欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教學(xué)反思>《因數(shù)與倍數(shù)》教學(xué)反思

      《因數(shù)與倍數(shù)》教學(xué)反思

      時(shí)間:2023-03-12 11:24:12 教學(xué)反思 我要投稿

      《因數(shù)與倍數(shù)》教學(xué)反思

        作為一位優(yōu)秀的老師,教學(xué)是我們的任務(wù)之一,教學(xué)反思能很好的記錄下我們的課堂經(jīng)驗(yàn),來參考自己需要的教學(xué)反思吧!以下是小編精心整理的《因數(shù)與倍數(shù)》教學(xué)反思,僅供參考,希望能夠幫助到大家。

      《因數(shù)與倍數(shù)》教學(xué)反思

      《因數(shù)與倍數(shù)》教學(xué)反思1

        今天這堂課其實(shí)是有點(diǎn)匆忙的。課前的一個(gè)小游戲忘了,忘了讓學(xué)生體會(huì)因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補(bǔ)上。

        滿意的一點(diǎn):模式的提練

        在讓學(xué)生根據(jù)算式說了誰是誰的倍數(shù),誰是誰的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學(xué)生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學(xué)生都不知道如何表達(dá)。我把算式板書上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過去用一道除法算式36÷9=4來讓學(xué)生找一找誰是誰的因數(shù),誰是誰的倍數(shù),學(xué)生的反應(yīng)都不錯(cuò),馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。

        不滿意的地方在于:對(duì)于找出36所有因數(shù)的有序思考沒有強(qiáng)調(diào)。當(dāng)我讓學(xué)生們自主找出36的所有因數(shù)時(shí),許多學(xué)生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學(xué)生的作業(yè)加以板書,讓學(xué)生進(jìn)行比較。

        如:1、36、2、18、3、12、4、9、6

        1、2、3、4、6、9、12、18、36

        和36÷1=36,36÷2=18,36÷3=12

       。常丁拢矗剑,36÷6=6

        尤其是最后一種方法,我特別注意讓學(xué)生評(píng)價(jià)一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的'確是可以,不過,缺少的因數(shù)的提取,由此過渡到評(píng)價(jià)第一種方案和第二種方案,在這兒,我特別示范了一下寫因數(shù)的方法,即從兩邊向中間包圍。學(xué)生們在比較中找出了寫因數(shù)的方法,明白了寫出因數(shù)的格式。本來可以相機(jī)在這一步讓學(xué)生體會(huì)尋找因數(shù)的有序性,結(jié)果一急,只是帶過了一句。今天在補(bǔ)充習(xí)題上出現(xiàn)了問題,我抓了幾個(gè)學(xué)生問為什么強(qiáng)調(diào)有序性,學(xué)生告訴我:因?yàn)榭梢钥吹们宄,因(yàn)椴粫?huì)遺漏?雌饋戆嗌系膶W(xué)生有這方面的意識(shí),在做題目的時(shí)候還應(yīng)該再稍稍提點(diǎn)一下,應(yīng)該也就不成問題了。

        《因數(shù)和倍數(shù)的練習(xí)》教學(xué)反思 4月14日

        昨天新學(xué)了因數(shù)和倍數(shù),我覺得課上學(xué)生表現(xiàn)還可以,很會(huì)說,但到了家自己做家作時(shí),問題很多。今天進(jìn)行了練習(xí)后,效果截然不同。我在練習(xí)前,首先對(duì)昨天的內(nèi)容進(jìn)行了復(fù)習(xí)。讓學(xué)生進(jìn)一步明確:1、講因數(shù)和倍數(shù)時(shí)應(yīng)該講清誰是誰的倍數(shù)或因數(shù)。2、找一個(gè)數(shù)的倍數(shù)和因數(shù)時(shí),倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。學(xué)生書上練習(xí)時(shí),提醒學(xué)生弄清每題的具體要求,有些題只要寫出一個(gè)數(shù)部分的倍數(shù),而有些題需要寫出全部的倍數(shù)。有些符合要求的數(shù)不止1個(gè),要盡可能把這些數(shù)都找出來。但學(xué)生有時(shí)找不全,我就教會(huì)學(xué)生這樣思考:找一個(gè)數(shù)的倍數(shù)時(shí)用乘法,找一個(gè)數(shù)的因數(shù)時(shí)用除法。效果還可以。

        今天教學(xué)了因數(shù)和倍數(shù)一課,這節(jié)課的內(nèi)容關(guān)鍵是讓學(xué)生在掌握因數(shù)、倍數(shù)的概念的基礎(chǔ)上學(xué)會(huì)找一個(gè)數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾。

        存在問題:在寫出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)!焙笞寣W(xué)生閱讀,復(fù)述后讓學(xué)生觀察尋找記憶的方法,學(xué)生總結(jié):像這樣的乘法算式我們可以說兩個(gè)乘數(shù)都是積的因數(shù),積是兩個(gè)乘數(shù)的倍數(shù)。再讓學(xué)生用因數(shù)、倍數(shù)同桌復(fù)述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復(fù)述,學(xué)生說的蠻好的,可是在分層練習(xí)時(shí)再讓學(xué)生描述其他算式中各數(shù)的關(guān)系時(shí),又部分學(xué)生混淆了因數(shù)、倍數(shù)的概念。看來開始的復(fù)述學(xué)生純粹是無意識(shí)的模仿,是為模仿而模仿,教師沒有在學(xué)生模仿復(fù)述后進(jìn)一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會(huì)理解只要是兩個(gè)整數(shù)相乘等于12,12就是這兩個(gè)整數(shù)的倍數(shù),這兩個(gè)整數(shù)就都是12的因數(shù)。這樣才能讓學(xué)生真正理解乘法算式中各整數(shù)之間的關(guān)系。

        滿意之處:學(xué)生在找一個(gè)數(shù)的因數(shù)和倍數(shù)時(shí)花費(fèi)的時(shí)間不多,但在交流方法時(shí)我舍得花費(fèi)較多的時(shí)間讓學(xué)生比較各自的方法,在此基礎(chǔ)上選出不會(huì)重復(fù)、遺漏的簡便方便用學(xué)生的名字命名這些方法。再讓學(xué)生分別使用這些方法尋找,真實(shí)感受這些方法的好處。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測中沒有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。學(xué)生的積極性很高,學(xué)生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。

      《因數(shù)與倍數(shù)》教學(xué)反思2

        復(fù)習(xí)課是教學(xué)過程中一種非常重要的課型,對(duì)夯實(shí)學(xué)生的基礎(chǔ)、培養(yǎng)和提高學(xué)生運(yùn)用知識(shí)、解決問題的能力起著舉足輕重的作用。復(fù)習(xí)課不是新授課的簡單重復(fù),在教學(xué)過程中起著與新授課同樣重要的作用,但是又與新授課有著本質(zhì)的區(qū)別和聯(lián)系。復(fù)習(xí)課更強(qiáng)調(diào)學(xué)生的自主學(xué)習(xí)、反饋矯正、展示交流等環(huán)節(jié),復(fù)習(xí)時(shí),要引導(dǎo)學(xué)生自己動(dòng)手整理知識(shí)結(jié)構(gòu),把知識(shí)系統(tǒng)化、條理化,從而把點(diǎn)狀分布的知識(shí)連接成線,如同把散亂的珍珠穿成了漂亮的珍珠鏈,拿起一顆,就能連起一串。如何上好復(fù)習(xí)課值得我們?nèi)パ芯亢吞接憽?/p>

        下面是我在復(fù)習(xí)四年級(jí)下冊第九單元《倍數(shù)與因數(shù)》時(shí),兩次不同的主要教學(xué)過程及本人對(duì)這兩次課的印象和反思。

        第一次教學(xué)是這樣的:我先請學(xué)生回憶這個(gè)單元學(xué)習(xí)了哪些內(nèi)容;接著讓全體學(xué)生背誦了倍數(shù)、因數(shù)、偶數(shù)、奇數(shù)、合數(shù)、素?cái)?shù)等概念和是2、3、5的倍數(shù)的特征;最后,出示了很多類型的習(xí)題,如找倍數(shù)與因數(shù)的,判斷素?cái)?shù)與合數(shù)的,根據(jù)2、3、5的倍數(shù)特征填數(shù)的……。

        整節(jié)課教師忙得不亦樂呼,幻燈片換了一張又一張,看起來似乎什么內(nèi)容都復(fù)習(xí)了;學(xué)生就像趕集一樣,做了這一題又忙哪一題,但收獲甚微。

        這次是蘇教版教材的第一輪使用,我這個(gè)從事多年人教版教學(xué)的老教師雖在新課改培訓(xùn)中加大了新課程理念的學(xué)習(xí),但因多年產(chǎn)生的教學(xué)習(xí)慣而很難有所真正的改變,是基于傳統(tǒng)的數(shù)學(xué)課堂教學(xué),認(rèn)為單元復(fù)習(xí)就是由教師帶領(lǐng)學(xué)生把知識(shí)點(diǎn)再全部掃描一下,多設(shè)計(jì)一些習(xí)題,讓學(xué)生反復(fù)操練,只有讓學(xué)生當(dāng)上了熟練工,才能應(yīng)付考試。而這種炒冷飯的復(fù)習(xí)課,忽視了重點(diǎn)、難點(diǎn),學(xué)生茫然地被教師牽著鼻子走,學(xué)習(xí)沒有了主動(dòng)性,教學(xué)效果當(dāng)然不樂觀。

        第二次教學(xué)時(shí),我在復(fù)習(xí)課前先讓學(xué)生反思自己本單元的哪些知識(shí)掌握得比較好、哪些知識(shí)還掌握得不好并整理成書面材料。在批閱了學(xué)生整理的書面材料后,發(fā)現(xiàn)比較集中的.問題是:寫一個(gè)數(shù)的因數(shù)寫不全,判斷一個(gè)數(shù)是否同時(shí)是2、3、5的倍數(shù)時(shí)有困難,對(duì)于一些特殊的素?cái)?shù)、合數(shù)與奇數(shù)、偶數(shù)的特征掌握不好。因此,復(fù)習(xí)時(shí),我先請每個(gè)學(xué)生任意寫一個(gè)兩位數(shù),寫完后觀察這個(gè)數(shù)有什么特點(diǎn),并結(jié)合這一單元學(xué)到的概念說一說。然后出示了一道開放題:“誰能根據(jù)11、15、21、37、45、48、57、60、83、90這些數(shù)提與本單元的知識(shí)有關(guān)的問題?’學(xué)生思維活躍。有的提:“請判斷哪些是素?cái)?shù),哪些是合數(shù),哪些是奇數(shù),哪些是偶數(shù)?”有的提:“請寫出這些數(shù)中每個(gè)合數(shù)的全部因數(shù)。”有的提:“這10個(gè)數(shù)中,哪些數(shù)同時(shí)是2和3的倍數(shù)?哪些數(shù)同時(shí)有因數(shù)3和5?哪些數(shù)既是2的倍數(shù)又有因數(shù)5?哪些數(shù)同時(shí)是2、3、5的倍數(shù)?”每次學(xué)生提出問題后,教師都及時(shí)組織學(xué)生完成練習(xí)。接著,教師在黑板上寫下48□,讓學(xué)生繼續(xù)思考:要使48□既有因數(shù)2,又是3的倍數(shù),□里應(yīng)該填多少?有學(xué)生說0、2、4、6、8都可以。有學(xué)生馬上反駁說,2、4、8都不可以,只能填0或者6。教師追問原因,相機(jī)復(fù)習(xí)被3整除的數(shù)的特征,接著出示問題:”如果要使□48既是2的倍數(shù),又是3的倍數(shù),□里應(yīng)該填多少?”學(xué)生討論完后,教師再引導(dǎo)學(xué)生思考:“觀察、比較48□和□48,同樣要填一個(gè)數(shù)字,使它既是2的倍數(shù),又是3的倍數(shù),為什么答案不同?”有了前面的對(duì)比練習(xí),學(xué)生終于明白在口填數(shù)的訣竅所在:既要考慮整除的特征,又要觀察數(shù)字所處的位置。這時(shí),教師強(qiáng)調(diào)要靈活運(yùn)用所學(xué)的知識(shí)解決問題。最后,教師要求每個(gè)學(xué)生拿出錯(cuò)題集,先自己復(fù)習(xí),然后以同桌兩人為一組,出題考對(duì)方,教師巡視指導(dǎo)。

        課堂上不時(shí)有學(xué)生間的爭論,有學(xué)生舉手請教老師、有同學(xué)之間的互助,每個(gè)學(xué)生學(xué)的都很積極主動(dòng),全然沒有復(fù)習(xí)課的單調(diào)枯燥之感。

        這次的復(fù)習(xí)是基于學(xué)生對(duì)知識(shí)的理解水平,本著尊重學(xué)生的原則,以學(xué)生為主體,先學(xué)后教,抓住重點(diǎn)、難點(diǎn),設(shè)計(jì)有層次的習(xí)題,舉一反三,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,不求習(xí)題的多樣繁雜,但求激活每個(gè)學(xué)生的思維,引導(dǎo)學(xué)生在自學(xué)中學(xué)會(huì)發(fā)現(xiàn)、在傾聽中學(xué)會(huì)理解、在討論中學(xué)會(huì)思辨。

      《因數(shù)與倍數(shù)》教學(xué)反思3

        這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):

        一、尊重教材,引導(dǎo)學(xué)生實(shí)現(xiàn)從形象向抽象的飛躍。

        教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。

        這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,

        二、細(xì)化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。

        倍數(shù)和因數(shù)的意義是本單元的重要知識(shí),其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會(huì)12也是4的倍數(shù),指名說后,再強(qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時(shí)你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的'因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時(shí)再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點(diǎn)特別的兩句。

        整個(gè)過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時(shí)、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。

        三、由點(diǎn)及面,巧架平臺(tái),讓學(xué)生在師生互動(dòng)中建立完整的數(shù)學(xué)模型。

        找一個(gè)數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個(gè)數(shù)的倍數(shù)或因數(shù)的方法時(shí),重點(diǎn)是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。

        探索求一個(gè)數(shù)因數(shù)的方法是本課的難點(diǎn),例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個(gè)數(shù)的因數(shù)的方法。

        教學(xué)4的倍數(shù)時(shí),學(xué)生在4×4=16的鋪墊下,很容易找到一個(gè)或幾個(gè)4的倍數(shù),但是想要“一個(gè)不漏且有序的找全,并體會(huì)出4的倍數(shù)的個(gè)數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點(diǎn)逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。

        這樣搭建了有效的平臺(tái)、形成了師生互動(dòng)生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點(diǎn)及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。

      《因數(shù)與倍數(shù)》教學(xué)反思4

        我結(jié)束了公因數(shù)與公倍數(shù)的教學(xué)。在我看來內(nèi)容不是很難,沒什么高難邏輯思維在里面,根據(jù)學(xué)生已有的知識(shí)水平,對(duì)于列舉法和篩選法應(yīng)該都掌握的不錯(cuò)。但是翻看了學(xué)生的練習(xí)冊,才知道,這只是我的一廂情愿。里面存在著各種問題:有的答案書寫不完整,沒有寫出最關(guān)鍵的話;有的公因數(shù)與因數(shù)概念混淆,求一個(gè)數(shù)的因數(shù)也說成公因數(shù);有的是公因數(shù)與公倍數(shù)找不全,有遺漏現(xiàn)象;只有一些學(xué)習(xí)好的同學(xué)可以完整的做對(duì)這些題目。

        看來學(xué)習(xí)的過程確實(shí)不是一帆風(fēng)順的,“一分辛勞一分收獲!”的確是這樣,面對(duì)學(xué)生的答題情況,我及時(shí)調(diào)整了自己的教學(xué)思路,決定對(duì)如何求公因數(shù)、公倍數(shù)做一專項(xiàng)練習(xí)。首先我將各種錯(cuò)誤情況例舉出來,教學(xué)生們進(jìn)行判斷,找出其中的問題加以改正,接著與學(xué)生一起對(duì)不同情況進(jìn)行了歸納,使學(xué)生在針對(duì)不同題型的時(shí)候可以用不同方法快速做出解答,而不是只知道簡單機(jī)械的.照本宣科。從這節(jié)課的學(xué)習(xí)情況看,大部分同學(xué)都掌握的不錯(cuò)。不僅改正了自己練習(xí)冊上存在的很多錯(cuò)誤,還教學(xué)生學(xué)會(huì)了如何去歸納總結(jié)已學(xué)知識(shí)。收效很大,很是高興!

        的確,數(shù)學(xué)學(xué)習(xí)做題是極為必要的,但是做題之后的總結(jié)工作也是極為重要的,否則只能是雜而不精,無法將知識(shí)融會(huì)貫通,合理運(yùn)用。我經(jīng)常教育自己的學(xué)生:在多種解法中選取適合自己的解題方法,對(duì)于一些靈活的題目而言,應(yīng)該在做題中對(duì)許許多多的情況進(jìn)行總結(jié),以便在考試中將方法靈活運(yùn)用,防止死做與定性思維的產(chǎn)生。

      《因數(shù)與倍數(shù)》教學(xué)反思5

        因區(qū)領(lǐng)導(dǎo)要來調(diào)研,我們四年級(jí)幾位數(shù)學(xué)老師經(jīng)商量決定,都上《倍數(shù)和因數(shù)》,都覺得這個(gè)內(nèi)容挺簡單的。今天上午第一節(jié)課,領(lǐng)導(dǎo)進(jìn)了我的教室聽了我上這一課。上完這課,之前的那個(gè)想法就煙消云散了,根本沒有想象的那么容易上。下面對(duì)自己的課堂做一些反思。

        新授的第一個(gè)教學(xué)環(huán)節(jié)是認(rèn)識(shí)倍數(shù)和因數(shù)的意義,原本我想讓每位學(xué)生準(zhǔn)備12個(gè)同樣大小的小正方形擺長方形的,再一想,都四年級(jí)的學(xué)生了,不需要操作了,而且,操作這一過程可以節(jié)省不少時(shí)間,本來這節(jié)課就時(shí)間很緊。沒想到,學(xué)生在心中拼一個(gè)長方形后,說乘法算式時(shí)疙里疙瘩的,語言表述不流暢,看來是學(xué)生缺乏操作體驗(yàn)的緣故吧。至于,認(rèn)識(shí)因數(shù)和倍數(shù)的意義,并熟練地說,這些學(xué)生都掌握很好,只是,不知怎么搞的,我竟然把“能說5是因數(shù),12是因數(shù),60是倍數(shù)嗎?”這個(gè)問題給忘記了,這樣,無形中淡化了需強(qiáng)調(diào)的“倍數(shù)和因數(shù)之間的關(guān)系”,不出我所料,在下午的反饋中,專家真指出了這一點(diǎn)。

        第二環(huán)節(jié)是探求找一個(gè)數(shù)的因數(shù)的方法,找一個(gè)數(shù)的因數(shù)的方法是本節(jié)課的重點(diǎn),也是難點(diǎn)。根據(jù)教材編排的話,應(yīng)該先找倍數(shù)的。我考慮到突出重點(diǎn)、突破難點(diǎn),我就做了調(diào)整,再說,之前,我查閱了好多資料,也有不少老師認(rèn)為先因數(shù)比較合理,因此,我的決定就更加堅(jiān)定了。在認(rèn)識(shí)了因數(shù)和倍數(shù)的意義的基礎(chǔ)上,我放手讓學(xué)生自己找36的因數(shù),然后讓學(xué)生發(fā)言交流找的方法,學(xué)生真的'很努力很拎的清,見有領(lǐng)導(dǎo)聽課,竟然發(fā)揮出色,表現(xiàn)的相當(dāng)?shù)恼鎸?shí),也相當(dāng)?shù)某錾,大膽地說出自己的所思所想,學(xué)生的回答給人的感覺是那么自然,那么真實(shí),沒有一點(diǎn)矯揉造作。在下午的反饋中,專家夸我的課真實(shí)、樸實(shí)、實(shí)在,我想這應(yīng)歸功于我的學(xué)生們,是他們的樸實(shí)、實(shí)在感染了我。然而,我在這個(gè)環(huán)節(jié)設(shè)計(jì)的問題有點(diǎn)籠統(tǒng),不到位,導(dǎo)致有幾處的問話重復(fù),最終導(dǎo)致本課時(shí)間不夠,這是我本節(jié)課最大的遺憾。第三環(huán)節(jié)是探求找一個(gè)數(shù)的倍數(shù)的方法,這里,我又一次偷懶,我完全放手讓學(xué)生來完成,結(jié)果學(xué)生們真的無師自通,很快就找到了方法,并有了很多發(fā)現(xiàn),相當(dāng)有價(jià)值,學(xué)生學(xué)習(xí)的主動(dòng)性在這堂課中得到了很好的體現(xiàn)。

        由此,讓我明白,學(xué)生真的不可以小看,他們真的很厲害。但有一點(diǎn),歸功于我,他們的大膽是我在近一年的時(shí)間中不斷訓(xùn)練的成果。

      《因數(shù)與倍數(shù)》教學(xué)反思6

        《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級(jí)下冊的知識(shí)點(diǎn),主要教學(xué)因數(shù)和倍數(shù)的認(rèn)識(shí),以及找一個(gè)數(shù)的因數(shù)和倍數(shù)的方法!兑驍(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。

        (1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。

        (2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:鑒于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識(shí)基礎(chǔ),對(duì)整除的含義已經(jīng)有了比較清楚的認(rèn)識(shí),不出現(xiàn)整除的定義并不會(huì)對(duì)學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式ab=c直接引出因數(shù)和倍數(shù)的概念。

        數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對(duì)本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。

        一、教學(xué)過程的反思

        今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對(duì)語言的概括能力和對(duì)事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的因數(shù)和倍數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識(shí)因數(shù)和倍數(shù)的關(guān)系。層層推進(jìn),引入教學(xué),留下懸念,充分調(diào)動(dòng)了學(xué)生的積極性和求知欲。在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對(duì)學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大。

        在教學(xué)時(shí),先讓學(xué)生“用12個(gè)同樣大小的正方形,擺成一個(gè)長方形,并用乘法算式把自己的擺法表示出來”,讓學(xué)生動(dòng)手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出因數(shù)和倍數(shù)的概念。這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗(yàn)和動(dòng)手操作能力,很好的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性。一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。

        對(duì)于找一個(gè)數(shù)的倍數(shù)比找一個(gè)數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個(gè)數(shù)的倍數(shù),在學(xué)生學(xué)會(huì)了找一個(gè)數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個(gè)數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個(gè)數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。

        在處理本節(jié)課的難點(diǎn)“找36的因數(shù)”時(shí),我原來是放手讓學(xué)生自己去找的。結(jié)果試時(shí)很多學(xué)生沒有頭緒,無從下手。時(shí)間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個(gè)的因數(shù)是學(xué)生以前從未遇到過的問題,自然不知道如何解決。再加上找一個(gè)數(shù)的因數(shù)比找一個(gè)數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來,在處理找36的因數(shù)時(shí),如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認(rèn)為要對(duì)學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤,學(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個(gè)數(shù)的倍數(shù)的方法有效的遷移到找一個(gè)數(shù)的.因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會(huì)有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

        二、教法的運(yùn)用實(shí)踐

        1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對(duì)與本知識(shí)點(diǎn)的概念是人為規(guī)定的一個(gè)范圍,因此,對(duì)于學(xué)生和第一

        接觸的印象是沒有什么可以探究和探索的要求,而且給學(xué)生一個(gè)直觀的感受!耙驍(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分?jǐn)?shù)無關(guān),與負(fù)數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。同時(shí)強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗(yàn)就是對(duì)于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3×4=12,說明在這個(gè)算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。

        2、在進(jìn)行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個(gè)數(shù)的因數(shù)和倍數(shù),在板書要講究一個(gè)格式與對(duì)稱性,這樣在對(duì)學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個(gè)數(shù)的有限與無限的對(duì)比,再就是發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個(gè)數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時(shí)應(yīng)該要注意的細(xì)節(jié),這對(duì)于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的

        新課標(biāo)實(shí)施的過程是一個(gè)不斷學(xué)習(xí)、探究、研究和提高的過程,在這個(gè)過程中,需要我們認(rèn)真反思、獨(dú)立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對(duì)話,在實(shí)踐和探索中不斷前進(jìn)。

      《因數(shù)與倍數(shù)》教學(xué)反思7

        《因數(shù)和倍數(shù)》是人教版五年級(jí)下冊第二章第一課時(shí)所學(xué)內(nèi)容,這一內(nèi)容與原來教材比有了很大的不同,舊教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接認(rèn)識(shí)因數(shù)和倍數(shù)的,這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。上完這節(jié)課覺得有以下幾點(diǎn)做得較好:

        1、通過操作實(shí)踐,認(rèn)識(shí)因數(shù)和倍數(shù)

        我開門見山,直接入題,創(chuàng)設(shè)了有效的數(shù)學(xué)學(xué)習(xí)情境,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義,這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的.意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念,減緩難度,效果較好。

        2、通過自主化、活動(dòng)化、合作化,找因數(shù)和倍數(shù)

        整個(gè)教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、引導(dǎo)者、參與者,。整節(jié)課中,我始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解因數(shù)和倍數(shù)的意義,探索并掌握找一個(gè)數(shù)的因數(shù)和倍數(shù)的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識(shí)。教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識(shí),發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識(shí)。

        3、通過變式拓展,培養(yǎng)學(xué)生能力

        課前我精心設(shè)計(jì)練習(xí)題,力求不僅圍繞教學(xué)重點(diǎn),而且注意到練習(xí)的層次性,趣味性。譬如:讓學(xué)生用所學(xué)知識(shí)介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺(tái)找自己的朋友,讓臺(tái)下學(xué)生判斷自己的學(xué)號(hào)是不是這個(gè)數(shù)的因數(shù)或倍數(shù),如果臺(tái)下學(xué)生的學(xué)號(hào)是這個(gè)數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂,感悟數(shù)學(xué)的魅力。

        但是還存在一些不可忽視的問題:

        1、課上應(yīng)該及時(shí)運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。

        2、課堂用語還不夠精煉,應(yīng)該進(jìn)一步規(guī)范課堂用語,做到不拖泥帶水。

        3、教者評(píng)價(jià)應(yīng)及時(shí)跟上個(gè)性化的語言評(píng)價(jià),激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來,避免單一化。

      《因數(shù)與倍數(shù)》教學(xué)反思8

        因數(shù)與倍數(shù)屬于數(shù)論中的知識(shí),是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認(rèn)識(shí)了乘法各部分名稱,對(duì)“倍”葉有了初步的認(rèn)識(shí),從而本課由此入手,讓學(xué)生由熟悉的知識(shí)經(jīng)驗(yàn)開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識(shí)結(jié)構(gòu),體會(huì)到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。

        在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會(huì)出“要按照一定的順序去找”才不會(huì)遺漏和重復(fù),本課制作了動(dòng)態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動(dòng)),2、9(閃動(dòng)),3、6(閃動(dòng))學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時(shí)觀察區(qū)間,真正體會(huì)到了“找前了”這一學(xué)生難以真正理解的地方。

        本課中還要注意到的.就是學(xué)生在匯報(bào)找到了哪些數(shù)的因數(shù)時(shí),教師根據(jù)學(xué)生匯報(bào)所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時(shí)學(xué)生還不知道這些數(shù)的概念,但這時(shí)給學(xué)生一個(gè)全面的正面印象,有的數(shù)因數(shù)個(gè)數(shù)多,有的少,不是一個(gè)數(shù)越大因數(shù)的個(gè)數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。

      《因數(shù)與倍數(shù)》教學(xué)反思9

        有關(guān)數(shù)論的這部分知識(shí)是傳統(tǒng)教學(xué)內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時(shí)也進(jìn)行了較大幅度的改動(dòng)。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設(shè)計(jì)上都獨(dú)具匠心。因此,在教學(xué)中,我有兩點(diǎn)最深的體會(huì):研讀教材,走進(jìn)去;活用教材,走出來。《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如a÷b=n表示a能被b整除,b能整除a。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖引出一個(gè)乘法算式,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣編排對(duì)于學(xué)生來說更容易理解和掌握。因數(shù)和倍數(shù)是揭示兩個(gè)整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個(gè)腦筋急轉(zhuǎn)彎,捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。

        教材上,探究因數(shù)這部分的例題比較少,只有一個(gè):找18的因數(shù)。根據(jù)學(xué)生的實(shí)際情況,我進(jìn)行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對(duì)對(duì)”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對(duì)對(duì)的找因數(shù),能既找全又不遺漏。進(jìn)而又借助體態(tài)語言——打手勢,讓學(xué)生說出30和36的因數(shù),達(dá)到了鞏固練習(xí)的目的。又明確了像36當(dāng)兩個(gè)因數(shù)相等時(shí),只寫其中的一個(gè)6。這樣設(shè)計(jì)由易到難,由淺入深,符合了學(xué)生的認(rèn)知規(guī)律。

        教材在編排上雖然對(duì)于學(xué)生來說更容易理解和掌握。但這部分內(nèi)容學(xué)生畢竟初次接觸,對(duì)于學(xué)生來說還是比較難掌握的內(nèi)容。本來計(jì)劃因數(shù)與倍數(shù)(12-14頁)一節(jié)課講完,實(shí)際操作一節(jié)課只能揭示出因數(shù)與倍數(shù)的概念、求一個(gè)數(shù)的因數(shù)的方法、一個(gè)數(shù)的因數(shù)的'特征(12-13頁)。下課后,與 成老師交流,她與我有同感。可從各種資料上看了許多教學(xué)設(shè)計(jì),都是在一節(jié)課講3頁,我想,新內(nèi)容概念多,一節(jié)課講完,學(xué)生確實(shí)吃不消。俗話說:“磨刀不誤砍柴工”打好前面的知識(shí)基礎(chǔ),第二課時(shí)講求一個(gè)數(shù)的倍數(shù)的方法以及一個(gè)數(shù)的倍數(shù)特征自然可以放手讓學(xué)生自己去探究,并且還有充足的時(shí)間對(duì)求一個(gè)數(shù)的因數(shù)的方法、一個(gè)數(shù)的因數(shù)的特征和求一個(gè)數(shù)的倍數(shù)的方法、一個(gè)數(shù)的倍數(shù)特征進(jìn)行對(duì)比,從而強(qiáng)化所學(xué)知識(shí)。

        所以我認(rèn)為,課堂容量大就不可避免地造成缺少當(dāng)堂反饋的時(shí)間,過大的容量使學(xué)生學(xué)的不夠深入。我們教師總是想在一節(jié)課中讓學(xué)生掌握盡量多的知識(shí),其實(shí)這樣反而會(huì)減少學(xué)生的思考時(shí)間,也使老師無法照顧差生,知道差生接受的程度,今后要多思考怎樣合理安排。

      《因數(shù)與倍數(shù)》教學(xué)反思10

        《數(shù)學(xué)課程標(biāo)準(zhǔn)》倡導(dǎo)“自主——合作——探究”的學(xué)習(xí)方式,強(qiáng)調(diào)學(xué)習(xí)是一個(gè)主動(dòng)建構(gòu)的過程。因此,應(yīng)注重培養(yǎng)學(xué)生學(xué)習(xí)的獨(dú)立性和自主性,讓學(xué)生在教師的指導(dǎo)下主動(dòng)地參與學(xué)習(xí),親歷學(xué)習(xí)過程,從而學(xué)會(huì)學(xué)習(xí)。

        1、以“理”為基點(diǎn),將學(xué)生帶入新知的學(xué)習(xí)。

        概念教學(xué)重在“理”。學(xué)生理解“因數(shù)”、“倍數(shù)”概念有個(gè)逐步形成的過程,為了促進(jìn)這一意識(shí)建構(gòu),我先讓學(xué)生通過自己已有的認(rèn)知結(jié)構(gòu),經(jīng)過“排列整齊的隊(duì)形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學(xué)生在輕松、簡約并充滿自信中學(xué)習(xí)新知,在數(shù)與形的結(jié)合中,深刻體驗(yàn)因數(shù)倍數(shù)的概念。

        2、以“序”為站點(diǎn),培養(yǎng)學(xué)生的思維方式。

        概念形成得在“序”。學(xué)生對(duì)于概念的形成是一個(gè)由表及里、由形象到抽象的過程。當(dāng)學(xué)生對(duì)概念有了初步認(rèn)識(shí)后,讓學(xué)生探索如何找一個(gè)數(shù)的倍數(shù)的因數(shù),這既是對(duì)概念內(nèi)涵的深化,也是對(duì)概念外延的探索。這時(shí)思維和排列上的有序性是教學(xué)的關(guān)鍵,也是本節(jié)課的深度之一。在教學(xué)時(shí),分為兩個(gè)層次:第一個(gè)層次是讓學(xué)生在已有的知識(shí)基礎(chǔ)上找12的.因數(shù),并在交流中,經(jīng)歷了一個(gè)從無序到有序、從把握個(gè)別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學(xué)的難點(diǎn)“如何找全,并且不重復(fù)不遺漏”,讓學(xué)生自由地說,再引導(dǎo)學(xué)生說出想的過程,并加以調(diào)整。表面看來僅僅是組合的變換,實(shí)質(zhì)上是思維的提高和方法的優(yōu)化,并讓學(xué)生在對(duì)比中感受“一對(duì)一對(duì)”找因數(shù)的方法,經(jīng)歷了互相討論、相互補(bǔ)充、對(duì)比優(yōu)化的過程。第二個(gè)層次是在學(xué)生已經(jīng)有了探索一個(gè)數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學(xué)生“能像找因數(shù)那樣有序的找一個(gè)數(shù)的倍數(shù)”,提高了學(xué)生的思維能力。

        3、以“思”為落腳點(diǎn),培養(yǎng)學(xué)生發(fā)現(xiàn)思考的能力。

        概念的生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導(dǎo)”,一定會(huì)讓學(xué)生收獲更多,感悟更多。因此設(shè)計(jì)時(shí),我借助了“找自己學(xué)號(hào)的因數(shù)和倍數(shù)”這個(gè)活動(dòng),在大量的有代表性的例子面前,在學(xué)生親自的嘗試中,在有目的的對(duì)比觀察中,學(xué)生的思維被逐步引導(dǎo)到了最深處,知道了一個(gè)數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學(xué)生對(duì)所學(xué)的概念進(jìn)行了有意義的建構(gòu),促進(jìn)和發(fā)展了他們的思維。

      《因數(shù)與倍數(shù)》教學(xué)反思11

        本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。

        課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的`除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對(duì)于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

        其次,厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對(duì)于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。

        本節(jié)課的不足之處:

        1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。

        2.對(duì)因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。

      《因數(shù)與倍數(shù)》教學(xué)反思12

        我執(zhí)教的四年級(jí)數(shù)學(xué)拓展平臺(tái)《因數(shù)和倍數(shù)》一節(jié),這一內(nèi)容,學(xué)生初次接觸。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先以貼畫為素材,讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。

        這節(jié)課另一個(gè)給我感觸最深的是:在引導(dǎo)學(xué)生找一個(gè)數(shù)的因數(shù)和倍數(shù)。我借助學(xué)生開課擺的12個(gè)小正方形,寫出的三個(gè)乘法算式。首先引導(dǎo)學(xué)生找12的因數(shù),我給學(xué)生充分的自主探究時(shí)間,讓學(xué)生經(jīng)歷知識(shí)的形成過程,自主構(gòu)建新知。出乎意料的是學(xué)生竟然用口訣,乘法和除法等等方法找出12的`因數(shù),找到兩個(gè)因數(shù)非常接近,緊接著師生互動(dòng),交流討論出12的所有因數(shù)。學(xué)生在輕松愉快中掌握了找一個(gè)數(shù)的所有因數(shù)的方法。再找9的13的因數(shù),一環(huán)扣一環(huán),總結(jié)歸納再能不能找出這些數(shù)的因數(shù)了?學(xué)生說不能,從而引出因數(shù)的個(gè)數(shù)是有限的。及時(shí)運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師及時(shí)跟上個(gè)性化的語言評(píng)價(jià),激活學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己學(xué)習(xí)找一個(gè)數(shù)的倍數(shù)。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時(shí)放手,會(huì)看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。

      《因數(shù)與倍數(shù)》教學(xué)反思13

        本節(jié)課的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)的概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會(huì)貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時(shí),我注意做到以下幾點(diǎn):

        一、加強(qiáng)對(duì)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。

        因數(shù)和倍數(shù)是最基本的兩個(gè)概念,理解了因數(shù)和倍數(shù)的含義對(duì)于一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的、倍數(shù)的個(gè)數(shù)是無限的等結(jié)論自然也就掌握了。因此,教學(xué)時(shí),我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說中體會(huì)、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時(shí)引出12的所有因數(shù),讓孩子感受到用乘法算式找一個(gè)數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個(gè)數(shù)的因數(shù)做好鋪墊。

        二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知

        在學(xué)習(xí)找一個(gè)數(shù)的'因數(shù)時(shí),讓孩子們動(dòng)腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們在體驗(yàn)中逐步掌握了方法,學(xué)得深刻,方法熟練。

        三、注意培養(yǎng)學(xué)生的抽象思維能力

        教學(xué)中,注重學(xué)生的動(dòng)腦思考、觀察,讓學(xué)生在自主的探究學(xué)習(xí)中表達(dá)自己的想法,通過一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。

      《因數(shù)與倍數(shù)》教學(xué)反思14

        一、教學(xué)設(shè)想:

        新教材在引入倍數(shù)和因數(shù)概念時(shí)與以往的老教材有所不同,比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。基于以上認(rèn)識(shí),為了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,提高學(xué)生課堂活動(dòng)的參與性,我給這節(jié)課設(shè)計(jì)了四個(gè)教學(xué)環(huán)節(jié):

        (一)認(rèn)識(shí)因數(shù)和倍數(shù)。

        良好的開頭是成功的一半。課前通過輕松、愉快的談話引入,說明“一個(gè)人是好朋友”這樣的關(guān)系不能成立,從而為說清楚“倍數(shù)”和“因數(shù)”這兩個(gè)好朋友之間的關(guān)系打下基礎(chǔ),對(duì)感知倍數(shù)和因數(shù)相互依存的關(guān)系進(jìn)行有效的滲透和拓展。其次引入數(shù)學(xué)中自然數(shù)和自然數(shù)之間也有相互依存的關(guān)系,初步體會(huì)數(shù)和數(shù)的對(duì)應(yīng)關(guān)系,既拉近了數(shù)學(xué)和生活的聯(lián)系,又培養(yǎng)了學(xué)生的興趣。

        新課伊始,直接由哪兩個(gè)數(shù)相乘得12引入,教學(xué)因數(shù)倍數(shù)的概念。因數(shù)和倍數(shù)是比較抽象的概念,不要讓學(xué)生去探究,學(xué)生也不可能探究出來,這就需要教師教,教時(shí)要結(jié)合具體算式講。教師講完之后,要讓學(xué)生結(jié)合其它的算式進(jìn)行練習(xí),給學(xué)生一個(gè)舉一反三的機(jī)會(huì)。因此,我首先根據(jù)算式介紹倍數(shù)和因數(shù)的意義,然后讓學(xué)生根據(jù)其余兩道乘法算式模仿的說一說,對(duì)于特殊的“12是12的因數(shù),12是12的倍數(shù)”教師引導(dǎo)概括:一個(gè)數(shù)是它本身的因數(shù)也是倍數(shù)。然后通過除法算式加深因數(shù)倍數(shù)的意義,讓學(xué)生充分的說一說。這里老師引導(dǎo)“能說6是因數(shù),12是倍數(shù)嗎?通過對(duì)反例的辨析,充分感受倍數(shù)和因數(shù)是相互依存的,使學(xué)生的感受更加深刻。讓學(xué)生明確:因數(shù)和倍數(shù)是相互的,是有所指的,是兩個(gè)自然數(shù)之間的關(guān)系,不能單純的說6是因數(shù)或12是倍數(shù),應(yīng)說6是12的因數(shù),12是6的倍數(shù)。

       。ǘ┖献鹘涣,探討找一個(gè)數(shù)的因數(shù)的方法。

        教材把倍數(shù)和因數(shù)的意義以及找一個(gè)數(shù)的倍數(shù)和因數(shù)合在一個(gè)課時(shí)教學(xué)的,課的容量大、內(nèi)容多。怎樣通過有效的課堂,真正使孩子理解倍數(shù)和因數(shù)的意義,并且能夠有序、完整地找一個(gè)數(shù)的因數(shù)和倍數(shù),就成了本節(jié)課的教學(xué)重點(diǎn)。其中,有序完整的.找一個(gè)數(shù)的因數(shù),既是重點(diǎn)更是難點(diǎn)。教學(xué)中我結(jié)合得到的三道乘法算式,教師半扶半放的引導(dǎo)學(xué)生找出12的所有因數(shù)。有了找12的因數(shù)的例子為依托,正好可以為找一個(gè)數(shù)的因數(shù)提供了思維的平臺(tái),找一個(gè)數(shù)的倍數(shù)比較容易,放在后面可以少投入些時(shí)間。

        ”從學(xué)生的角度看問題是教學(xué)取得實(shí)效的關(guān)鍵“。本環(huán)節(jié)對(duì)學(xué)生可能出現(xiàn)的情況做了充分的預(yù)設(shè),并通過兩次針對(duì)性的比較,使學(xué)生學(xué)會(huì)靈活地、有序地思考,及時(shí)引導(dǎo)學(xué)生用自己的語言總結(jié)找一個(gè)數(shù)因數(shù)的方法。應(yīng)該說,找出24的幾個(gè)因數(shù)并不難,難就難在找出24的所有因數(shù)。教學(xué)中,不是急切認(rèn)定結(jié)果,也不是把方法簡單地告訴學(xué)生,而是讓學(xué)生獨(dú)立探究,在作業(yè)紙上獨(dú)立寫出24的所有因數(shù),教師則及時(shí)巡視并請學(xué)生將各種情況反饋。有用乘法找的,有用除法找的,有有序找的,也有無序找而有遺漏的。

        教師引導(dǎo)學(xué)生對(duì)有序和無序找的作了比較,學(xué)生在比較、交流中感悟到有序思考的必要性和科學(xué)性。在學(xué)和議的環(huán)節(jié),學(xué)生交流的過程應(yīng)該是相互補(bǔ)充、相互接納的過程,是對(duì)學(xué)習(xí)內(nèi)容進(jìn)行深加工和重組知識(shí)的過程,是學(xué)生的認(rèn)知不斷走向深入,思維水平不斷提升的過程。給學(xué)生獨(dú)立思考的空間,提出了各自的解法或見解,是思維獨(dú)創(chuàng)性的培養(yǎng);引導(dǎo)學(xué)生一對(duì)一對(duì)有序的找,或從1開始,用除法一個(gè)個(gè)去試,是思維條理性的培養(yǎng);既有遷移于擺正方形的形象思維,又有直接運(yùn)用除法算式的抽象思維,或乘除法口訣的綜合運(yùn)用等,在感受解法多樣性中,培養(yǎng)了學(xué)生思維的靈活性。這部分教學(xué),我給學(xué)生足夠的時(shí)間,讓他們認(rèn)真地思考、充分地交流、相互評(píng)價(jià)。學(xué)生在這樣的過程中親歷了方法探究的過程,自主構(gòu)建了知識(shí)體系。

        接著通過練習(xí)及時(shí)鞏固找因數(shù)的方法。最后通過觀察比較三個(gè)數(shù)的所有因數(shù),發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的特征時(shí),讓學(xué)生先在小組里說一說,再用自己的語言總結(jié),而找出因數(shù)的特征。從而在互相評(píng)價(jià)、充分比較、集體交流中感悟有序思考的必要性和科學(xué)性。

      《因數(shù)與倍數(shù)》教學(xué)反思15

        這個(gè)單元課時(shí)數(shù)比較多,對(duì)于學(xué)生數(shù)感的要求比較高,對(duì)于學(xué)生觀察能力,比較能力,推理能力的培養(yǎng)是個(gè)很好的訓(xùn)練。通過一個(gè)單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識(shí)點(diǎn)的學(xué)習(xí)和掌握上還存在一些問題:

        1、最大公因數(shù)和最小公倍數(shù)

        教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個(gè)數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對(duì)于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對(duì)數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個(gè)概念有時(shí)還會(huì)出現(xiàn)混淆情況,也就是對(duì)因數(shù)和倍數(shù)的`理解不夠透徹與深刻。如果學(xué)生對(duì)找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實(shí),將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時(shí)每節(jié)課都有三到五個(gè)訓(xùn)練,并進(jìn)行專項(xiàng)過關(guān)。在應(yīng)用這個(gè)知識(shí)解決實(shí)際問題時(shí),有少數(shù)后進(jìn)生比較難以理解,需要輔助圖形來分析,也需要一個(gè)時(shí)間的積淀過程。

        2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)

        這四個(gè)概念按照兩個(gè)不同的標(biāo)準(zhǔn)分類所得。學(xué)生在分類思考時(shí)對(duì)概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。

        3、235倍數(shù)的特征

        如果單獨(dú)讓學(xué)生去說去判斷一個(gè)數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時(shí)就比較遲鈍,特別是用短除法尋找公因數(shù)時(shí),不能很快的進(jìn)行反應(yīng),數(shù)的感覺不佳。

        以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個(gè)過程,而概念的理解加深還需要平時(shí)不斷的訓(xùn)練。多給學(xué)生一點(diǎn)耐心,再堅(jiān)持一份恒心,相信學(xué)生們會(huì)有提高,會(huì)有改變。

      【《因數(shù)與倍數(shù)》教學(xué)反思】相關(guān)文章:

      《倍數(shù)與因數(shù)》教學(xué)反思03-31

      《因數(shù)與倍數(shù)》的教學(xué)反思04-06

      因數(shù)與倍數(shù)教學(xué)反思04-01

      因數(shù)和倍數(shù)教學(xué)反思11-01

      《倍數(shù)和因數(shù)》教學(xué)反思02-18

      倍數(shù)和因數(shù)教學(xué)反思02-26

      因數(shù)和倍數(shù)的教學(xué)反思02-14

      倍數(shù)和因數(shù)的教學(xué)反思03-06

      倍數(shù)和因數(shù)的教學(xué)反思通用10-20