- 相關(guān)推薦
二次函數(shù)的教學(xué)反思
作為一名人民教師,教學(xué)是我們的任務(wù)之一,通過教學(xué)反思可以有效提升自己的課堂經(jīng)驗(yàn),那么大家知道正規(guī)的教學(xué)反思怎么寫嗎?以下是小編幫大家整理的二次函數(shù)的教學(xué)反思,歡迎大家分享。
二次函數(shù)的教學(xué)反思1
二次是函數(shù)是函數(shù)中的重點(diǎn)、難點(diǎn),它比較復(fù)雜,一般來說我們研究它是先研究其本身性質(zhì)、圖象,進(jìn)而擴(kuò)展到應(yīng)用,它在現(xiàn)實(shí)中應(yīng)用較廣,我們在教學(xué)中要緊密結(jié)合實(shí)際,讓學(xué)生學(xué)有所用,在教學(xué)中應(yīng)注意以下幾個問題:
。ㄒ唬┌盐蘸谜n標(biāo)。九年義務(wù)教育初中數(shù)學(xué)教學(xué)大綱卻降低了對二次函數(shù)的教學(xué)要求,只要求學(xué)生理解二次函數(shù)和拋物線的有關(guān)概念,會用描點(diǎn)法畫出二次函數(shù)的圖像;會用配方法確定拋物線的頂點(diǎn)和對稱軸;會用待定系數(shù)法由已知圖像上三點(diǎn)的坐標(biāo)求二次函數(shù)的解析式。
。ǘ┌褜(shí)際問題數(shù)學(xué)化。首先要深入了解實(shí)際問題的背景,了解影響問題變化的主要因素,然后在舍棄問題中的`非本質(zhì)因素的基礎(chǔ)上,應(yīng)用有關(guān)知識把實(shí)際問題抽象成為數(shù)學(xué)問題,并進(jìn)而解決它。
(三)函數(shù)的教學(xué)應(yīng)注意自變量與函數(shù)之間的變化對應(yīng)。函數(shù)問題是一個研究動態(tài)變化的問題,讓學(xué)生理解動態(tài)變化中自變量與函數(shù)之間的變化對應(yīng),可能更有助于學(xué)生對函數(shù)的學(xué)習(xí)。
。ㄋ模┒魏瘮(shù)的教學(xué)應(yīng)注意數(shù)形結(jié)合。要把函數(shù)關(guān)系式與其圖像結(jié)合起來學(xué)習(xí),讓學(xué)生感受到數(shù)和形結(jié)合分析解決問題的優(yōu)勢。
。ㄎ澹┙⒍魏瘮(shù)模型。利用二次函數(shù)來解決實(shí)際問題,重在建立二次函數(shù)模型。但是在解決最值問題時得注意,有時理論上的最大值(或最小值)不是實(shí)際生活中的最值,得考慮實(shí)際意義。
。┳⒅囟魏瘮(shù)與一元二次方程、一元二次不等式的關(guān)系。利用二次函數(shù)的圖像可以得到對應(yīng)一元二次方程的解、一元二次不等式的解集。
二次函數(shù)的教學(xué)反思2
在“一次函數(shù)”一章時已經(jīng)了解了一次函數(shù)與一元一次方程,一元一次不等式(組),二元一次方程組的聯(lián)系。本章專門設(shè)一節(jié),通過探討二次函數(shù)與一元二次方程的關(guān)系,再次展示函數(shù)與方程的聯(lián)系。一方面可以深化我們對一元二次方程的`認(rèn)識,另一方面又可以運(yùn)用一元二次方程解決二次函數(shù)的有關(guān)問題。
利用二次函數(shù)圖像求一元二次方程的實(shí)數(shù)根。
本節(jié)通過畫圖,看圖,分析圖,列表對比,抽象概括進(jìn)行教學(xué),讓每個學(xué)生動手,動口,動腦,積極參與,提高教學(xué)效率和教學(xué)質(zhì)量(此文來自優(yōu)秀),使學(xué)生進(jìn)一步理解數(shù)形結(jié)合和從特殊到一般的思想方法。不足之處是:有少部分學(xué)生對函數(shù)與方程之間的關(guān)系有點(diǎn)費(fèi)解。通過了解發(fā)現(xiàn):這部分同學(xué)對一次函數(shù)和方程的關(guān)系也不熟悉,也就是數(shù)學(xué)基礎(chǔ)不扎實(shí),還有就是數(shù)形結(jié)合能力差,也就是不能建立數(shù)與形之間的聯(lián)系。他們?yōu)槭裁床荒芎芎玫淖龅竭@些呢?我想,這正是本節(jié)課的要點(diǎn)所在。在今后的教學(xué)中,一定關(guān)注這一點(diǎn),解決之。
二次函數(shù)的教學(xué)反思3
經(jīng)過本周的教學(xué),九三學(xué)生初步能做到:
、倌芨鶕(jù)已知條件確定二次函數(shù)的解析式、開口方向、頂點(diǎn)和對稱軸。
、诶斫獠⒛苓\(yùn)用二次函數(shù)的圖象和性質(zhì)解決有關(guān)問題。但是,學(xué)生對二次函數(shù)圖象和性質(zhì)的綜合應(yīng)用掌握不好。特作以下反思:
首先,讓學(xué)生課下完成二次函數(shù)圖象和性質(zhì)的'基礎(chǔ)訓(xùn)練,促使學(xué)生對二次函數(shù)圖象和性質(zhì)的知識點(diǎn)全面梳理和掌握。發(fā)現(xiàn)有問題,我及時評講分析,幫助學(xué)生解決。
其次,讓學(xué)生多做二次函數(shù)基礎(chǔ)題目,注重?cái)?shù)形結(jié)合思想的應(yīng)用,圖像的平移,從函數(shù)圖像上觀察出對稱軸,頂點(diǎn)坐標(biāo),會用描點(diǎn)法畫二次函數(shù)圖像,會求函數(shù)最值問題,循序漸進(jìn)推出,符合學(xué)生的認(rèn)知規(guī)律,使學(xué)生對二次函數(shù)圖象和性質(zhì)有了進(jìn)一步的理解和提高。
再次,本周完成后,我感到也有不足的地方:課堂容量稍有點(diǎn)偏大,學(xué)生沒有時間獨(dú)立完成作業(yè)。雖然我對每個問題及時小結(jié)、歸納,但沒有留一定時間讓學(xué)生整理消化。準(zhǔn)確把握重點(diǎn),突破難點(diǎn)方面注重自己的提高,同時在駕馭課堂能力方面注重自己的進(jìn)步。今后我將在如何提高有效課堂效率方面多下功夫,使自己教育教學(xué)此文轉(zhuǎn)自水平再上一個臺階。
二次函數(shù)的教學(xué)反思4
二次函數(shù)是初中階段的重要知識點(diǎn),如何讓學(xué)生學(xué)得好,也是困擾我很久的問題。通過畫圖,在觀察圖形中總結(jié)出圖形的性質(zhì),對學(xué)生來說不是難點(diǎn)。重點(diǎn)和難點(diǎn)在準(zhǔn)確靈活地應(yīng)用性質(zhì)。但是要想準(zhǔn)確應(yīng)用,熟記圖形與性質(zhì)是前提,于是我重點(diǎn)放在對“性質(zhì)的記憶”和“對學(xué)生高要求上”。
強(qiáng)化記憶,功夫在平時。每節(jié)課上課一開始,我在黑板上板書上節(jié)學(xué)過的有代表性的函數(shù),為防止出錯,開始以小組或者同為相互檢查快速說性質(zhì):包括圖形、對稱軸、頂點(diǎn)坐標(biāo)、增減性、最值六個方面。每節(jié)課都將前幾節(jié)課學(xué)過的函數(shù)式板書,學(xué)生自然形成習(xí)慣。直到學(xué)習(xí)頂點(diǎn)式的`一般形式這節(jié)課,共出示六個代表性的函數(shù),盡管多,但是在前幾節(jié)課的基礎(chǔ)上,學(xué)生已經(jīng)達(dá)到熟練快速準(zhǔn)確。我和學(xué)生開玩笑說,必須將函數(shù)性質(zhì)記憶到說夢話都說函數(shù)性質(zhì)的地步。
深化理解,學(xué)生對著自己曾經(jīng)畫過函數(shù)說性質(zhì),不知不覺中將圖像和性質(zhì)有機(jī)的結(jié)合在了一起。并逐步的將說具體函數(shù)的性質(zhì)過渡到說一般表達(dá)式的函數(shù)性質(zhì)。y=ax2y=ax2+k,y=a(x-h)2+k.
提高要求。因?yàn)槭种袥]有合適的材料供學(xué)生練習(xí)使用,因此我們每節(jié)課印制了兩份隨堂練習(xí),因?yàn)閯倢W(xué)完性質(zhì),對學(xué)生來說訓(xùn)練題難度不大,開始對學(xué)生的要求是最多錯一個題,結(jié)果發(fā)現(xiàn)學(xué)生的錯誤很少,后期發(fā)現(xiàn)自己的要求低了,于是我改變要求,必須一個不錯方可得A等級。結(jié)果發(fā)現(xiàn),學(xué)生自然對自己的要求也提高了。當(dāng)發(fā)現(xiàn)自己錯一個時,就會反思自己那里沒學(xué)好。一班的學(xué)生平時反映靈活,但是缺少深入細(xì)致,必須提高要求,方可讓他們耐下心來認(rèn)真學(xué)習(xí)。
同時從學(xué)生的答題中,及時發(fā)現(xiàn)學(xué)生存在的問題,及時提醒學(xué)生反思改進(jìn)。上節(jié)課講過的下次再考照樣錯,如:李萌。在她的反思中,分析到自己不是智力問題,而是心態(tài)和習(xí)慣問題,遇到問題不深入細(xì)致,導(dǎo)致基礎(chǔ)知識的應(yīng)用出問題。他月考和期中檢測均是等級B!熬桶催@樣的習(xí)慣學(xué)下去,不能考A”“老師,下次我一定考A”我試圖在平時的學(xué)習(xí)中發(fā)現(xiàn)她的問題,多么希望她保持好的等級。
二次函數(shù)的教學(xué)反思5
這節(jié)課我首先讓學(xué)生思考了三個列函數(shù)關(guān)系式的實(shí)際問題,接著在學(xué)生探究這三個實(shí)際問題的基礎(chǔ)上,思考、歸納出二次函數(shù)的定義以及探討對二次函數(shù)的判斷,最后針對二次函數(shù)的定義和能用二次函數(shù)表示變量之間關(guān)系進(jìn)行了鞏固應(yīng)用。本節(jié)課通過豐富的現(xiàn)實(shí)背景,使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價值。通過學(xué)生的探究性活動(經(jīng)歷數(shù)學(xué)化的過程),和學(xué)生之間的合作與交流,通過分析實(shí)際問題,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。在新知的鞏固應(yīng)用環(huán)節(jié),我精心設(shè)計(jì)了不同題型的問題,很好鞏固應(yīng)用了本節(jié)的新知,課堂達(dá)到了較好的教學(xué)效果。通過本節(jié)課也讓我真正意識到:對于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗(yàn)設(shè)計(jì)。在每節(jié)課的課前,一定要進(jìn)行精心的.預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實(shí)際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進(jìn)行分組教學(xué)時,提前預(yù)設(shè)好教學(xué)時間,在每節(jié)課上,既要放的開,同時又要注意在適當(dāng)?shù)臅r機(jī)收回,以保證每節(jié)教學(xué)基本任務(wù)完成。
二次函數(shù)的教學(xué)反思6
因教研組活動的安排需要,本周二我作為初四代表出示研討課,課題為《二次函數(shù)的應(yīng)用——————形如拋物線型》,結(jié)合老師的評課反思一下:
我的設(shè)計(jì)思路是:前置補(bǔ)償(確定二次函數(shù)解析式的方法和思路)———————探索新知(由前置補(bǔ)償?shù)谒男☆}過渡到問題一,目的在于體會數(shù)學(xué)與實(shí)際問題的轉(zhuǎn)化,并得出確定實(shí)際問題中解析式的關(guān)鍵在于有實(shí)際意義得出關(guān)鍵點(diǎn)的坐標(biāo);然后過渡到?jīng)]有坐標(biāo)系的實(shí)際問題中,該怎么處理,有學(xué)生探索并分情況展示,然后比較過程與結(jié)果,增強(qiáng)優(yōu)化意識。另一方面由實(shí)際問題的解決,體會二次函數(shù)應(yīng)用中的數(shù)學(xué)思想:第一環(huán)節(jié),實(shí)際意義—→關(guān)鍵點(diǎn)的坐標(biāo)—→解析式,注意由實(shí)際意義到點(diǎn)的坐標(biāo)轉(zhuǎn)化時的符號,進(jìn)一步明確解決問題的第二個環(huán)節(jié),解析式—→關(guān)鍵點(diǎn)的坐標(biāo)—→實(shí)際意義,注意由坐標(biāo)到實(shí)際意義轉(zhuǎn)化時要取絕對值。)—————活學(xué)活用(解決一個隧道問題,目的加強(qiáng)對思路的理解與體會,從本節(jié)課上也提高一下難度,但因時間關(guān)系,沒有完成)。
評課整理如下:
優(yōu)點(diǎn):
思路比較清晰,過渡比較自然,題后反思比較到位。
缺點(diǎn):
1、孫老師:對學(xué)生的評價比較模糊,比如有錯誤的情況下還打個對號。
2、郭老師:解題步驟需加以規(guī)范和總結(jié):一建二設(shè)三解四答。
3、張老師:知識總結(jié)有些地方不太到位,比如,三種不同的情況為什么a的取值不變?比較三種的優(yōu)劣時可以從兩個方面進(jìn)行即確定解析式和解決最后實(shí)際問題。這樣可以更體會更深刻一些。
4、付主任:本節(jié)課有寬度,但缺乏深度,容量比較小,學(xué)案可以在濃縮一下,可以將問題一和問題二結(jié)合起來。
5、齊主任:課堂模式和反映出來的教學(xué)理念比較過時,以學(xué)生為主體的教育理念體現(xiàn)的不夠突出,如果把這節(jié)課放在課改之前可能是一堂好課。
自我反思:
1、從郭老師、張老師和孫老師的建議中,我應(yīng)該加強(qiáng)對課的精細(xì)化要求,授課態(tài)度要嚴(yán)謹(jǐn),對學(xué)生的一點(diǎn)一滴都要負(fù)責(zé)任,同時對教材知識的挖掘面面俱到,引領(lǐng)學(xué)生對知識能有一個更全面更深入的理解。
2、受付主任建議的啟發(fā),可以嘗試刪掉問題一,由問題二承擔(dān)起原問題一和問題二的雙重作用,即:實(shí)際意義確定點(diǎn)的坐標(biāo);建立適當(dāng)?shù)淖鴺?biāo)系。可以仍有第四小題引入到問題二(建好坐標(biāo)系,頂點(diǎn)在原點(diǎn)處),然后實(shí)際問題中不可能存在現(xiàn)成的坐標(biāo)系,引發(fā)學(xué)生思考坐標(biāo)系的建立情況,然后加以拓展,并結(jié)合解決實(shí)際問題體會三種情況的優(yōu)劣。這樣應(yīng)該可以節(jié)省一些時間,但我估計(jì)不會太多,最多能節(jié)省5分鐘,但這或許就可以分析活學(xué)活用中的題目了。
自己的體會是,因?yàn)檫@是第一課時,很多東西不可能面面俱到,知識的理解還需要有個循序漸進(jìn)的過程(或許這也是一個托辭,這就是我們與名師的差距)。與名師相比,我們的課堂容量太小,一方面我們平時的課堂對知識中的思想方法挖掘滲透的'太少,學(xué)生頭腦中的知識不系統(tǒng),形不成知識體系;另一方面,與本人的知識素養(yǎng)有關(guān)系,還需要進(jìn)一步對教材知識進(jìn)行深入挖掘,對新的教育理念進(jìn)行學(xué)習(xí),只有準(zhǔn)備充足了,才能在課堂上游刃有余。
3、結(jié)合齊主任的評課,我站在別人的高度試想了如果是云老師或宋老師來評課,會提出什么意見,我隱約感覺到這肯定不是一節(jié)好課,有很大的問題,至于是什么問題我也說不清楚,或許就如齊主任所說的教育理念比較陳腐導(dǎo)致課堂沒有推陳出新的亮點(diǎn),并且我覺得可以做大手術(shù),如果真能請?jiān)评蠋熁蛩卫蠋焷碓u課的話,我或許就會豁然開朗,而不再這般的迷茫。
二次函數(shù)的教學(xué)反思7
新人教版九年級數(shù)學(xué)第二十二章《二次函數(shù)》是學(xué)生學(xué)習(xí)了正比例函數(shù)、一次函數(shù)進(jìn)一步學(xué)習(xí)函數(shù)知識,是函數(shù)知識螺旋發(fā)展的一個重要環(huán)節(jié),二次函數(shù)單元教學(xué)反思。二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時所采用的重要方法之一,也是某些單變量最優(yōu)化問題的數(shù)學(xué)模型。和一次函數(shù)一樣,二次函數(shù)也是一種非;镜某醯群瘮(shù),對二次函數(shù)的研究將為學(xué)生進(jìn)一步學(xué)習(xí)函數(shù)、體會函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗(yàn)。
二次函數(shù)作為初中階段學(xué)習(xí)的重要函數(shù)模型,對理解函數(shù)的性質(zhì),掌握研究函數(shù)的方法,體會函數(shù)的思想是十分重要的,因此本章的重點(diǎn)是二次函數(shù)的圖象與性質(zhì)的理解與掌握,應(yīng)教會學(xué)生畫二次函數(shù)圖象,學(xué)會觀察函數(shù)圖象,借助函數(shù)圖象來研究函數(shù)性質(zhì)并解決相關(guān)的問題。本章的難點(diǎn)是體會二次函數(shù)學(xué)習(xí)過程中所蘊(yùn)含的數(shù)學(xué)思想方法,函數(shù)圖象的特征和變換有及二次函數(shù)性質(zhì)的靈活應(yīng)用。
下面是我通過本單元對《二次函數(shù)》教學(xué)內(nèi)容的分類后的幾點(diǎn)反思:
“二次函數(shù)概念”:
關(guān)于“二次函數(shù)概念”教學(xué)中我的成功之處是:教學(xué)時,通過實(shí)例引入二次函數(shù)的概念,讓學(xué)生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型。通過學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式和它的定義域;大部分學(xué)生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。絕大多數(shù)學(xué)生理解了二次函數(shù)的概念;掌握了二次函數(shù)的一般表達(dá)式以及二次項(xiàng)和二次項(xiàng)的系數(shù)、一次項(xiàng)和一次項(xiàng)的系數(shù)及常數(shù)項(xiàng)。
不足之處表現(xiàn)在:少數(shù)學(xué)生不能從函數(shù)本身的實(shí)際意義去正確判定一個函數(shù)是否是二次函數(shù)。
“二次函數(shù)的圖像及性質(zhì)”:
關(guān)于“二次函數(shù)的圖象和性質(zhì)”在教學(xué)中我采用了體驗(yàn)探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗(yàn)知識的形成過程,力求體現(xiàn)“主體參與、自主探索、合作交流、指導(dǎo)引探”的教學(xué)理念。通過引導(dǎo)學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax的圖象。畫圖的過程包括列表、描點(diǎn)、連線。列表過程是我引導(dǎo)學(xué)生取點(diǎn)的,其間我引導(dǎo)學(xué)生要明確取點(diǎn)注意的事項(xiàng),比如代表性、易操作性。
在性質(zhì)的探究中我讓學(xué)生觀察圖像自主探討當(dāng)a>0時函數(shù)y=ax的性質(zhì)。當(dāng)a
不足之處表現(xiàn)在:
1、課堂上時間安排欠合理。學(xué)生說的多,動手不夠。
2、學(xué)生作圖速度慢。簡單的列表、描點(diǎn)、連線。學(xué)生做起來就比較困難,作圖中單位長度不準(zhǔn)確,描點(diǎn)不準(zhǔn)確,圖象中的平滑曲線不夠平滑。
3、合作學(xué)習(xí)的有效性不夠。對于老師提出的問題,各組匯報(bào)討論結(jié)果的效果不明顯。說明自主、探究、合作的學(xué)習(xí)方式?jīng)]有落到實(shí)處,學(xué)生的創(chuàng)新能力的培養(yǎng)不夠。
4、少數(shù)學(xué)生二次函數(shù)圖像平移變換能力差。不會進(jìn)行二次函數(shù)圖像的平移變換。
“求二次函數(shù)解析式”:
關(guān)于“求二次函數(shù)解析式”教學(xué)中,我通過創(chuàng)設(shè)有關(guān)待定系數(shù)法的問題情境出發(fā),導(dǎo)入求二次函數(shù)一般解析式的方法。學(xué)生把已知點(diǎn)代入二次函數(shù)的一般解析式,很快就得出了三元一次方程組,學(xué)生很快就理解了求二次函數(shù)一般解析式的方法。然后我通過變式,給出拋物線的頂點(diǎn)坐標(biāo)和經(jīng)過拋物線的一個點(diǎn),引導(dǎo)學(xué)生設(shè)頂點(diǎn)式的二次函數(shù)解析式,學(xué)生在老師的'點(diǎn)撥下,將已知點(diǎn)代入,很快理解了用頂點(diǎn)式求的二次函數(shù)解析式的方法。再通過變式我又引導(dǎo)學(xué)生觀察拋物線與x軸的交點(diǎn),啟發(fā)學(xué)生設(shè)交點(diǎn)式解析式求二次函數(shù)解析式的方法。在整個教學(xué)中,環(huán)環(huán)相扣,充分調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性,所以教學(xué)非常流暢,效果不錯,目標(biāo)的達(dá)成度較高。
不足之處表現(xiàn)在:
1、一般式的應(yīng)用中學(xué)生的難度在于解三元一次方程組上。
2、學(xué)生對求頂點(diǎn)式和交點(diǎn)式的二次函數(shù)解析式方法欠靈活。
3、變式訓(xùn)練的習(xí)題太少導(dǎo)致學(xué)生掌握知識不夠牢固。
“實(shí)際問題與二次函數(shù)”:
關(guān)于“實(shí)際問題與二次函數(shù)”教學(xué)中我通過引導(dǎo)學(xué)生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點(diǎn)式、交點(diǎn)式的表達(dá)形式,以及二次函數(shù)的性質(zhì)如拋物線的開口方向,對稱軸,頂點(diǎn)坐標(biāo),最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。然后出示問題1,即最大面積問題。教材中的三個探究我分別安排了三節(jié)課進(jìn)行分類教學(xué)。我從學(xué)生的實(shí)際出發(fā),幫助學(xué)生解決學(xué)習(xí)中的困難,啟發(fā)和引導(dǎo)學(xué)生觀察二次函數(shù)圖像,對圖像進(jìn)行分析,得出解決問題的方案。教學(xué)每一類實(shí)際問題,我都搜集了大量的實(shí)例,所以教學(xué)重點(diǎn)、難點(diǎn)把握的較準(zhǔn)確,同時調(diào)動大多數(shù)學(xué)生學(xué)習(xí)的積極性和主動性,所以這部分內(nèi)容學(xué)生掌握的比較好。
不足之處表現(xiàn)在:
1、“探究1”中少數(shù)學(xué)生對于用配方法或公式法求函數(shù)的極值容易出錯。
2、少數(shù)學(xué)生不會分析題意,不能正確列式求出二次函數(shù)的解析式。
3、“探究2”少數(shù)學(xué)生對最大利潤問題中的漲價和定價理解有偏差。
4、“探究3”少數(shù)學(xué)生不會靈活建立直角坐標(biāo)系把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。
以上就是我在教學(xué)本單元的感受、體會。因?yàn)槎魏瘮?shù)知識是函數(shù)中的重點(diǎn)也是中考的重點(diǎn)考點(diǎn),所以針對教學(xué)中的不足和學(xué)生暴露出的問題,在期末復(fù)習(xí)中還要制定詳實(shí)有效的復(fù)習(xí)計(jì)劃,通過精選習(xí)題再進(jìn)行最后的強(qiáng)化訓(xùn)練。
二次函數(shù)的教學(xué)反思8
上完課后失敗感比較強(qiáng)。失敗感也比平平淡淡的價值大,下面總結(jié)一下有何失誤。
本節(jié)教學(xué)內(nèi)容是《一次函數(shù)與一元二次方程(組)》,“一個二元一次方程對應(yīng)一個一次函數(shù),一般地一個二元一次方程組對應(yīng)兩個一次函數(shù),因而也對應(yīng)兩條直線。如果一個二元一次方程組有唯一的解,那么這個解就是方程組對應(yīng)的兩條直線的交點(diǎn)的坐標(biāo)。本節(jié)的圖象解依據(jù)了這個道理!币虼吮竟(jié)需要迅速畫出圖象,利用圖象解決問題。而我的失誤也主要發(fā)生在畫圖象上,在喧鬧聲剛剛平息后在九班開始了這節(jié)課。課堂需要的課件無法用內(nèi)網(wǎng)傳遞,我只得讓學(xué)生自己先看書,借機(jī)我跑到一樓用軟盤把課件拷過來;蛟S這節(jié)課的例題更適合學(xué)生獨(dú)立學(xué)習(xí),我對學(xué)生疑難處加以點(diǎn)撥,這樣學(xué)生的主動性會調(diào)動起來,昨天看的文章了說注重學(xué)生的想法,體會。給學(xué)生以充分思考的時間。不過我擔(dān)心 學(xué)生的基礎(chǔ)參差不齊,還是以我講授為主,講后學(xué)生進(jìn)行訓(xùn)練。在講的過程中犯了一個畫圖錯誤,2X-Y=1化成了 Y=2X+1,并用幾何畫板作出了圖象。這種低級錯誤竟然我沒有看出來,后來學(xué)生給我指出來了,有的學(xué)生看到老師出錯了,低著頭嘀嘀咕咕,我對著電腦是否重新畫呢,時間不多了然后轉(zhuǎn)入了例3的.講解。
一個小小的筆誤,雖然不是知識性的錯誤,不能反映老師的教學(xué)水平低下,但這種粗心造成的錯誤在學(xué)生的記憶中留下不光彩的一頁,看到個別學(xué)生眼中不屑的表情,我忍了忍心里的怒火,不能在課堂上訓(xùn)斥他們,錯是自己釀成的。 以后一定注意課堂的細(xì)節(jié),借機(jī)課下我要強(qiáng)化對學(xué)生的細(xì)節(jié)教育,不要在做題過程中出現(xiàn)我所犯的低級錯誤。
關(guān)注細(xì)節(jié),完善課堂和各個環(huán)節(jié),不留遺憾,提高質(zhì)量
二次函數(shù)的教學(xué)反思9
1、常態(tài)課,沒有太多的做作。
沒有制作課件。但若是把要讓學(xué)生回答的各種性語言,制作成PPT。若用上這種課件,效果應(yīng)當(dāng)會更好一些。
2、在一個班講,變成了兩個班合班上。
造成我展示中等生學(xué)習(xí)情況的不太明顯。原第一節(jié)課,我是要設(shè)計(jì)板書和教學(xué)環(huán)節(jié)?墒,因?yàn)檎Z文老師不在,我只好合班上課,給學(xué)生講解二次函數(shù)的應(yīng)用題。沒有時間多考慮我第二節(jié)的公開課了。
3、課越想,越復(fù)雜。
這一點(diǎn)可能與上面的矛盾,但還是想把自己的感覺說出來。因?yàn)橐_,因?yàn)橐寗e人來看我的課,星期六日,我又在腦子中過了幾次教學(xué)環(huán)節(jié),重點(diǎn)是總結(jié)二次函數(shù)與一元二次方程的關(guān)系,難點(diǎn)是當(dāng)二次函數(shù)與x軸的'有交點(diǎn)時,交點(diǎn)的橫坐標(biāo)等于令y=0得一元二次方程的根。
4、越俎代庖的地方還比較多,即:能讓學(xué)生自己處理的地方,沒有讓學(xué)生來處理。
本節(jié)課只讓8個學(xué)生回答了問題。從觀念上說,我還是不相信學(xué)生,認(rèn)為學(xué)生沒有自我教育的能力。第一個地方:讓江紫露、陳俁希、陳曉娜,解三個方程,江紫露忘了公式了,我趕快板書了公式。實(shí)際上,我可以讓優(yōu)生給予幫助,而我卻越俎代庖了。第二個地方:總結(jié)一元二次方程的根有____種情況時,我怕學(xué)生忘了,不會寫。更怕公開課怕丟人,也為了節(jié)約時間,沒有先問學(xué)生,就順手標(biāo)出。實(shí)際上這也是另一種形式的丟丑。今后應(yīng)相信學(xué)生,畢竟學(xué)習(xí)是他們自己的事。第三個地方:學(xué)生用幾何畫板畫三個函數(shù)時,陳俁希一個,江紫露則畫了兩個。我原來設(shè)計(jì)的應(yīng)當(dāng)是三個學(xué)生。我為了省事兒,就讓一個學(xué)生做了兩個。沒有給哪些會畫的差生任何機(jī)會。
5、語言的規(guī)范、簡潔與手語的準(zhǔn)確到位還有待提高。
在總結(jié)一元二次方程解法時,我臨時沒計(jì)了一個問題,“解一元二次方程________法最好。”顯然這是錯誤的表達(dá),不成熟。應(yīng)改正:“一元二次方程的解法有哪些?你喜歡哪一種,為什么?”
6、出現(xiàn)了一次較為成功的教學(xué)機(jī)智。
在總結(jié)三個函數(shù)與x軸交點(diǎn)的情況時。我寫了第一個范式,讓張曉青填空。和其他學(xué)生討論這個問題。后來派劉彥涵第二個,郭偉第三個。這兩個學(xué)生則出現(xiàn)了錯誤,第一個學(xué)生把與x軸的交點(diǎn)、與y軸的交點(diǎn),給混淆了。第二個學(xué)生把方程的無解,直接抄到了函數(shù)中,說無解。我抓住了這兩點(diǎn),即時講解了本節(jié)的難點(diǎn),這樣也就較為容易的突破了它,又補(bǔ)充了求函數(shù)與y軸的交點(diǎn)的情況,算是一種延伸。
二次函數(shù)的教學(xué)反思10
一、背景說明
這是九年級剛上完二次函數(shù)新課后的一堂復(fù)習(xí)課,本堂課的目的是通過用多種方法求二次函數(shù)的解析式,從而培養(yǎng)學(xué)生的一題多解能力及探索意識。
二、探究與討論
問題:已知二次函數(shù)的圖象過點(diǎn)(1,0),在y軸上的截距為3,對稱軸是直線x=2,求它的函數(shù)解析式。
(給學(xué)生充分的思考時間)
師:哪位同學(xué)能把解法說一下?
生A:解:設(shè)二次函數(shù)解析式為y=ax2+bx+c,把(1,0),(0,3)代入,得
a+b+c=0
c=3
又因?yàn)閷ΨQ軸是x=2,所以—b/2a=2
所以得a+b+c=0
c=3
—b/2a=2
解得a=1
b=—4
c=3
所以所求解析式為y=x2—4x+3
師:兩點(diǎn)代入二次函數(shù)一般式必定出現(xiàn)不定式,能想到對稱軸,從而以三元一次方程組解得a,b,c,不錯!除此方法外,還有沒有其他方法,大家可以相互討論一下。
。ㄍ瑢W(xué)們開始討論,思考)
生B:我認(rèn)為此題可用頂點(diǎn)式,即設(shè)二次函數(shù)解析式為y=a(x—2)2+k,把(1,0),(0,3)代入,得
a+k=0
4a+k=3
解得a=1
k=—1
故所求二次函數(shù)的解析式為y=(x—2)2—1,即y=x2—4x+3
師:非常好。那還有沒有其他方法,請大家再思考一下。
(學(xué)生沉默一會兒,有人舉手發(fā)言)
生C:因?yàn)閷ΨQ軸是直線x=2,在y軸上的截距為3,我認(rèn)為該二次函數(shù)解析式可設(shè)為y=ax2—4ax+3,在把(1,0)代入得a—4a+3=0,解得a=1,所以所求解析式為y=x2—4x+3
師:設(shè)得巧妙,這個函數(shù)解析式只含一個字母,這給運(yùn)算帶來很大方便,很好,很善于思考。大家再想想看,是否還有其他解題途徑。
。▽W(xué)生們又挖空心思地思考起來,終于有一學(xué)生打破沉寂)
生D:由于圖象過點(diǎn)(1,0),對稱軸是直線x=2,故得與x軸的另一交點(diǎn)為(3,0),所以可用兩根式設(shè)二次函數(shù)解析式為y=a(x—1)(x—3),再把(0,3)代入,得a=1,
所以二次函數(shù)解析式為y=(x—1)(x—3),即y=x2—4x+3
。ㄍ瑢W(xué)們給生D以熱烈的掌聲)
師:函數(shù)本身與圖形是不可分割的,能數(shù)形結(jié)合,非常不錯,用兩根式解此題,非常獨(dú)到。
。ㄖ链讼抡n時間快到,原先設(shè)計(jì)好的三題只完成一題,但看到學(xué)生的探索的可愛勁,不能按課前安排完成內(nèi)容又有何妨呢?)
師:最后,請同學(xué)們想一下,通過本堂課的學(xué)習(xí),你獲得了什么?
生1:我知道了求二次函數(shù)解析式方法有:一般式,頂點(diǎn)式,兩根式。
生2:我獲得了解題的能力,今后做完一道題目,我會思考還有沒有更好的方法。
三、回顧與反思
1。每一個學(xué)生都有豐富的知識體驗(yàn)和生活積累,每一個學(xué)生都會有各自的思維方式和解決問題的策略。而我對他們的能力經(jīng)常低估,在以往的上課過程中,總喋喋不休,深怕講漏了什么,但一堂課下來,學(xué)生收獲甚微。本堂課,我賦予學(xué)生較多的`思考和交流的機(jī)會,試著讓學(xué)生成為數(shù)學(xué)學(xué)習(xí)的主人,我自己充當(dāng)了一回?cái)?shù)學(xué)學(xué)習(xí)的組織者,沒想到取得了意想不到的效果,學(xué)生不但能用一般式,頂點(diǎn)式解決此題,還能深層挖掘巧妙地用兩根式解決此題,學(xué)生的潛力真是無窮。
2。通過本堂課的教學(xué),我想了很多。新課程改革要求教師要有現(xiàn)代的教學(xué)觀、學(xué)生觀,才能培養(yǎng)出具有創(chuàng)新精神和實(shí)踐能力的下一代。所以教師應(yīng)當(dāng)走下“教壇”,與學(xué)生在民主、平等的氛圍中交流意見,共同探討問題。學(xué)生的主動參與是學(xué)習(xí)活動有效進(jìn)行的關(guān)鍵所在,因此教師還應(yīng)該在學(xué)生“學(xué)”上進(jìn)行改革,從學(xué)生的實(shí)際出發(fā),從學(xué)生的生活出發(fā),才能把學(xué)生從被動聽的束縛中解放出來,使學(xué)生真正成為學(xué)習(xí)的主人。本節(jié)課教師始終與學(xué)生保持著平等和相互尊重,為學(xué)生探究學(xué)習(xí)提供了前提條件。
問題是無窮盡而活的,只有讓學(xué)生主動探索,才能真正地理解,鞏固知識點(diǎn),從而運(yùn)用知識點(diǎn),即真正知其所以然。今后,我將不斷嘗試,不斷完善自身,使學(xué)生的討論和思考更有意義。
二次函數(shù)的教學(xué)反思11
因?yàn)閷ΨQ軸是x=2,所以-b/2a=2
所以得a+b+c=0c=3
-b/2a=2
解得a=1b=-4c=3
所以所求解析式為y=-4x+3師:兩點(diǎn)代入二次函數(shù)一般式必定出現(xiàn)不定式,能想到對稱軸,從而以三元一次方程組解得a,b,c,不錯!除此方法外,還有沒有其他方法,大家可以相互討論一下.(同學(xué)們開始討論,思考)
生B:我認(rèn)為此題可用頂點(diǎn)式,即設(shè)二次函數(shù)解析式為
y=a(x-2)2+k,把(1,0),(0,3)代入,得
a+k=04a+k=3
解得a=1k=-1
故所求二次函數(shù)的解析式為y=(x-2)2-1,
即y=x2-4x+3
師:非常好.那還有沒有其他方法,請大家再思考一下.(學(xué)生沉默一會兒,有人舉手發(fā)言)
生C:因?yàn)閷ΨQ軸是直線x=2,在y軸上的截距為3,我認(rèn)為該二次函數(shù)解析式可設(shè)為y=ax2-4ax+3,在把(1,0)代入得a-4a+3=0,解得a=1,所以,求解析式為y=-4x+3
師:設(shè)得巧妙,這個函數(shù)解析式只含一個字母,這給運(yùn)算帶來很大方便,很好,很善于思考.大家再想想看,是否還有其他解題途徑.
(學(xué)生們又挖空心思地思考起來,終于有一學(xué)生打破沉寂)
生D:由于圖象過點(diǎn)(1,0),對稱軸是直線x=2,故得與x軸的另一交點(diǎn)為(3,0),所以可用兩根式設(shè)二次函數(shù)解析式為y=a(x-1)(x-3),再把(0,3)代入,得a=1,
所以二次函數(shù)解析式為y=(x-1)(x-3),即y=x2-4x+3
師:函數(shù)本身與圖形是不可分割的,能數(shù)形結(jié)合,非常不錯,用兩根式解此題,非常獨(dú)到.(至此下課時間快到,原先設(shè)計(jì)好的三題只完成一題,但看到學(xué)生的'探索的可愛勁,不能按課前安排完成內(nèi)容又有何妨呢?)
師:最后,請同學(xué)們想一下,通過本堂課的學(xué)習(xí),你獲得了什么?
生1:我知道了求二次函數(shù)解析式方法有:一般式,頂點(diǎn)式,兩根式.
生2:我獲得了解題的能力,今后做完一道題目,我會思考還有沒有更好的方法.
二、回顧與反思
二次函數(shù)的教學(xué)反思12
在二次函數(shù)教學(xué)中,根據(jù)它在初中數(shù)學(xué)函數(shù)在教學(xué)中的地位,細(xì)心地準(zhǔn)備《二次函數(shù)》的教學(xué),教學(xué)重點(diǎn)為二次函數(shù)的圖象性質(zhì)及應(yīng)用,教學(xué)難點(diǎn)為a、b、c與二次函數(shù)的圖象的關(guān)系。根據(jù)反思備課過程和講課效果,感受頗深,有收獲,也有不足。
本章的教學(xué)是我對選題有了進(jìn)一步認(rèn)識,要體現(xiàn)教學(xué)目標(biāo),要有實(shí)際意義。要體現(xiàn)學(xué)生的“最近發(fā)展區(qū)”,有利于學(xué)生分析。如為了幫助學(xué)生建立二次函數(shù)的概念,從學(xué)生非常熟悉的正方形的面積的研究出發(fā),通過建立函數(shù)解析式,歸納解析式特點(diǎn),給出二次函數(shù)的定義。建立了二次函數(shù)概念后,再通過三個例題的分析和解決,促進(jìn)學(xué)生理解和建構(gòu)二次函數(shù)的概念,在建構(gòu)概念的過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程。體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。
接下來教學(xué)主要從“拋物線的開口方向、對稱軸、頂點(diǎn)坐標(biāo)、增減性”循序漸進(jìn),由特殊到一般的學(xué)習(xí)二次函數(shù)的性質(zhì),并幫助學(xué)生總結(jié)性的去記憶。在學(xué)習(xí)過程中加強(qiáng)利用配方法將二次函數(shù)一般式化頂點(diǎn)式、判斷拋物線對稱軸、借圖象分析函數(shù)增減性等的訓(xùn)練。這部分內(nèi)容就是中等偏下的學(xué)生容易混淆,還需掌握方法,加強(qiáng)記憶,強(qiáng)調(diào)必須利用圖形去分析。通過教學(xué),讓學(xué)生對建模思想、圖形結(jié)合思想及分類討論思想都有了較清晰的認(rèn)識,學(xué)會了分析問題的初步方法。
本章中二次函數(shù)上下左右的平移是我覺得上的比較成功的一部分,主要是借助多媒體,動態(tài)的展示了二次函數(shù)的平移過程,讓學(xué)生自己總結(jié)規(guī)律,很形象,便于記憶。
二次函數(shù)中含有三個字母系數(shù),因此確定其解析式要三個獨(dú)立的條件,用待定系數(shù)法來解。學(xué)習(xí)確定二次函數(shù)的一般式,即的形式,這方面,學(xué)生的學(xué)習(xí)情況還是比較理想的,但方法沒有問題,計(jì)算能力還有待加強(qiáng)。
在學(xué)習(xí)了二次函數(shù)的知識后,我們嘗試運(yùn)用于解決三個實(shí)際問題。問題1是根據(jù)實(shí)際問題建立函數(shù)解析式并學(xué)習(xí)如何確定函數(shù)的定義域;問題二是根據(jù)二次函數(shù)的'解析式,分析二次函數(shù)的性質(zhì),并通過畫函數(shù)圖像檢驗(yàn)作出的分析和判斷是否;問題三是綜合應(yīng)用一次函數(shù)、二次函數(shù)的知識確定函數(shù)的解析式和定義域,并嘗試解決銷售問題中最大利潤的問題;通過這三個問題的分析和解決,讓學(xué)生初步體會二次函數(shù)在實(shí)際生活中的運(yùn)用,再次感悟數(shù)學(xué)源于生活又服務(wù)于生活。雖然有部分學(xué)生尚不能熟練解決相關(guān)應(yīng)用問題,但在下面的學(xué)習(xí)中會得到補(bǔ)充和提高。
但在教學(xué)中,我自認(rèn)為熱情不夠,沒有積極調(diào)動學(xué)生學(xué)習(xí)熱情的語言,感染力不足。今后備課時要重視創(chuàng)設(shè)豐富而風(fēng)趣的語言,來調(diào)動學(xué)生的積極性。
總之,在數(shù)學(xué)教學(xué)中不但要善于設(shè)疑置難,而且要理論聯(lián)系實(shí)際,只有這樣,才會吸引學(xué)生對數(shù)學(xué)學(xué)科的熱愛。
二次函數(shù)的教學(xué)反思13
二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式和它的定義域.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的.過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義. 在教學(xué)中,我主要遇到了這樣幾個問題:
1、關(guān)于能夠進(jìn)行整理變?yōu)檎降氖阶有问脚袛嗖粶?zhǔn),主要是我自身對這個概念把握不是很清楚,通過這節(jié)課的教學(xué)過程,和各位老師的幫助知道,真正達(dá)到了教學(xué)相長的效果。
2、在細(xì)節(jié)方面我還有很多的不足,比如,在二次函數(shù)的表示過程中,應(yīng)注意強(qiáng)調(diào)按自變量的降冪排列進(jìn)行整理,這類問題在今后的教學(xué)中,我會注意這些方面的教學(xué)。
3、在變式訓(xùn)練的過程中要注意思考容量和密度以及效度的關(guān)系,注意教學(xué)安排的合理性。另外在教學(xué)語言的精煉方面我還有待加強(qiáng)。
二次函數(shù)的教學(xué)反思14
根據(jù)市骨干教師交流學(xué)習(xí)的安排,我在九年四班上了《2.1二次函數(shù)所描述的關(guān)系》這節(jié)課。這節(jié)課我首先讓學(xué)生思考了列兩個函數(shù)關(guān)系式的生活實(shí)際問題,然后又對函數(shù)的定義和分類進(jìn)行了鞏固。接著在學(xué)生探究兩個實(shí)際問題的基礎(chǔ)上,思考、歸納出二次函數(shù)的定義以及探討對二次函數(shù)的判斷,最后針對二次函數(shù)的定義和能用二次函數(shù)表示變量之間關(guān)系進(jìn)行了鞏固應(yīng)用。
課后,組內(nèi)的老師認(rèn)真地評析了本節(jié)課。結(jié)合組內(nèi)老師的評課,我自己也進(jìn)行了認(rèn)真反思。
成功之處:
1、對二次函數(shù)的學(xué)習(xí),本節(jié)課通過豐富的現(xiàn)實(shí)背景,通過學(xué)生感興趣的'問題,使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價值。對二次函數(shù)的學(xué)習(xí),通過學(xué)生的探究性活動(經(jīng)歷數(shù)學(xué)化的過程),通過學(xué)生之間的合作與交流,通過分析實(shí)際問題,如探究橙子的數(shù)量與橙子樹之間的關(guān)系、及用關(guān)系式表示這一關(guān)系的過程,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系、
2、設(shè)計(jì)大量的可以表示為二次函數(shù)、利用所學(xué)的二次函數(shù)知識可以解決的實(shí)際問題,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力;利用“想一想”,提出進(jìn)一步的最大產(chǎn)量的問題;用統(tǒng)計(jì)的方法得到關(guān)于最大產(chǎn)量的一種猜想,問題的最后讓學(xué)生初步感受二次函數(shù)能解決最優(yōu)化的實(shí)際問題。在“做一做”的活動中,把兩年后的本息和y與年利率x的關(guān)系表示為二次函數(shù);在以上兩例的基礎(chǔ)上,給出二次函數(shù)的定義,并舉出以前所見到的一些二次函數(shù)關(guān)系式,為新知的理解做好了鋪墊。
3、在新知的鞏固應(yīng)用環(huán)節(jié),我精心設(shè)計(jì)了不同題型的問題,很好鞏固應(yīng)用了本節(jié)的新知,課堂達(dá)到了較好的教學(xué)效果。
4、本節(jié)課我注重訓(xùn)練學(xué)生書寫的規(guī)范性,讓學(xué)生養(yǎng)成良好的答題規(guī)范習(xí)慣。
不足之處:
1、在分組教學(xué)時,對用統(tǒng)計(jì)的方法得到關(guān)于最大產(chǎn)量的一種猜想,課堂上有一部分學(xué)生沒有充分參加計(jì)算,此處給學(xué)生的時間少一些。
2、在“做一做”的活動中,把兩年后的本息和y與年利率x的關(guān)系表示為二次函數(shù)的過程中,沒有讓學(xué)生有更多的交流和互相評價,有些學(xué)生對列函數(shù)關(guān)系式不是完全理解;
總之,通過本節(jié)課,讓我真正意識到:對于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗(yàn)設(shè)計(jì)。在每節(jié)課的課前,一定要進(jìn)行精心的預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實(shí)際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進(jìn)行分組教學(xué)時,提前預(yù)設(shè)好教學(xué)時間,在每節(jié)課上,既要放的開,同時又要注意在適當(dāng)?shù)臅r機(jī)收回,以保證每節(jié)教學(xué)基本任務(wù)完成。
二次函數(shù)的教學(xué)反思15
昨天我們學(xué)習(xí)了用函數(shù)的觀念看一元二次方程,我通過類比引出二次函數(shù)與一元二次方程之間的關(guān)系,并結(jié)合具體的實(shí)例討論了一元二次方程的實(shí)根與二次函數(shù)圖象之間的聯(lián)系,然后介紹了用圖象法求一元二次方程近似解的過程。這一節(jié)是反映函數(shù)與方程這兩個重要數(shù)學(xué)概念之間的聯(lián)系的內(nèi)容。
由于九年級學(xué)生已經(jīng)具備一定的抽象思維能力,再者,在八年級時已經(jīng)學(xué)習(xí)了一次函數(shù)與一元一次方程的關(guān)系,因而,采用類比的方法在學(xué)生預(yù)習(xí)自學(xué)的基礎(chǔ)上放手讓學(xué)生大膽地猜想、交流,分組合作,同時設(shè)定一定的問題環(huán)境來引導(dǎo)學(xué)生的探究過程,最后在老師的釋疑、歸納、拓展、總結(jié)的過程中結(jié)束本節(jié)課的教學(xué)。在知識掌握上,學(xué)生對二次函數(shù)的圖象及其性質(zhì)和一元二次方程的解的情況都有所了解,對于本節(jié)所要學(xué)習(xí)的二次函數(shù)與一元二次方程之間的關(guān)系利用類比的方法讓學(xué)生在自學(xué)的基礎(chǔ)上進(jìn)行交流合作學(xué)習(xí)應(yīng)該不是難題。本節(jié)課的知識障礙,本節(jié)課的主要目的在于建立二次函數(shù)與一元二次方程之間的聯(lián)系,滲透數(shù)形結(jié)合的'思想,而不僅僅是利用函數(shù)的圖象求一元二次方程的近似解。
總之,在教學(xué)過程中,我始終遵循著“有效的數(shù)學(xué)學(xué)習(xí)活動不能單獨(dú)地依賴模仿與記憶,動手實(shí)踐、自主探索與合作交流是學(xué)習(xí)數(shù)學(xué)的重要方式!边@一《新課程標(biāo)準(zhǔn)》的精神,注意發(fā)揮學(xué)生的主體作用,讓學(xué)生通過自主探究、合作學(xué)習(xí)來主動發(fā)現(xiàn)問題、提出問題、解決問題,實(shí)現(xiàn)師生互動,通過這樣的教學(xué)實(shí)踐取得了一定的教學(xué)效果,我再次認(rèn)識到教師不僅要教給學(xué)生知識,更要培養(yǎng)學(xué)生良好的數(shù)學(xué)素養(yǎng)和學(xué)習(xí)習(xí)慣,讓學(xué)生學(xué)會學(xué)習(xí),使他們能夠在獨(dú)立思考與合作學(xué)習(xí)交流中解決學(xué)習(xí)中的問題。
【二次函數(shù)的教學(xué)反思】相關(guān)文章:
二次函數(shù)教學(xué)反思04-16
二次函數(shù)的教學(xué)反思04-22
二次函數(shù)教學(xué)反思通用11-10
數(shù)學(xué)二次函數(shù)教學(xué)反思04-22
二次函數(shù)教案02-20
《二次函數(shù)》教案02-21
函數(shù)的概念教學(xué)反思04-03
函數(shù)概念的教學(xué)反思04-10