欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當前位置:好文網>實用文>教案>二次根式教案

      二次根式教案

      時間:2023-01-28 04:54:58 教案 我要投稿

      【精品】二次根式教案四篇

        作為一位杰出的老師,可能需要進行教案編寫工作,教案是教學活動的總的組織綱領和行動方案。教案要怎么寫呢?下面是小編幫大家整理的二次根式教案4篇,歡迎大家借鑒與參考,希望對大家有所幫助。

      【精品】二次根式教案四篇

      二次根式教案 篇1

        1.請同學們回憶(≥0,b≥0)是如何得到的?

        2.學生觀察下面的例子,并計算:

        由學生總結上面兩個式的關系得:

        類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:

       。ā0,b0)

        使學生回憶起二次根式乘法的運算方法的推導過程.

        類似地,請每個同學再舉一個例子,

        請學生們思考為什么b的取值范圍變小了?

        與學生一起寫清解題過程,提醒他們被開方式一定要開盡.

        對比二次根式的乘法推導出除法的運算方法

        增強學生的自信心,并從一開始就使他們參與到推導過程中來.

        對學生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

        強化學生的解題格式一定要標準.

        教學過程設計

        問題與情境師生行為設計意圖

        活動二自我檢測

        活動三挑戰(zhàn)逆向思維

        把反過來,就得到

       。ā0,b0)

        利用它就可以進行二次根式的化簡.

        例2化簡:

       。1)

       。2)(b≥0).

        解:(1)(2)練習2化簡:

        (1)(2)活動四談談你的收獲

        1.商的.算術平方根的性質(注意公式成立的條件).

        2.會利用商的算術平方根的性質進行簡單的二次根式的化簡.

        找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.

        二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

        找學生口述解題過程,教師將過程寫在黑板上.

        請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.

        請學生自己談收獲,并總結本節(jié)課的主要內容.

        為了更快地發(fā)現(xiàn)學生的錯誤之處,以便糾正.

        此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎理解并不難.

        讓學困生在自己做題時有一個參照.

        充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

      二次根式教案 篇2

        教學目的

        1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

        2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

        教學重點

        最簡二次根式的定義。

        教學難點

        一個二次根式化成最簡二次根式的方法。

        教學過程

        一、復習引入

        1.把下列各根式化簡,并說出化簡的根據(jù):

        2.引導學生觀察考慮:

        化簡前后的根式,被開方數(shù)有什么不同?

        化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

        3.啟發(fā)學生回答:

        二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

        二、講解新課

        1.總結學生回答的內容后,給出最簡二次根式定義:

        滿足下列兩個條件的二次根式叫做最簡二次根式:

        (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

        (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

        最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。

        2.練習:

        下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

        3.例題:

        例1 把下列各式化成最簡二次根式:

        例2 把下列各式化成最簡二次根式:

        4.總結

        把二次根式化成最簡二次根式的'根據(jù)是什么?應用了什么方法?

        當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質,把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。

        當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的性質化去分母。

        此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

        三、鞏固練習

        1.把下列各式化成最簡二次根式:

        2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

      二次根式教案 篇3

        1.教學目標

        (1)經歷二次根式的乘法法則和積的算術平方根的性質的形成過程;會進行簡單的二次根式的乘法運算;

        (2)會用公式化簡二次根式.

        2.目標解析

        (1)學生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內容;

        (2)學生能利用二次根式的乘法法則和積的算術平方根的性質,化簡二次根式.

        教學問題診斷分析

        本節(jié)課的學習中,學生在得出乘法法則和積的算術平方根的性質后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關,由于該內容與以前學過的實數(shù)內容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯(lián)系性上下力氣.,培養(yǎng)學生良好的運算習慣.

        在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質,結合二次根式的性質進行化簡(例見教科書例6解法1),也可以先寫成算術平方根的商的形式,再利用分式的性質處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

        本節(jié)課的教學難點為:二次根式的'性質及乘法法則的正確應用和二次根式的化簡.

        教學過程設計

        1.復習引入,探究新知

        我們前面已經學習了二次根式的概念和性質,本節(jié)課開始我們要學習二次根式的乘除.本節(jié)課先學習二次根式的乘法.

        問題1 什么叫二次根式?二次根式有哪些性質?

        師生活動 學生回答。

        【設計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質.

        問題2 教材第6頁“探究”欄目,計算結果如何?有何規(guī)律?

        師生活動 學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內容.

        【設計意圖】學生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學生用數(shù)學語言和文字分別描述法則,以培養(yǎng)學生的符號意識.

        2.觀察比較,理解法則

        問題3 簡單的根式運算.

        師生活動 學生動手操作,教師檢驗.

        問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?

        師生活動 學生回答,給出正確答案后,教師給出積的算術平方根的性質.

        【設計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術平方根的性質,性質是為運算服務的,積的算術平方根的性質將積的算術平方根分解成幾個因數(shù)或因式的算術平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力.

        3.例題示范,學會應用

        例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

        師生活動 提問:你是怎么理解例(1)的?

        如果學生回答不完善,再追問:這個問題中,就直接將結果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?

        師生合作回答上述問題.對于根式運算的最后結果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應依據(jù)二次根式的性質二次根式的乘除將其移出根號外.

        再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

        【設計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向.積的算術平方根的性質可以進行二次根式的化簡.

        例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

        師生活動 學生計算,教師檢驗.

        (1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

        (2)二次根式的乘法運算類似于整式的乘法運算,交換律、結合律都是適用的.對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進行運算;

        (3)例(3)的運算是選學內容.讓學有余力的學生學到“根號下為字母的二次根式”的運算.本題先利用積的算術平方根的性質,得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

        【設計意圖】引導學生及時總結,強調利用運算律進行運算,利用乘法公式簡化運算.讓學生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關于整式運算的公式和方法也適用.

        教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應強調,看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.

        4.鞏固概念,學以致用

        練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.

        【設計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.

        5.歸納小結,反思提高

        師生共同回顧本節(jié)課所學內容,并請學生回答以下問題:

        (1)你能說明二次根式的乘法法則是如何得出的嗎?

        (2)你能說明乘法法則逆用的意義嗎?

        (3)化簡二次根式的基本步驟是怎樣?一般對最后結果有何要求?

        6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.

        五、目標檢測設計

        1.下列各式中,一定能成立的是( )

        A.二次根式的乘除 B.二次根式的乘除

        C.二次根式的乘除 D.二次根式的乘除

        【設計意圖】考查二次根式的概念和性質,這是進行二次根式的乘法運算的基礎.

        2.化簡二次根式的乘除 ______________________________。

        【設計意圖】二次根式是特殊的實數(shù),實數(shù)的相關運算法則也適用于二次根式.

        3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結果是(  )

        A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

        【設計意圖】鞏固二次根式的性質,利用積的算術平方根的性質正確化簡二次根式.

      二次根式教案 篇4

        第十六章 二次根式

        代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

        5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結論.20=22×5,所以正整數(shù)的最小值為5.)

        6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

        7.解:(1) . (2)寬:3 ;長:5 .

        8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

        9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

        10.解析:在利用=|a|=化簡二次根式時,當根號內的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

        解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應是 =-a.

        本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

        在探究二次根式的性質時,通過“提問——追問——討論”的.形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

        在探究完成二次根式的性質1后,總結學習方法,再放手讓學生自主探究二次根式的性質2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

        練習(教材第4頁)

        1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

        2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

        習題16.1(教材第5頁)

        1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

        2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

        3.解:(1)設圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

        4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

        5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

        6.解:設AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

        7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內有意義.

        8.解:設h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

        9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

        10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

        如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

        〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

        解:由數(shù)軸可得:a+b<0,a-b>0,

        ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

        [解題策略] 結合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結合的思想.

        已知a,b,c為三角形的三條邊,則+= .

        〔解析〕 根據(jù)三角形三邊的關系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

        [解題策略] 此類化簡問題要特別注意符號問題.

        化簡:.

        〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

        解:當x≥3時,=|x-3|=x-3;

        當x<3時,=|x-3|=-(x-3)=3-x.

        [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

        5

        O

        M

      【二次根式教案】相關文章:

      二次根式教案05-22

      二次根式的加減教案01-19

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式教案優(yōu)秀06-26

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(熱門)12-19

      關于二次根式教案4篇02-03

      二次根式教案合集九篇05-08

      關于二次根式教案三篇05-10