎?

       。1)A和B同時(shí)都為零,即A=0且B=0

        (2)A和B至少有一個(gè)為零即A=0或B=0

        [合作學(xué)習(xí),四個(gè)小組討論,教師逐步引導(dǎo),讓學(xué)生講自己的想法,及解題步驟,培養(yǎng)語言表達(dá)能力,體會運(yùn)用因式分解的實(shí)際運(yùn)用作用,增加學(xué)習(xí)興趣]

        2、你能用上面的結(jié)論解方程

        (1)(2x+3)(2x-3)=0 (2)2x2+x=0

        解:

        ∵(2x+3)(2x-3)=0

        ∴2x+3=0或2x-3=0

        ∴方程的解為x=-3/2或x=3/2

        解:x(2x+1)=0

        則x=0或2x+1=0

        ∴原方程的解是x1=0,x2=-1/2

        [讓學(xué)生先獨(dú)立完成,再組織交流,最后教師針對性地講解,讓學(xué)生總結(jié)步驟:1、移項(xiàng),使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]

        3、練習(xí),解下列方程

       。1)x2-2x=0 4x2=(x-1)2

        四、小結(jié)

       。1)應(yīng)用因式分解和換元思想可以把某些多項(xiàng)式除法轉(zhuǎn)化為單項(xiàng)式除法。

       。2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項(xiàng)式可以分解成若干個(gè)x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個(gè)一元一次方程來解。

        設(shè)計(jì)理念:

        根據(jù)本節(jié)課的內(nèi)容特點(diǎn),主要采用師生合作討論式課堂教學(xué)方法,以教師為主導(dǎo),學(xué)生為主體,動手實(shí)踐訓(xùn)練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標(biāo),引導(dǎo)學(xué)生自主探索,動手實(shí)踐,合作交流。注重使學(xué)生經(jīng)辦觀察、操作、推理等探索過程。這種教學(xué)理念,反映了時(shí)代精神,有利于提高學(xué)生的數(shù)學(xué)素養(yǎng),能有效地激發(fā)學(xué)生的思維積極性,學(xué)生在學(xué)習(xí)過程中調(diào)動各種感官,進(jìn)行觀察與抽象、操作與思考、自主與交流等,進(jìn)而改進(jìn)學(xué)生的學(xué)習(xí)方法。

      因式分解教案 篇2

        教學(xué)目標(biāo)

        1.知識與技能

        了解因式分解的意義,以及它與整式乘法的關(guān)系.

        2.過程與方法

        經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

        3.情感、態(tài)度與價(jià)值觀

        在探索因式分解的方法的活動中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識,體會數(shù)學(xué)知識的內(nèi)在含義與價(jià)值.

        重、難點(diǎn)與關(guān)鍵

        1.重點(diǎn):了解因式分解的意義,感受其作用.

        2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.

        3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.

        教學(xué)方法

        采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

        教學(xué)過程

        一、創(chuàng)設(shè)情境,激趣導(dǎo)入

        【問題牽引】

        請同學(xué)們探究下面的2個(gè)問題:

        問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?/p>

        問題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.

        二、豐富聯(lián)想,展示思維

        探索:你會做下面的填空嗎?

        1.ma+mb+mc=( )( );

        2.x2-4=( )( );

        3.x2-2xy+y2=( )2.

        【師生共識】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.

        三、小組活動,共同探究

        【問題牽引】

       。1)下列各式從左到右的變形是否為因式分解:

        ①(x+1)(x-1)=x2-1;

       、赼2-1+b2=(a+1)(a-1)+b2;

       、7x-7=7(x-1).

       。2)在下列括號里,填上適當(dāng)?shù)捻?xiàng),使等式成立.

       、9x2(______)+y2=(3x+y)(_______);

       、趚2-4xy+(_______)=(x-_______)2.

        四、隨堂練習(xí),鞏固深化

        課本練習(xí).

        【探研時(shí)空】計(jì)算:993-99能被100整除嗎?

        五、課堂總結(jié),發(fā)展?jié)撃?/strong>

        由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

        1.什么叫因式分解?

        2.因式分解與整式運(yùn)算有何區(qū)別?

        六、布置作業(yè),專題突破

        選用補(bǔ)充作業(yè).

        板書設(shè)計(jì)

        15.4.1 因式分解

        1、因式分解 例:

        練習(xí):

        15.4.2 提公因式法

        教學(xué)目標(biāo)

        1.知識與技能

        能確定多項(xiàng)式各項(xiàng)的公因式,會用提公因式法把多項(xiàng)式分解因式.

        2.過程與方法

        使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

        3.情感、態(tài)度與價(jià)值觀

        培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗(yàn),體會其應(yīng)用價(jià)值.

        重、難點(diǎn)與關(guān)鍵

        1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

        2.難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

        3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

        教學(xué)方法

        采用“啟發(fā)式”教學(xué)方法.

        教學(xué)過程

        一、回顧交流,導(dǎo)入新知

        【復(fù)習(xí)交流】

        下列從左到右的變形是否是因式分解,為什么?

       。1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

       。3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

       。5)x2-2xy+y2=(x-y)2.

        問題:

        1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

        2.多項(xiàng)式4x2-x和xy2-yz-y呢?

        請將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.

        【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

        概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

        二、小組合作,探究方法

        【教師提問】 多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

        【師生共識】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

        三、范例學(xué)習(xí),應(yīng)用所學(xué)

        【例1】把-4x2yz-12xy2z+4xyz分解因式.

        解:-4x2yz-12xy2z+4xyz

        =-(4x2yz+12xy2z-4xyz)

        =-4xyz(x+3y-1)

        【例2】分解因式,3a2(x-y)3-4b2(y-x)2

        【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

        解法1:3a2(x-y)3-4b2(y-x)2

        =-3a2(y-x)3-4b2(y-x)2

        =-[(y-x)23a2(y-x)+4b2(y-x)2]

        =-(y-x)2 [3a2(y-x)+4b2]

        =-(y-x)2(3a2y-3a2x+4b2)

        解法2:3a2(x-y)3-4b2(y-x)2

        =(x-y)23a2(x-y)-4b2(x-y)2

        =(x-y)2 [3a2(x-y)-4b2]

        =(x-y)2(3a2x-3a2y-4b2)

        【例3】用簡便的方法計(jì)算:0.84×12+12×0.6-0.44×12.

        【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡便.

        解:0.84×12+12×0.6-0.44×12

        =12×(0.84+0.6-0.44)

        =12×1=12.

        【教師活動】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

        四、隨堂練習(xí),鞏固深化

        課本P167練習(xí)第1、2、3題.

        【探研時(shí)空】

        利用提公因式法計(jì)算:

        0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

        五、課堂總結(jié),發(fā)展?jié)撃?/strong>

        1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

        2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

        六、布置作業(yè),專題突破

        課本P170習(xí)題15.4第1、4(1)、6題.

        板書設(shè)計(jì)

        15.4.2 提公因式法

        1、提公因式法 例:

        練習(xí):

        15.4.3 公式法(一)

        教學(xué)目標(biāo)

        1.知識與技能

        會應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

        2.過程與方法

        經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的`逆向思維,感受數(shù)學(xué)知識的完整性.

        3.情感、態(tài)度與價(jià)值觀

        培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.

        重、難點(diǎn)與關(guān)鍵

        1.重點(diǎn):利用平方差公式分解因式.

        2.難點(diǎn):領(lǐng)會因式分解的解題步驟和分解因式的徹底性.

        3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.

        教學(xué)方法

        采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.

        教學(xué)過程

        一、觀察探討,體驗(yàn)新知

        【問題牽引】

        請同學(xué)們計(jì)算下列各式.

        (1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

        【學(xué)生活動】動筆計(jì)算出上面的兩道題,并踴躍上臺板演.

        (1)(a+5)(a-5)=a2-52=a2-25;

       。2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

        【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

        1.分解因式:a2-25; 2.分解因式16m2-9n.

        【學(xué)生活動】從逆向思維入手,很快得到下面答案:

       。1)a2-25=a2-52=(a+5)(a-5).

       。2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

        【教師活動】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.

        平方差公式:a2-b2=(a+b)(a-b).

        評析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

        二、范例學(xué)習(xí),應(yīng)用所學(xué)

        【例1】把下列各式分解因式:(投影顯示或板書)

       。1)x2-9y2; (2)16x4-y4;

       。3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

        (5)m2(16x-y)+n2(y-16x).

        【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

        【教師活動】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請5位學(xué)生上講臺板演.

        【學(xué)生活動】分四人小組,合作探究.

        解:(1)x2-9y2=(x+3y)(x-3y);

        (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

       。3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

        (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

       。5)m2(16x-y)+n2(y-16x)

        =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

        三、隨堂練習(xí),鞏固深化

        課本P168練習(xí)第1、2題.

        【探研時(shí)空】

        1.求證:當(dāng)n是正整數(shù)時(shí),n3-n的值一定是6的倍數(shù).

        2.試證兩個(gè)連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.連續(xù)偶數(shù)的平方差能被一個(gè)奇數(shù)整除.

        四、課堂總結(jié),發(fā)展?jié)撃?/strong>

        運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通?紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡,二是分解因式時(shí),每個(gè)因式都要分解徹底.

        五、布置作業(yè),專題突破

        課本P171習(xí)題15.4第2、4(2)、11題.

        板書設(shè)計(jì)

        15.4.3 公式法(一)

        1、平方差公式: 例:

        a2-b2=(a+b)(a-b) 練習(xí):

        15.4.3 公式法(二)

        教學(xué)目標(biāo)

        1.知識與技能

        領(lǐng)會運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

        2.過程與方法

        經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

        3.情感、態(tài)度與價(jià)值觀

        培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

        重、難點(diǎn)與關(guān)鍵

        1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會應(yīng)用.

        2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

        3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

        教學(xué)方法

        采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

        教學(xué)過程

        一、回顧交流,導(dǎo)入新知

        【問題牽引】

        1.分解因式:

        (1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

       。3) x2-0.01y2.

      因式分解教案 篇3

        學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運(yùn)算性質(zhì)的過程,能用代數(shù)式和文字正確地表述,并會熟練地進(jìn)行計(jì)算。通過由特殊到一般的猜想與說理、驗(yàn)證,發(fā)展推理能力和有條理的'表達(dá)能力.

        學(xué)習(xí)重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.

        學(xué)習(xí)過程:

        一、創(chuàng)設(shè)情境引入新課

        復(fù)習(xí)乘方an的意義:an表示個(gè)相乘,即an=.

        乘方的結(jié)果叫a叫做,n是

        問題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?

        列式為,你能利用乘方的意義進(jìn)行計(jì)算嗎?

        二、探究新知:

        探一探:

        1根據(jù)乘方的意義填空

        (1)23×24=(2×2×2)×(2×2×2×2)=2();

        (2)55×54=_________=5();

        (3)(-3)3×(-3)2=_________________=(-3)();

        (4)a6a7=________________=a().

        (5)5m5n

        猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?

        說一說:你能用語言敘述同底數(shù)冪的乘法法則嗎?

        同理可得:amanap=(m、n、p都是正整數(shù))

        三、范例學(xué)習(xí):

        【例1】計(jì)算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

        1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

        2.計(jì)算:

        (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

        【例2】:把下列各式化成(x+y)n或(x-y)n的形式.

        (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

        (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

        四、學(xué)以致用:

        1.計(jì)算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

       、-4444=⑸22n22n+1=⑹y5y2y4y=

        2.判斷題:判斷下列計(jì)算是否正確?并說明理由

        ⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

       、萢a7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

        3.計(jì)算:

        (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

        (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

        (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

        4.解答題:

        (1)已知xm+nxm-n=x9,求m的值.

        (2)據(jù)不完全統(tǒng)計(jì),每個(gè)人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個(gè)水分子,那么,每個(gè)人每年要用去多少個(gè)水分子?

      因式分解教案 篇4

        教學(xué)目標(biāo):

        1、進(jìn)一步鞏固因式分解的概念;

        2、鞏固因式分解常用的三種方法

        3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解4、應(yīng)用因式分解來解決一些實(shí)際問題

        5、體驗(yàn)應(yīng)用知識解決問題的樂趣

        教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題

        教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

        教學(xué)過程:

        一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值

        利用因式分解往往能將一些復(fù)雜的運(yùn)算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

        二、知識回顧

        1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式。

        判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

       。1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

        (3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

       。5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

       。7)、2πR+2πr=2π(R+r)因式分解

        2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

        分解因式要注意以下幾點(diǎn):

       。1)。分解的對象必須是多項(xiàng)式。

        (2)。分解的結(jié)果一定是幾個(gè)整式的乘積的形式。

       。3)。要分解到不能分解為止。

        3、因式分解的'方法

        提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

        公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

        4、強(qiáng)化訓(xùn)練

        教學(xué)引入

        師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形。現(xiàn)在請同學(xué)們拿出一個(gè)長方形紙條,按動畫所示進(jìn)行折疊處理。

        動畫演示:

        場景一:正方形折疊演示

        師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點(diǎn)到各頂點(diǎn)的長度。

        [學(xué)生活動:各自測量。]

        鼓勵(lì)學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

        講授新課

        找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

        動畫演示:

        場景二:正方形的性質(zhì)

        師:這些性質(zhì)里那些是矩形的性質(zhì)?

        [學(xué)生活動:尋找矩形性質(zhì)。]

        動畫演示:

        場景三:矩形的性質(zhì)

        師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

        [學(xué)生活動;尋找菱形性質(zhì)。]

        動畫演示:

        場景四:菱形的性質(zhì)

        師:這說明正方形具有矩形和菱形的全部性質(zhì)。

        及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

        師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

        [學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]

        師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

        學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

        “有一組鄰邊相等的矩形叫做正方形!

        “有一個(gè)角是直角的菱形叫做正方形!

        “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

        [學(xué)生活動:討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

        師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

        試一試把下列各式因式分解:

       。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

        (3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

        三、例題講解

        例1、分解因式

        (1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

       。3)(4)y2+y+

        例2、分解因式

        1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

        4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

        例3、分解因式

        1、72—2(13x—7)22、8a2b2—2a4b—8b3

        四、知識應(yīng)用

        1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

        3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

        4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

        五、拓展應(yīng)用

        1。計(jì)算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

        2、20042+20xx被20xx整除嗎?

        3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

        五、課堂小結(jié)

        今天你對因式分解又有哪些新的認(rèn)識?

      因式分解教案 篇5

        因式分解

        教材分析

        因式分解是進(jìn)行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,它不僅僅在多項(xiàng)式的除法、簡便運(yùn)算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學(xué)好因式分解對于代數(shù)知識的后續(xù)學(xué)習(xí),具有相當(dāng)重要的好處。由于本節(jié)課后學(xué)習(xí)提取公因式法,運(yùn)用公式法,分組分解法來進(jìn)行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點(diǎn)是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學(xué)生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法是教學(xué)中的難點(diǎn)。

        教學(xué)目標(biāo)

        認(rèn)知目標(biāo):(1)理解因式分解的概念和好處

       。2)認(rèn)識因式分解與整式乘法的相互關(guān)系——相反變形,并會運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

        潛力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維潛力和綜合運(yùn)用潛力。

        情感目標(biāo):培養(yǎng)學(xué)生理解矛盾的對立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的`精神和實(shí)事求是的科學(xué)態(tài)度。

        目標(biāo)制定的思想

        1.目標(biāo)具體化、明確化,從學(xué)生實(shí)際出發(fā),具有針對性和可行性,同時(shí)便于上課操作,便于檢測和及時(shí)反饋。

        2.課堂教學(xué)體現(xiàn)潛力立意。

        3.寓德育教育于教學(xué)之中。

        教學(xué)方法

        1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)用心性。

        2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運(yùn)用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高潛力。

        3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會知識的發(fā)生發(fā)展過程,堅(jiān)持啟發(fā)式,鼓勵(lì)學(xué)生充分地動腦、動口、動手,用心參與到教學(xué)中來,充分體現(xiàn)了學(xué)生的主動性原則。

        4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。

        5.改變傳統(tǒng)言傳身教的方式,利用計(jì)算機(jī)輔助教學(xué)手段進(jìn)行教學(xué),增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。

        教學(xué)過程安排

        一、提出問題,創(chuàng)設(shè)情境

        問題:看誰算得快?(計(jì)算機(jī)出示問題)

       。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

       。2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000

        (3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

        二、觀察分析,探究新知

       。1)請每題想得最快的同學(xué)談思路,得出最佳解題方法(同時(shí)計(jì)算機(jī)出示答案)

       。2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個(gè)什么式子?右邊又是什么形式?

        a2—2ab+b2=(a—b)2②

        20x2+60x=20x(x+3)③

       。3)類比小學(xué)學(xué)過的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。

        板書課題:§7。1因式分解

        1.因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

        三、獨(dú)立練習(xí),鞏固新知

        練習(xí)

        1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計(jì)算機(jī)演示)

       、伲▁+2)(x—2)=x2—4

       、趚2—4=(x+2)(x—2)

       、踑2—2ab+b2=(a—b)2

        ④3a(a+2)=3a2+6a

       、3a2+6a=3a(a+2)

       、辺2—4+3x=(x—2)(x+2)+3x

       、遦2++2=(k+)2

        ⑧x—2—1=(x—1+1)(x—1—1)

       、18a3bc=3a2b·6ac

        2.因式分解與整式乘法的關(guān)系:

        因式分解

        結(jié)合:a2—b2=========(a+b)(a—b)

        整式乘法

        說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

        結(jié)論:因式分解與整式乘法正好相反。

        問題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個(gè)因式分解的例子嗎?

       。ㄈ纾河桑▁+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

        由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

        四、例題教學(xué),運(yùn)用新知:

        例:把下列各式分解因式:(計(jì)算機(jī)演示)

       。1)am+bm(2)a2—9(3)a2+2ab+b2

        (4)2ab—a2—b2(5)8a3+b6

        練習(xí)2:填空:(計(jì)算機(jī)演示)

       。1)∵2xy=2x2y—6xy2

        ∴2x2y—6xy2=2xy

       。2)∵xy=2x2y—6xy2

        ∴2x2y—6xy2=xy

       。3)∵2x=2x2y—6xy2

        ∴2x2y—6xy2=2x

        五、強(qiáng)化訓(xùn)練,掌握新知:

        練習(xí)3:把下列各式分解因式:(計(jì)算機(jī)演示)

       。1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

       。4)x2+—x(5)x2—0。01(6)a3—1

       。ㄗ寣W(xué)生上來板演)

        六、變式訓(xùn)練,擴(kuò)展新知(計(jì)算機(jī)演示)

        1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=

        2.機(jī)動題:(填空)x2—8x+m=(x—4),且m=

        七、整理知識,構(gòu)成結(jié)構(gòu)(即課堂小結(jié))

        1.因式分解的概念因式分解是整式中的一種恒等變形

        2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實(shí)際也是整式乘法的逆向思維的過程。

        3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。

        4.教學(xué)中滲透對立統(tǒng)一,以不變應(yīng)萬變的辯證唯物主義的思想方法。

        八、布置作業(yè)

        1.作業(yè)本(一)中§7。1節(jié)

        2.選做題:①x2+x—m=(x+3),且m=。

       、趚2—3x+k=(x—5),且k=。

        評價(jià)與反饋

        1.透過由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問題,及時(shí)反饋。

        2.透過例題及練習(xí),了解學(xué)生對概念的理解程度和實(shí)際運(yùn)用潛力,最大限度地讓學(xué)生暴露問題和認(rèn)知誤差,及時(shí)發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中的遺漏和不足,從而及時(shí)調(diào)控教與學(xué)。

        3.透過機(jī)動題,了解學(xué)生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時(shí)評價(jià),及時(shí)矯正。

        4.透過課后作業(yè),了解學(xué)生對知識的掌握狀況與綜合運(yùn)用知識及靈活運(yùn)用知識的潛力,教師及時(shí)批閱,及時(shí)反饋講評,同時(shí)對個(gè)別學(xué)生面批作業(yè),能夠更及時(shí)、更準(zhǔn)確地了解學(xué)生思維發(fā)展的狀況,矯正的針對性更強(qiáng)。

        5.透過課堂小結(jié),了解學(xué)生對概念的熟悉程度和歸納概括潛力、語言表達(dá)潛力、知識運(yùn)用潛力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。

        6.課堂上反饋信息除了語言和練習(xí)外,學(xué)生神情也是信息來源,而且這些信息更真實(shí)。學(xué)生神態(tài)、表情、坐姿都反映出學(xué)生對教師教學(xué)資料的理解和理解程度。教師應(yīng)用心捕捉學(xué)生在知識掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時(shí)評價(jià),及時(shí)矯正,隨時(shí)調(diào)節(jié)教學(xué)。

      因式分解教案 篇6

        教學(xué)目標(biāo):

        1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問題。

        2、經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。

        3、通過對公式的探究,深刻理解公式的應(yīng)用,并會熟練應(yīng)用公式解決問題。

        4、通過探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問題,并根據(jù)公式自己解決問題的過程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識。

        教學(xué)重點(diǎn):

        應(yīng)用平方差公式分解因式.

        教學(xué)難點(diǎn):

        靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.

        教學(xué)過程:

        一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課

        1、什么是因式分解?判斷下列變形過程,哪個(gè)是因式分解?

       、(x+2)(x-2)= ②

       、

        2、我們已經(jīng)學(xué)過的因式分解的方法有什么?將下列多項(xiàng)式分解因式。

        x2+2x

        a2b-ab

        3、根據(jù)乘法公式進(jìn)行計(jì)算:

        (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

        二、合作探究 學(xué)習(xí)新知

        (一) 猜一猜:你能將下面的多項(xiàng)式分解因式嗎?

       。1)= (2)= (3)=

        (二)想一想,議一議: 觀察下面的公式:

       。剑╝+b)(a—b)(

        這個(gè)公式左邊的多項(xiàng)式有什么特征:_____________________________________

        公式右邊是__________________________________________________________

        這個(gè)公式你能用語言來描述嗎? _______________________________________

        (三)練一練:

        1、下列多項(xiàng)式能否用平方差公式來分解因式?為什么?

        ① ② ③ ④

        2、你能把下列的數(shù)或式寫成冪的形式嗎?

        (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

       。ㄋ模┳鲆蛔觯

        例3 分解因式:

        (1) 4x2- 9 (2) (x+p)2- (x+q)2

       。ㄎ澹┰囈辉嚕

        例4 下面的.式子你能用什么方法來分解因式呢?請你試一試。

        (1) x4- y4 (2) a3b- ab

       。┫胍幌耄

        某學(xué)校有一個(gè)邊長為85米的正方形場地,現(xiàn)在場地的四個(gè)角分別建一個(gè)邊長為5米的正方形花壇,問場地還剩余多大面積供學(xué)生課間活動使用?

      因式分解教案 篇7

        【教學(xué)目標(biāo)】

        1、了解因式分解的概念和意義;

        2、認(rèn)識因式分解與整式乘法的相互關(guān)系——相反變形,并會運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

        【教學(xué)重點(diǎn)、難點(diǎn)】

        重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

        【教學(xué)過程】

       、、情境導(dǎo)入

        看誰算得快:(搶答)

        (1)若a=101,b=99,則a2-b2=___________;

        (2)若a=99,b=-1,則a2-2ab+b2=____________;

        (3)若x=-3,則20x2+60x=____________。

       、妗⑻骄啃轮

        1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

        (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

        (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

        2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

        3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

        板書課題:§6.1 因式分解

        因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的`形式叫做因式分解,也叫分解因式。

       、纭⑶斑M(jìn)一步

        1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

        2、因式分解與整式乘法的關(guān)系:

        因式分解

        結(jié)合:a2-b2 (a+b)(a-b)

        整式乘法

        說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

        結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

        ㈣、鞏固新知

        1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

        (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

        (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

        (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

        2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

       、椤(yīng)用解釋

        例 檢驗(yàn)下列因式分解是否正確:

        (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

        分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

        練習(xí) 計(jì)算下列各題,并說明你的算法:(請學(xué)生板演)

        (1)872+87×13

        (2)1012-992

       、、思維拓展

        1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

        2.機(jī)動題:(填空)x2-8x+m=(x-4)( ),且m=

        ㈦、課堂回顧

        今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。

        ㈧、布置作業(yè)

        作業(yè)本(1) ,一課一練

        (九)教學(xué)反思:

      因式分解教案 篇8

        一、運(yùn)用平方差公式分解因式

        教學(xué)目標(biāo)1、使學(xué)生了解運(yùn)用公式來分解因式的意義。

        2、使學(xué)生理解平方差公式的意義,弄清平方差公式的形式和特點(diǎn);使學(xué)生知道把乘法公式反過來就可以得到相應(yīng)的因式分解。

        3、掌握運(yùn)用平方差公式分解因式的方法,能正確運(yùn)用平方差公式把多項(xiàng)式分解因式(直接用公式不超過兩次)

        重點(diǎn)運(yùn)用平方差公式分解因式

        難點(diǎn)靈活運(yùn)用平方差公式分解因式

        教學(xué)方法對比發(fā)現(xiàn)法課型新授課教具投影儀

        教師活動學(xué)生活動

        情景設(shè)置:

        同學(xué)們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來的?

        (學(xué)生或許還有其他不同的解決方法,教師要給予充分的肯定)

        新課講解:

        從上面992-1=(99+1)(99-1),我們?nèi)菀卓闯?這種方法利用了我們剛學(xué)過的哪一個(gè)乘法公式?

        首先我們來做下面兩題:(投影)

        1.計(jì)算下列各式:

        (1)(a+2)(a-2)=;

        (2)(a+b)(a-b)=;

        (3)(3a+2b)(3a-2b)=.

        2.下面請你根據(jù)上面的算式填空:

        (1)a2-4=;

        (2)a2-b2=;

        (3)9a2-4b2=;

        請同學(xué)們對比以上兩題,你發(fā)現(xiàn)什么呢?

        事實(shí)上,像上面第2題那樣,把一個(gè)多項(xiàng)式寫成幾個(gè)整式積的形式叫做多項(xiàng)式的'因式分解。(投影)

        比如:a2–16=a2–42=(a+4)(a–4)

        例題1:把下列各式分解因式;(投影)

        (1)36–25x2;(2)16a2–9b2;

        (3)9(a+b)2–4(a–b)2.

        (讓學(xué)生弄清平方差公式的形式和特點(diǎn)并會運(yùn)用)

        例題2:如圖,求圓環(huán)形綠化區(qū)的面積

        練習(xí):第87頁練一練第1、2、3題

        小結(jié):

        這節(jié)課你學(xué)到了什么知識,掌握什么方法?

        教學(xué)素材:

        A組題:

        1.填空:81x2-=(9x+y)(9x-y);=

        利用因式分解計(jì)算:=。

        2、下列多項(xiàng)式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

        (1)1-16a2(2)9a2x2-b2y2

        (3).49(a-b)2-16(a+b)2

        B組題:

        1分解因式81a4-b4=

        2若a+b=1,a2+b2=1,則ab=;

        3若26+28+2n是一個(gè)完全平方數(shù),則n=.

        由學(xué)生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學(xué)生)補(bǔ)充.

        學(xué)生回答1:

        992-1=99×99-1=9801-1

        =9800

        學(xué)生回答2:992-1就是(99+1)(99-1)即100×98

        學(xué)生回答:平方差公式

        學(xué)生回答:

        (1):a2-4

        (2):a2-b2

        (3):9a2-4b2

        學(xué)生輕松口答

        (a+2)(a-2)

        (a+b)(a-b)

        (3a+2b)(3a-2b)

        學(xué)生回答:

        把乘法公式

        (a+b)(a-b)=a2-b2

        反過來就得到

        a2-b2=(a+b)(a-b)

        學(xué)生上臺板演:

        36–25x2=62–(5x)2

        =(6+5x)(6–5x)

        16a2–9b2=(4a)2–(3b)2

        =(4a+3b)(4a–3b)

        9(a+b)2–4(a–b)2

        =[3(a+b)]2–[2(a–b)]2

        =[3(a+b)+2(a–b)]

        [3(a+b)–2(a–b)]

        =(5a+b)(a+5b)

        解:352π–152π

        =π(352–152)

        =(35+15)(35–15)π

        =50×20π

        =1000π(m2)

        這個(gè)綠化區(qū)的面積是

        1000πm2

        學(xué)生歸納總結(jié)

      【因式分解教案】相關(guān)文章:

      因式分解教案03-19

      因式分解教案最新12-12

      因式分解復(fù)習(xí)教案02-21

      因式分解優(yōu)秀教案02-20

      因式分解教案15篇04-02

      初中數(shù)學(xué)因式分解教案03-01

      關(guān)于因式分解教案4篇06-11

      因式分解教案模板(精選10篇)03-05

      因式分解教案錦集5篇04-05

      因式分解教案匯編七篇04-06