欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>因式分解優(yōu)秀教案

      因式分解優(yōu)秀教案

      時(shí)間:2023-02-20 08:38:33 教案 我要投稿
      • 相關(guān)推薦

      因式分解優(yōu)秀教案

        作為一名老師,很有必要精心設(shè)計(jì)一份教案,借助教案可以有效提升自己的教學(xué)能力。寫教案需要注意哪些格式呢?下面是小編整理的因式分解優(yōu)秀教案,歡迎大家分享。

      因式分解優(yōu)秀教案

      因式分解優(yōu)秀教案1

        教學(xué)目標(biāo):

        1、進(jìn)一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法

        3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解 4、應(yīng)用因式分解來解決一些實(shí)際問題

        5、體驗(yàn)應(yīng)用知識解決問題的樂趣

        教學(xué)重點(diǎn):靈活運(yùn)用因式分解解決問題

        教學(xué)難點(diǎn):靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾腵方法,拓展練習(xí)2、3

        教學(xué)過程:

        一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

        利用因式分解往往能將一些復(fù)雜的運(yùn)算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

        二、知識回顧

        1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

        判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

        (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

        (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

        (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

        (7).2πR+2πr=2π(R+r) 因式分解

        2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過程.

        分解因式要注意以下幾點(diǎn): (1).分解的對象必須是多項(xiàng)式.

        (2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式. (3).要分解到不能分解為止.

        3、因式分解的方法

        提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

        公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

        4、強(qiáng)化訓(xùn)練

        試一試把下列各式因式分解:

        (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

        (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

        三、例題講解

        例1、分解因式

        (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

        (3) (4)y2+y+例2、分解因式

        1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

        4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

        例3、分解因式

        1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

        三、知識應(yīng)用

        1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

        3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

        4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

        四、拓展應(yīng)用

        1.計(jì)算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

        2、20042+20xx被20xx整除嗎?

        3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

        五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?

      因式分解優(yōu)秀教案2

        知識點(diǎn):

        因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。

        教學(xué)目標(biāo):

        理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡單多項(xiàng)式分解因式。

        考查重難點(diǎn)與常見題型:

        考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。

        教學(xué)過程:

        因式分解知識點(diǎn)

        多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:

       。1)提公因式法

        如多項(xiàng)式

        其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的.公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。

       。2)運(yùn)用公式法,即用

        寫出結(jié)果。

        (3)十字相乘法

        對于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項(xiàng)式尋找滿足

        a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

       。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。

        分組時(shí)要用到添括號:括號前面是“+”號,括到括號里的各項(xiàng)都不變符號;括號前面是“-”號,括到括號里的各項(xiàng)都改變符號。

       。5)求根公式法:如果有兩個(gè)根X1,X2,那么

        2、教學(xué)實(shí)例:學(xué)案示例

        3、課堂練習(xí):學(xué)案作業(yè)

        4、課堂:

        5、板書:

        6、課堂作業(yè):學(xué)案作業(yè)

        7、教學(xué)反思:

      因式分解優(yōu)秀教案3

        【教學(xué)目標(biāo)】

        1、了解因式分解的概念和意義;

        2、認(rèn)識因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

        【教學(xué)重點(diǎn)、難點(diǎn)】

        重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

        【教學(xué)過程】

       、濉⑶榫硨(dǎo)入

        看誰算得快:(搶答)

        (1)若a=101,b=99,則a2-b2=___________;

        (2)若a=99,b=-1,則a2-2ab+b2=____________;

        (3)若x=-3,則20x2+60x=____________。

        ㈡、探究新知

        1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

        (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

        (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

        2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2,20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

        3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

        板書課題:§6.1因式分解

        因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

       、纭⑶斑M(jìn)一步

        1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2,20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

        2、因式分解與整式乘法的`關(guān)系:

        因式分解

        結(jié)合:a2-b2(a+b)(a-b)

        整式乘法

        說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

        結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

       、琛㈧柟绦轮

        1、下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

        (1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

        (3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

        (6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

        2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

       、、應(yīng)用解釋

        例檢驗(yàn)下列因式分解是否正確:

        (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

        分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

        練習(xí)計(jì)算下列各題,并說明你的算法:(請學(xué)生板演)

        (1)872+87×13

        (2)1012-992

        ㈥、思維拓展

        1.若x2+mx-n能分解成(x-2)(x-5),則m= ,n=

        2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

       、、課堂回顧

        今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。

        ㈧、布置作業(yè)

        作業(yè)本(1),一課一練

       。ň牛┙虒W(xué)反思:

      因式分解優(yōu)秀教案4

        教學(xué)目標(biāo):

        1、知識與技能:掌握運(yùn)用提公因式法、公式法分解因式,培養(yǎng)學(xué)生應(yīng)用因式分解解決問題的能力。

        2、過程與方法:經(jīng)歷探索因式分解方法的過程,培養(yǎng)學(xué)生研討問題的方法,通過猜測、推理、驗(yàn)證、歸納等步驟,得出因式分解的方法。

        3、情感態(tài)度與價(jià)值觀:通過因式分解的學(xué)習(xí),使學(xué)生體會(huì)數(shù)學(xué)美,體會(huì)成功的自信和團(tuán)結(jié)合作精神,并體會(huì)整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想。

        教學(xué)重、難點(diǎn):用提公因式法和公式法分解因式。

        教具準(zhǔn)備:多媒體課件(小黑板)

        教學(xué)方法:活動(dòng)探究法

        教學(xué)過程:

        引入:在整式的變形中,有時(shí)需要將一個(gè)多項(xiàng)式寫成幾個(gè)整式的乘積的形式,這種變形就是因式分解。什么叫因式分解?

        知識詳解

        知識點(diǎn)1因式分解的定義

        把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式。

        【說明】(1)因式分解與整式乘法是相反方向的變形。

        例如:

       。2)因式分解是恒等變形,因此可以用整式乘法來檢驗(yàn)。

        怎樣把一個(gè)多項(xiàng)式分解因式?

        知識點(diǎn)2提公因式法

        多項(xiàng)式ma+mb+mc中的各項(xiàng)都有一個(gè)公共的因式m,我們把因式m叫做這個(gè)多項(xiàng)式的公因式。ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個(gè)因式乘積的形式,其中一個(gè)因式是各項(xiàng)的公因式m,另一個(gè)因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法。例如:x2—x=x(x—1),8a2b—4ab+2a=2a(4ab—2b+1)。

        探究交流

        下列變形是否是因式分解?為什么?

       。1)3x2y—xy+y=y(3x2—x);(2)x2—2x+3=(x—1)2+2;

       。3)x2y2+2xy—1=(xy+1)(xy—1);(4)xn(x2—x+1)=xn+2—xn+1+xn。

        典例剖析師生互動(dòng)

        例1用提公因式法將下列各式因式分解。

        (1)—x3z+x4y;(2)3x(a—b)+2y(b—a);

        分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃,再把b—a化成—(a—b),然后再提取公因式。

        小結(jié)運(yùn)用提公因式法分解因式時(shí),要注意下列問題:

       。1)因式分解的結(jié)果每個(gè)括號內(nèi)如有同類項(xiàng)要合并,而且每個(gè)括號內(nèi)不能再分解。

       。2)如果出現(xiàn)像(2)小題需統(tǒng)一時(shí),首先統(tǒng)一,盡可能使統(tǒng)一的.個(gè)數(shù)少。這時(shí)注意到(a—b)n=(b—a)n(n為偶數(shù))。

       。3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式。

        學(xué)生做一做把下列各式分解因式。

        (1)(2a+b)(2a—3b)+(2a+5b)(2a+b);(2)4p(1—q)3+2(q—1)2

        知識點(diǎn)3公式法

       。1)平方差公式:a2—b2=(a+b)(a—b)。即兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這個(gè)數(shù)的差的積。例如:4x2—9=(2x)2—32=(2x+3)(2x—3)。

       。2)完全平方公式:a2±2ab+b2=(a±b)2。其中,a2±2ab+b2叫做完全平方式。即兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方。例如:4x2—12xy+9y2=(2x)2—2·2x·3y+(3y)2=(2x—3y)2。

        探究交流

        下列變形是否正確?為什么?

       。1)x2—3y2=(x+3y)(x—3y);(2)4x2—6xy+9y2=(2x—3y)2;(3)x2—2x—1=(x—1)2。

        例2把下列各式分解因式。

       。1)(a+b)2—4a2;(2)1—10x+25x2;(3)(m+n)2—6(m+n)+9。

        分析:本題旨在考查用完全平方公式分解因式。

        學(xué)生做一做把下列各式分解因式。

       。1)(x2+4)2—2(x2+4)+1;(2)(x+y)2—4(x+y—1)。

        綜合運(yùn)用

        例3分解因式。

       。1)x3—2x2+x;(2)x2(x—y)+y2(y—x);

        分析:本題旨在考查綜合運(yùn)用提公因式法和公式法分解因式。

        小結(jié)解因式分解題時(shí),首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項(xiàng),則考慮能否用平方差公式分解因式。是三項(xiàng)式考慮用完全平方式,最后,直到每一個(gè)因式都不能再分解為止。

        探索與創(chuàng)新題

        例4若9x2+kxy+36y2是完全平方式,則k= 。

        分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個(gè)數(shù)乘積的2倍的和(或差)。

        學(xué)生做一做若x2+(k+3)x+9是完全平方式,則k= 。

        課堂小結(jié)

        用提公因式法和公式法分解因式,會(huì)運(yùn)用因式分解解決計(jì)算問題。

        各項(xiàng)有"公"先提"公",首項(xiàng)有負(fù)常提負(fù),某項(xiàng)提出莫漏"1",括號里面分到"底"。

        自我評價(jià)知識鞏固

        1、若x2+2(m—3)x+16是完全平方式,則m的值等于()

        A、3 B、—5 C、7 D、7或—1

        2、若(2x)n—81=(4x2+9)(2x+3)(2x—3),則n的值是()

        A、2 B、4 C、6 D、8

        3、分解因式:4x2—9y2= 。

        4、已知x—y=1,xy=2,求x3y—2x2y2+xy3的值。

        5、把多項(xiàng)式1—x2+2xy—y2分解因式

        思考題分解因式(x4+x2—4)(x4+x2+3)+10。

      因式分解優(yōu)秀教案5

        教學(xué)目標(biāo):

        1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問題。

        2、經(jīng)歷探究分解因式方法的過程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

        3、通過對公式的探究,深刻理解公式的應(yīng)用,并會(huì)熟練應(yīng)用公式解決問題。

        4、通過探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問題,并根據(jù)公式自己解決問題的過程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識。

        教學(xué)重點(diǎn):

        應(yīng)用平方差公式分解因式.

        教學(xué)難點(diǎn):

        靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.

        教學(xué)過程:

        一、復(fù)習(xí)準(zhǔn)備導(dǎo)入新課

        1、什么是因式分解?判斷下列變形過程,哪個(gè)是因式分解?

       、(x+2)(x-2)= ②

       、

        2、我們已經(jīng)學(xué)過的因式分解的`方法有什么?將下列多項(xiàng)式分解因式。

        x2+2x

        a2b-ab

        3、根據(jù)乘法公式進(jìn)行計(jì)算:

        (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

        二、合作探究學(xué)習(xí)新知

        (一)猜一猜:你能將下面的多項(xiàng)式分解因式嗎?

       。1)= (2)= (3)=

        (二)想一想,議一議:觀察下面的公式:

        =(a+b)(a—b)(

        這個(gè)公式左邊的多項(xiàng)式有什么特征:_____________________________________

        公式右邊是__________________________________________________________

        這個(gè)公式你能用語言來描述嗎?_______________________________________

        (三)練一練:

        1、下列多項(xiàng)式能否用平方差公式來分解因式?為什么?

        ① ② ③ ④

        2、你能把下列的數(shù)或式寫成冪的形式嗎?

        (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

       。ㄋ模┳鲆蛔觯

        例3分解因式:

        (1) 4x2- 9 (2) (x+p)2- (x+q)2

        (五)試一試:

        例4下面的式子你能用什么方法來分解因式呢?請你試一試。

        (1) x4- y4 (2) a3b- ab

        (六)想一想:

        某學(xué)校有一個(gè)邊長為85米的正方形場地,現(xiàn)在場地的四個(gè)角分別建一個(gè)邊長為5米的正方形花壇,問場地還剩余多大面積供學(xué)生課間活動(dòng)使用?

      因式分解優(yōu)秀教案6

        教材分析

        因式分解是代數(shù)式的一種重要恒等變形!稊(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的.觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

        學(xué)情分析

        通過探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

        教學(xué)目標(biāo)

        1、在分解因式的過程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

        2、通過公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。

        3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

        4、通過活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

        教學(xué)重點(diǎn)和難點(diǎn)

        重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。

        難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

      【因式分解優(yōu)秀教案】相關(guān)文章:

      因式分解教案03-19

      因式分解復(fù)習(xí)教案02-21

      因式分解教案最新12-12

      因式分解教案15篇04-02

      初中數(shù)學(xué)因式分解教案03-01

      因式分解教案模板(精選10篇)03-05

      因式分解教案錦集5篇04-05

      因式分解教案集合五篇04-07

      因式分解教案范文合集6篇04-08