倍數(shù)教學反思
作為一名到崗不久的人民教師,我們的任務之一就是教學,寫教學反思能總結(jié)教學過程中的很多講課技巧,快來參考教學反思是怎么寫的吧!以下是小編為大家整理的倍數(shù)教學反思,僅供參考,大家一起來看看吧。
倍數(shù)教學反思1
“公倍數(shù)”、“最小公倍數(shù)”單從純數(shù)學的角度去讓學生領會,顯然是比較枯燥、乏味的。我從學生的經(jīng)驗和已有的知識出發(fā),激發(fā)學生的學習興趣,向?qū)W生提供充分從事數(shù)學活動的機會,增強學生學好數(shù)學的信心。使這些枯燥的知識變成鮮活、靈動數(shù)學,讓學生在解決問題的過程中既學到了知識,又體念到了學數(shù)學的快樂。
本節(jié)課是引導學生在自主參與、發(fā)現(xiàn)、歸納的基礎上認識并建立并理解最小公倍數(shù)的概念的過程。五年級學生的生活經(jīng)驗和知識背景更為豐富,新課程標準要求教材選擇具有現(xiàn)實性和趣味性的素材,采取螺旋上升的方式,由淺入深地促使學生在探索與交流中建立公倍數(shù)與最小公倍數(shù)的概念。
在此之前,學生已經(jīng)了解了整除、倍數(shù)、因數(shù)以及公因數(shù)和最大公因數(shù)。本節(jié)課的意圖是通過寫出幾個數(shù)的倍數(shù),找出公有的倍數(shù),再從公有的倍數(shù)中找出最小的一個,從而引出公倍數(shù)與最小公倍數(shù)的概念。接著用集合圖形象地表示出4和6的倍數(shù),以及這兩個數(shù)公有的倍數(shù),這一內(nèi)容的學習也為今后的通分、約分學習打下的基礎,具有科學的、嚴密的邏輯性。但是,教材中鋪磚對于理解公倍數(shù)與最小公倍數(shù)的意義,比較抽象,不利于建立對概念的理解。本節(jié)課把“原來鋪墻磚”的題目改為“找兩人的共同休息日”來建立概念。體現(xiàn)了新課標的要求,學生的學習內(nèi)容應該是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的;有效的數(shù)學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上;使學生感到數(shù)學就在自己身邊。充分利用課堂中最有效的.時間是前15鐘,做好這段時間的教學,提高了學習效率。
本節(jié)課兩個數(shù)的公倍數(shù)和最小公倍數(shù)的意義,通過解決實際問題,初步了解兩個數(shù)的公倍數(shù)和最小公倍數(shù)在現(xiàn)實生活中的某些應用,體驗解決問題策略的多樣化,滲透集合思想,培養(yǎng)學生的抽象概括能力這些目標展開教學。把本節(jié)課的重點應放在學生對數(shù)的概念的認識上,體現(xiàn)了新課標中“4—6年級的學生能找出10以內(nèi)任意兩個自然數(shù)的公倍數(shù)與最小公倍數(shù)”的要求。小學生的生活實際問題的解決能力普遍較低,把運用“公倍數(shù)與最小公倍數(shù)”的知識解決簡單的生活實際問題,定為本節(jié)課的難點。體現(xiàn)新課標中“人人學有價值的數(shù)學,讓學生通過觀察、操作、反思等活動獲得基本的數(shù)學技能”的要求。
小學生的動手欲較強,學生認識數(shù)的概念時更愿意自主參與,自己發(fā)現(xiàn)。再者,學生個人的解題能力有限,而小組合作則能更好地激發(fā)他們的數(shù)學思維,通過交流獲得數(shù)學信息。通過動手,讓學生在月歷紙的上動手找一找,圈一圈;通過動口,在概念揭示前,學生動口說一說。給學生機會說動手之后的感悟,還可以在個人表達的同時傾聽他人的說法。設計成寓教于樂的形式,將教學內(nèi)容融入一環(huán)環(huán)的學生自主探索發(fā)現(xiàn)的過程中。
如何激發(fā)學生的興趣不止是一時之效,如何從學生的角度出發(fā)進行預案的設計,課堂中順學而導保持學生的學習積極性是一個值得思考的問題。
總之,本課體現(xiàn)了這樣的設計理念:將直觀演示與抽象思維相結(jié)合,讓學生在自主參與的基礎上感悟、理解、應用、鞏固。
倍數(shù)教學反思2
一、教材與知識點的對比與區(qū)別。
1、對比新版教材知識設置與傳統(tǒng)教材的區(qū)別。
有關數(shù)論的這部分知識是傳統(tǒng)教學內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設計上都獨具匠心。“因數(shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別:
。1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學習,而是反其道而行之,通過乘法算式來導入新知。
。2)“約數(shù)”一詞被“因數(shù)”所取代。
這樣的變化原因何在?教師必須要認真研讀教材,深入了解編者意圖,才能夠正確、靈活駕馭教材。因此,我通過學習教參了解到以下信息:
學生的原有知識基礎是在已經(jīng)能夠區(qū)分整除與余數(shù)除法,對整除的含義有比較清楚的認識,不出現(xiàn)整除的定義并不會對學生理解其他概念產(chǎn)生任何影響。因此,本教材中刪去了“整除”的數(shù)學化定義。
2、相似概念的對比。
。1)彼“因數(shù)”非此“因數(shù)”。
在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù)。而后者是相對于“倍數(shù)”而言的,與以前所說的“約數(shù)”同義,說“X是X的因數(shù)”時,兩者都只能是整數(shù)。
。2)“倍數(shù)”與“倍”的區(qū)別。
“倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”,但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時,運用的方法與“求一個數(shù)的幾倍是多少”是相同的,只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運用實踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍,因此,對于學生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學生一個直觀的.感受!耙驍(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關,與分數(shù)無關,與負數(shù)無關(雖沒學,但有小部分學生了解)。同時強調(diào)——非0——因為0乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學當中規(guī)定性的概念用直接講述法,讓學生清晰明確。因此,用直接導入法,先復習自然數(shù)的概念,再寫出乘法算式3*4=12,說明在這個算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。
2、在進行延續(xù)性教學中,可以讓學生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù),在板書要講究一個格式與對稱性,這樣在對學生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時應該要注意的細節(jié),這對于學生良好的學習慣的培養(yǎng)也是很重要的。
倍數(shù)教學反思3
公倍數(shù)和最小公倍數(shù)是比較抽象的數(shù)學概念,學生要真正理解這些概念較為困難。但五年級學生的生活經(jīng)驗和知識背景已經(jīng)很豐富了,而且他們思維活躍,喜歡自我挑戰(zhàn)。對于新知識總喜歡自己探索,并且喜歡尋找與他人不同的看法。因此,我在教學時,放手讓學生主動探究,在探究的基礎上我作一些適當?shù)闹笇。這節(jié)課也給我上了生動的一課,反思自己的教學,我有下列體會。課堂教學是一個動態(tài)的不斷發(fā)展推進的過程,這個過程既有規(guī)律可循,又有靈活的生成和不可預測性。只有通過課堂生成資源的適度開發(fā)和有效利用,才能促進預設教育目標的高效率完成或新的更高價值目標的生成。這節(jié)課,學生的新發(fā)現(xiàn)為我提供了一個寶貴的課堂再生資源,我充分利用了這份寶貴的.資源,讓學生自己探索問題并解決問題;叵肫鹪谖移綍r的教學中,也有這樣的機會,當時沒有敏銳的捕捉并加以利用,是多么的可惜啊。所以,教師應該重視課堂教學中突發(fā)的每件事,善加捕捉與利用。因為學生不是一個容器,而是一枝需要點燃的火把。我們只有珍惜和利用課堂生成資源,就能創(chuàng)建富有生命活力的課堂教學,在此過程中提升師生在課堂教學中的質(zhì)量。
本節(jié)課需要進一步思考的問題:學生之所以有更多不同的想法,是因為課堂上學生有了更多的與小組同學交流不同的機會。能有勇氣在師生共同交流時挑戰(zhàn)權(quán)威,提出不同的看法的學生還是少數(shù),但在小組里交流情況就完全不同,學生在這里更會感覺到“心理安全”和“心理自由”,當然就會有更多的思維火花。因此,在課堂上如何把小組合作用到實處,用到好處,也給我提出了一個新的問題。
倍數(shù)教學反思4
這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
一、尊重教材,引導學生實現(xiàn)從形象向抽象的飛躍。
教材中首先引導學生理解數(shù)與數(shù)之間的關系,進而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學倍數(shù)和因數(shù)的意義。這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇В瑫r,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,
二、細化過程,讓學生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。
倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學都以此為基礎。在學生得出乘法算式后,首先引導學生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學生“看著算式你還能想到什么?”很多學生已經(jīng)領會12也是4的倍數(shù),指名說后,再強化一下讓學生連起來說說誰是誰的倍數(shù)。接著教學“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學生很容易聯(lián)想到“4也是12的因數(shù)”,而且學生的學習興趣濃厚、求知欲強。這時再讓學生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達的是自然數(shù)之間的關系之后,接著練一練讓學生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學生輕聲地說說有點特別的兩句。
整個過程處理細致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學困生,讓學生在遷移中理解倍數(shù)和因數(shù)的意義。
三、由點及面,巧架平臺,讓學生在師生互動中建立完整的數(shù)學模型。
找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準備。探索找一個數(shù)的倍數(shù)或因數(shù)的`方法時,重點是幫助學生建立相應的數(shù)學模型。
探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學中我還是利用3×4=12做鋪墊,引導學生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進,先讓學生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學生按除法通過自主探究找出24的所有因數(shù),接著組織學生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。
教學4的倍數(shù)時,學生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導學生建構(gòu)完整的倍數(shù)的數(shù)學模型呢?我遵循學生的認知規(guī)律,然后引導學生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學生的腦海中得以完善、合理建構(gòu)。
這樣搭建了有效的平臺、形成了師生互動生成的過程,學生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構(gòu)了數(shù)學模型。
倍數(shù)教學反思5
這一周我和學生一起學習了《2、5的倍數(shù)的特征》這一課,教學時通過游戲的情境很好地激發(fā)學生的求知欲,探究新知的熱情,學生借助“百數(shù)表”分別直觀地找出2和5的倍數(shù),通過合作和獨立思考的.方式概括出2和5的倍數(shù)特征,再舉例比100大的數(shù)加以驗證,以“猜想——驗證——結(jié)論”的學習方式符合學生的認知特點,結(jié)合2的倍數(shù)特征,進而讓學生認識、理解奇數(shù)和偶數(shù)含義,再通過游戲獲得‘既是2又是5的倍數(shù)特征’ 讓學生應用所學的知識解決數(shù)學簡單的生活問題,達到了教學目標。
學生在學習中,體驗了探索的成功樂趣,也對數(shù)學產(chǎn)生的興趣。對學習3的倍數(shù)打下了基礎。當然本節(jié)課的教學不失為一堂指導學生進行探究性學習的課,但我總怕學生在這節(jié)課里不能很好的接受知識,所以在個別應放手的地方卻還在牽著學生走?偨Y(jié)性的語言也顯得有些不夠。在以后的教學中應力爭避免此種情況的發(fā)生也有一部分學生容易混淆倍數(shù)的特征。這還有需要我們進一步的學習鞏固中改變。我相信只要有信心,有方法,什么困難我們都能克服的。
倍數(shù)教學反思6
倍數(shù)和因數(shù)本教材與原教材大不相同。在舊教材中,首先確立了除法的概念,然后在此基礎上認識了因子倍數(shù)。目前,在不知道劃分的情況下,直接識別倍數(shù)和因子。數(shù)學中的“初始概念”通常很難教授。這部分信息是學生第一次很難掌握的。首先,這個名字相對抽象,在現(xiàn)實生活中不常接觸。對于這樣的概念教學,學生要真正理解、掌握和確定它,需要一個長期的消化和理解過程。
在本課程中,我充分體現(xiàn)了學生是主體,為學生的探索和發(fā)現(xiàn)提供了充足的時間和空間,并提供了適當?shù)闹笇。同時,為了提高課堂教學的有效性,我在本課程的教學中體現(xiàn)了自主性、主動性、合作性和親和力,做到了以下幾點:
。ㄒ唬┎僮鲗嵺`,實例內(nèi)化,對倍數(shù)和因子的理解
我創(chuàng)造了一個有效的數(shù)學學習環(huán)境,將數(shù)字與形狀結(jié)合起來,并將抽象化為直覺。首先,讓學生操作,將12個小正方形放入不同的矩形中,然后讓學生寫出不同的乘法公式,從而得出因子和倍數(shù)的含義。這樣,在學生已有知識的基礎上,從動手操作到直觀感知,概念的揭示突破了從抽象到抽象,從數(shù)學到數(shù)學,使學生能夠獨立體驗數(shù)與形的結(jié)合,然后形成要素和倍數(shù)的含義。使學生初步建立“因素與多元”的概念。這樣,我們就可以充分學習、利用和挖掘教材,利用學生已有的數(shù)學知識,引出新的知識,減緩難度,效果良好。
。↖I)自主探究、意義建構(gòu)、發(fā)現(xiàn)倍數(shù)和因素
整個教學過程試圖反映學生是學習的主體,教師只是教學活動的組織者、指導者和參與者。在整個課堂上,教師總是為學生營造一種輕松的學習氛圍,讓學生自主探索,學習和理解倍數(shù)和因子的意義,探索和掌握尋找一個數(shù)的倍數(shù)和因子的方法,引導學生滿口獨立獲取知識,手和腦。
新課程提出了合作學習的學習方式。多元合作教學不僅能使學生在合作中表達自己的觀點、參與討論、獲取知識、發(fā)現(xiàn)特色,還能培養(yǎng)學生的`合作學習技能,初步形成合作與競爭意識。
查找數(shù)字因子是本課的難點。在教學過程中,讓學生自主探究。在隨后的檢查中,我發(fā)現(xiàn)很多學生完成的不是很好,所以我決定先溝通,讓學生們發(fā)現(xiàn)。就這樣,花了很多時間。最后,我沒有太多時間練習。我認為雖然我用了太多的時間,但我認為學生們已經(jīng)充分探索和收獲了。對于剛剛對多因素有了感性認識的學生來說,如何在沒有重復和遺漏的情況下找到36個因素是一件很困難的事情,這樣他們才能充分發(fā)揮小組學習的優(yōu)勢。首先,讓學生獨立找出36的因子。我檢查了三分之一的學生可以有序地思考,大多數(shù)學生沒有按照必要的順序?qū)懝健H缓笞寣W生討論兩個問題
倍數(shù)教學反思7
1、在探究5的倍數(shù)特征時感受“猜想”與“結(jié)論”的不同。
在教學中,當學生找到百數(shù)表內(nèi)5的倍數(shù)特征時,我追問學生,“是不是在所有的自然數(shù)中,5的倍數(shù)都有這個特征呢?”學生異口同聲地都認為是。這里就需要教師幫助學生養(yǎng)成嚴謹科學的學習態(tài)度。我告訴學生是不是有這個特征,我們沒有研究過,只是我們的猜想。還需要我們進一步去驗證。大部分學生還是比較認可的。沒有經(jīng)過研究,怎么能知道是呢?有了這樣的猜想,最后通過舉例的方法驗證后,學生沒有找到反例,這時我才告訴學生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時候有不同的界定,沒有經(jīng)過驗證前,只是猜想;只有驗證后,猜想才可能變成結(jié)論。相信學生不斷經(jīng)歷這種過程后,他們才會具備科學的態(tài)度,才會學會對自己所說的話負責,才不會貿(mào)然下結(jié)論。
2、經(jīng)歷完整的研究過程,滲透數(shù)學方法的培養(yǎng)和感悟。
這節(jié)課中,當學生研究出5的倍數(shù)的特征后,我引導學生來回憶。我們是怎樣來研究5的倍數(shù)的特征的?讓學生體驗經(jīng)歷“找數(shù)——觀察——猜想——百數(shù)表中驗證——更大數(shù)驗證——結(jié)論”這一研究過程,然后讓學生獨立去研究2的倍數(shù)的特征,再次體驗2的倍數(shù)的特征研究過程,我想學生就有了更完整的體驗。
整節(jié)課學生經(jīng)歷了“觀察,動手,發(fā)現(xiàn)規(guī)律、驗證規(guī)律、得出結(jié)論,運用規(guī)律”的過程。著名數(shù)學家波利亞說過:“學習任何知識的最佳途徑是由學生自己去發(fā)現(xiàn)。因為這種發(fā)現(xiàn),理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律聯(lián)系!彪x開了學生的學習活動,學生的發(fā)展將是空中樓閣。通過活動落實教學任務,讓學生用自己的思維方式去探究,自己去體驗,能有效促進學生主體的發(fā)展。學生經(jīng)歷和感悟“觀察,動手實踐,發(fā)現(xiàn)規(guī)律、驗證規(guī)律、得出結(jié)論”的學習過程比學到的數(shù)學知識更有價值。如果教學中能長期堅持運用這些學習方法,而且學生一旦形成自己自主的學習方式,那將是非常可貴的。
總設計意圖:
1. 2和5倍數(shù)的特征,都在個位數(shù),學生極易理解和掌握,奇數(shù)、偶數(shù)的'概念,學生掌握也并不困難,所以這部分內(nèi)容的學習從學生已有的知識經(jīng)驗出發(fā),創(chuàng)設有助于學生自主學習、合作交流的情境,使學生經(jīng)歷觀察、操作、歸納、類比、猜想、交流、反思等數(shù)學活動,獲得基本的數(shù)學知識和技能,發(fā)展思維能力,激發(fā)學習的興趣,增強學好數(shù)學的信心。出現(xiàn)疑難問題或意見不一時,通過小組或集體討論解決,教師發(fā)揮引導的作用,消除學生的疑惑;關注學生的個體差異,使不同層次的學生在練習中獲得不同的發(fā)展,體驗成功的喜悅。
2. 學習方法的指導非常必要,讓學生感受數(shù)學是一門嚴謹?shù)膶W科,數(shù)學研究的方法就在平時的學習中,并不神秘,為學生以后的數(shù)學研究打下良好的基礎。
倍數(shù)教學反思8
1、新教材中對最大公因數(shù)和最小公倍數(shù)要求較以往是大大的降低了。這里只要求學生用列舉的方法找出最大公因數(shù)和最小公倍數(shù),對一些特殊的數(shù)組能找到規(guī)律,尋求特殊的.解法。
2、注意新教材中的數(shù)都很小,不復雜,要求找的最小公倍數(shù)不能超過100。
3、關于短除,是給學有余力的學生介紹的,因為學生學習時缺乏相應的知識基礎,如質(zhì)因數(shù)、分解質(zhì)因數(shù)的概念,所以教師在講解時要將這部分知識簡單交代一下,不然學生無法理解,特別是理解這樣做的道理,如若不然,學習只能是流于形式。關于教與不教的話題,我認為還是要教一教,給孩子一個一般的方法介紹,對他們今后學習有益。
4、我覺得因為數(shù)都比較小,可以教學生一些簡單的求法。如“大數(shù)翻翻法”就很好,其實求最大公因數(shù)也可以用“小數(shù)縮倍法”,即將小數(shù)依次除以1、2、3、4等,看是不是大數(shù)的因數(shù),如果是就是它們的最大公因數(shù)。
倍數(shù)教學反思9
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應著一對有整除關系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這局部內(nèi)容同學初次接觸,對于同學來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕獲生活與數(shù)學之間的聯(lián)系,協(xié)助同學理解因數(shù)倍數(shù)相互依存的關系。所以在上課之前我特意和小朋友們玩了一個小游戲。用“ 我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的'好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學,我特別注意下面幾個細節(jié)來協(xié)助同學理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義動身,而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但實質(zhì)上任是以“整除”為基礎。所以我上課時特別注意讓同學明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1。5是0。3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1。5是0。3的倍數(shù)”。我在課堂上反復強調(diào),協(xié)助小朋友們認真理解辨析,所以同學一節(jié)課下來對這組概念就理解透徹了,不會模糊了。
倍數(shù)教學反思10
在學習這個內(nèi)容之前,學生已經(jīng)學習了2、5的倍數(shù)的特征。但是3的倍數(shù)的特征與錢不同,2、5的倍數(shù)的特征是看個數(shù)上的數(shù)字,而3的倍數(shù)的特征不再是看個位上的數(shù)字,而是看各位上的數(shù)字之和。在學習了2、5的倍數(shù)的特征的前提下來學習3的倍數(shù)的特征很容易會跟2、5的一樣。根據(jù)這一初步的認識沖突,在課堂上我采取了以下教學措施。
課前預習
與教學“2、5的倍數(shù)特征”類似,我要求學生課前做好充分的預習工作:在附頁的方格紙上寫出1-100的數(shù),找出3的倍數(shù)并涂上顏色,并觀察發(fā)現(xiàn)有什么特征,如下:
復習引入,設置懸念
出示:用3,5,6數(shù)字卡片擺成符合要求的三位數(shù)依次出示:
擺成2的倍數(shù)(學生回答356536并說原因)
擺成5的倍數(shù)(學生回答365635并說原因)
【設計意圖:回顧2,5的倍數(shù)的特征】
擺成3的倍數(shù)(學生回答563,653,356,536并說原因:個位上是3、6;有學生提出質(zhì)疑,產(chǎn)生沖突)
問:個位上是3,6或9的數(shù)是不是3的倍數(shù)?
學生驗證,發(fā)現(xiàn)這四個數(shù)都不是3的倍數(shù)。
問:3的倍數(shù)是不是看各位上的數(shù)呢它到底有什么特征?
合作探究
在100以內(nèi)的數(shù)中,任意選取幾個3的倍數(shù)的數(shù),小組合作完成表格:
3的倍數(shù)有
各數(shù)位上,數(shù)的和
和是不是3的倍數(shù)
12
1 + 2 = 3
是
匯報交流:你發(fā)現(xiàn)了什么?
得出結(jié)論:一個數(shù)各數(shù)位上數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。例如:54,因為5+4=9,9是3的倍數(shù),所以54是3的倍數(shù)。
鞏固練習
1,基礎練習:
。1)判斷下列數(shù)是不是3的倍數(shù)(42 134 268 78)
學生回答:例
42是3的.倍數(shù),134不是3的倍數(shù),
因為4 + 2 = 6,6是3的倍數(shù),因為1 + 3 + 4 = 8,8-不是3的倍數(shù)
所以42是3的倍數(shù)。所以134不是3的倍數(shù)。
。2)師生互動猜數(shù)游戲:老師說一個數(shù),學生判斷是否為3的倍數(shù);學生說一個數(shù),老師判斷;同桌判斷,男女生判斷。
(3)在下面的方框里填上一個數(shù)字,使這個數(shù)是3的倍數(shù)。
2,有關于2,5,3的倍數(shù)的特征的比較,綜合練習。
反思
本節(jié)課能從認識沖突上找到突破點,再小組合作通過填寫表格引導學生去發(fā)現(xiàn)3的倍數(shù)的特征,學生能夠清晰的區(qū)分和判別3的倍數(shù),并與2、5的倍數(shù)作比較,真正理解和辨別這幾個數(shù)的倍數(shù)的特征,學生的掌握情況還是不錯的。
倍數(shù)教學反思11
【初次實踐】
課始,讓學生任意報數(shù),師生比賽誰先判斷出這個數(shù)是不是3的倍數(shù),正當我沉浸在游戲的情境之中,幾個“不識時務者”打亂了課前的預想。“老師,我知道其中的秘密,只要把各個數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對!在數(shù)學書上就有這句話!薄钟袔讉學生偷偷地打開了數(shù)學書!霸趺崔k?”謎底都被學生揭開了。面對這一生成,我沒有死守教案,而是果斷地調(diào)整了預設,變“探索”為“驗證”,將結(jié)論板書在黑板上,讓學生理解這句話的意思,然后組織學生將百數(shù)表中3的倍數(shù)圈出來,驗證是不是具有這樣的特征,最后進行一系列鞏固練習……
[反思]
課堂上經(jīng)常會出現(xiàn)類似上述案例中的“超前行為”,即有些學生提前把要探究的新知識和盤托出。我們的習慣做法就是變“探索”為“驗證”,當然有些知識的教學采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學生充其量只能算是執(zhí)行操作命令的“計算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進行這樣的教學,還容易使學生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學習風氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學生已有的知識經(jīng)驗,而且在已經(jīng)揭開“謎底”的情況下,再試圖引導學生進行猜想、實驗、發(fā)現(xiàn),體驗遭受挫折后取得成功的那種激動,也只能是一種奢望。那么又該如何激發(fā)學生探究的熱情,促使學生進行深入探究呢?
【再次實踐】
。ㄅc第一次教學情況基本相同,有些學生能夠正確地判斷一個數(shù)是不是3的倍數(shù),這時一些學生卻依然感到困惑,我設法將這一困惑激發(fā)出來。)
師:同學們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學習了2、5的倍數(shù)的特征只和什么有關?
生:只和一個數(shù)的個位有關。
師:與今天學習的知識比較一下,你有什么疑問嗎?
生1:為什么判斷一個數(shù)是不是3的倍數(shù)只看個位不行?
生2:為什么判斷一個數(shù)是不是2、5的倍數(shù)只看個位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?
……
師:同學們思考問題確實比較深入,提出了非常有研究價值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個位有關。
(學生嘗試探索,教師適時引導學生從簡單數(shù)開始研究,借助小棒或其他方法進行解釋。)
生1:我在擺小棒時發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個位擺幾就可以了。
生2:其實不用擺小棒也可以,我們組發(fā)現(xiàn)每個數(shù)都可以拆成一個整十數(shù)加個位數(shù),整十數(shù)當然都是2、5的倍數(shù),所以這個數(shù)的個位是幾就決定了它是否是2、5的倍數(shù)。
師:同學們想到用“拆數(shù)”的方法來研究,是個好辦法。
生3:是否是3的倍數(shù)只看個位就不行了。比如13,雖然個位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個位上的數(shù)合起來是不是3的倍數(shù)就行了。
生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。
生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。
生(部分):對。
生4:其實40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?
生6:也就是說整十數(shù)都可以拆成十位上的數(shù)字和一個3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個位上的和是不是3的倍數(shù)就可以了。
師:同學們確實很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?
學生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進行研究。3的倍數(shù)的特征在學生頭腦中越來越清晰。
師:同學們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征。現(xiàn)在你還有哪些新的探索想法呢?
生1:我想知道4的倍數(shù)有什么特征?
生2:我知道,應該只要看末兩位就行了,因為整百、整千數(shù)一定都是4的倍數(shù)。
師:你能把學到的方法及時應用,非常棒!
生3:7或9的倍數(shù)有什么特征呢?
……
師:同學們又提出了一些新的、非常有價值的問題,課后可以繼續(xù)進行探索。
[反思]
1. 找準知識間的沖突,激發(fā)探究的愿望。學生剛剛學習了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學習3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數(shù)的特征,卻要把各個位上的數(shù)加起來研究。于是新舊知識之間的`矛盾沖突使學生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學生急于想了解這些為什么,便會自覺地進入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準知識間的沖突并巧妙激發(fā)出來,就能激起學生探究的愿望。這樣不僅有利于學生對新知的掌握,有效地將新知納入到原有的認知結(jié)構(gòu)中去,還有利于培養(yǎng)學生深入探究的意識和能力。
2. 激活學習中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學,第一次教學由于忽視了學習中的困惑,學生對于3的倍數(shù)的特征理解并不透徹,探索的體驗也并不深刻。第二次教學留給學生質(zhì)疑的時空,巧設沖突,讓學生進行新舊知識的對比,將困惑激發(fā)出來,通過學生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發(fā)現(xiàn),探究能力也得到切實提高。學生在學習中難免會產(chǎn)生困惑,這種困惑有時是學生希望理解更全面、更深刻的表現(xiàn)。面對這些有價值的思考,我們要有敏銳的洞察力,采取恰當?shù)姆椒▽⑵浼せ,促使探究活動走向深入,讓學生獲得更大的發(fā)展。當然,學生在學習中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當引導,尚需要教師課前精心預設。
3. 溝通知識間的聯(lián)系,讓學生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時溝通,激發(fā)了學生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學生不斷探究,將學習由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對數(shù)的倍數(shù)特征的整體認識,感悟數(shù)學其實就是以一馭萬,以簡馭繁。課堂不是句號,學生的發(fā)展始終是教學的落腳點。我們的教學絕不能僅僅局限于學生對于一堂課知識的掌握,而應著眼于學生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動力。
倍數(shù)教學反思12
《公倍數(shù)和公因數(shù)》在新教材中改動很大,新教材將數(shù)的整除中有關分解質(zhì)因數(shù)、互質(zhì)數(shù)、用短除法求幾個數(shù)的最大公因數(shù)和最小公倍數(shù)的教學內(nèi)容精簡掉了,新教材突出了讓學生在現(xiàn)實情境中探究認識公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運用數(shù)學概念,讓學生探索找兩個數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學生在解決問題的過程中,主動探索簡潔的方法,進行有條理的思考,加強了數(shù)學與現(xiàn)實生活的聯(lián)系。教學以后與以前的教材相比,主要的體會有以下幾點。
一是在現(xiàn)實的情境中教學概念,讓學生通過操作領會公倍數(shù)、公因數(shù)的含義。例1教學公倍數(shù)和最小公倍數(shù),例3教學公因數(shù)和最大公因數(shù),都是形成新的數(shù)學概念,都讓學生在操作活動中領會概念的含義。學生通過操作活動,感受公倍數(shù)和公因數(shù)的實際背景,縮短了抽象概念與學生已有知識經(jīng)驗之間的距離,有利于學生運用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的知識解決實際問題。
二是有利于改善學習方式,便于學生通過操作和交流經(jīng)歷學習過程。在教學中,讓學生按要求自主操作,發(fā)現(xiàn)用怎樣的長方形可以正好鋪滿一個正方形;用邊長幾厘米的正方形可以正好鋪滿一個長方形。在對所發(fā)現(xiàn)的不同的結(jié)果的過程中,引導學生聯(lián)系除法算式進行思考,對直觀操作活動進行初步的抽象。再把初步發(fā)現(xiàn)的`結(jié)論進行類推,在此基礎上,引導學生思考正方形的邊長與長方形的長和寬有什么關系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學生經(jīng)歷了概念的形成過程。
三是刪掉了一些與學生實際聯(lián)系不夠緊密、對后繼學習沒有影響的內(nèi)容后,確實減輕了學生的負擔,但是找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)時由于采用了列舉法,學生得花較多的時間去找,當碰到的兩個數(shù)都比較大時,不僅花時多,而且還容易出現(xiàn)遺漏或算錯的情況。相比之下,用短除法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)就不會出現(xiàn)這方面的問題,所以我在實際教學中,先根據(jù)概念采用一一列舉的方法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),待學生熟悉之后就教學生運用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯,學生也沒感到增加了負擔。
倍數(shù)教學反思13
《因數(shù)和倍數(shù)》這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
同時這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學習奠定了基礎。
本節(jié)可充分發(fā)揮學生的主體性,讓每個學生都能參加到數(shù)學知識的學習中去,調(diào)動學生學習的興趣和主動性。本節(jié)課主要從以下幾個方面進行教學的。
一:動手操作,探究方法.
我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,變抽象為具體。
二、倍數(shù)教學,發(fā)現(xiàn)特點。
利用乘法算式,讓學生找出3的倍數(shù),這里讓學生理解:
。1)3的倍數(shù)應該是3與一個數(shù)相乘的積。
。2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時也為接下來的討論倍數(shù)的特點奠定基礎。
最后讓學生通過討論發(fā)現(xiàn):
。1)一個數(shù)的倍數(shù)個數(shù)是無限的(要用省略號)。
。2)一個數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。
三、因數(shù)教學,發(fā)現(xiàn)特點。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點。找一個數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學生都用乘法算式尋找一個數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學生進一步理解。強調(diào)有序(從小到大),不重復、不遺漏。隨后讓學生找出15、16的因數(shù)有那些。最后通過比較討論讓學生得出因數(shù)的特點:
。1)一個數(shù)因數(shù)的'個數(shù)是有限的。
。2)一個數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學生明白所有的數(shù)都有因數(shù)1).
四、練習反饋情況
從學生的作業(yè)情況來看,大部分學生掌握的還是不錯的,有部分基礎差的學生,有如下幾點錯誤出現(xiàn):
1、倍數(shù)沒有加省略號。
2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。
3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學中要多關注基礎比較差的學生,注意補差工作;同時要注意教學中細節(jié)的處理。
倍數(shù)教學反思14
《倍數(shù)和因數(shù)》這一節(jié)的主要內(nèi)容是讓學生在已有知識和經(jīng)驗的基礎上,自主探索和總結(jié)找一個數(shù)的倍數(shù)和因數(shù)的方法;用“列舉法”研究一個數(shù)的倍數(shù)的特點和一個數(shù)的因數(shù)的特點。 這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。 這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一) 操作實踐,舉例內(nèi)化,認識倍數(shù)和因數(shù)
我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學到數(shù)學,讓學生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念,使數(shù)與形做到了有機的結(jié)合。 這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,降低了難度,效果較好。
。ǘ┳灾魈骄,意義建構(gòu),找倍數(shù)和因數(shù)
一個數(shù)的倍數(shù)與因數(shù)的特征,單憑記憶也不難接受,為防止學生進行“機械學習”,我提出“任何一個不是0的自然數(shù)的因數(shù)有什么特點,”讓學生觀察12,20,16,36的因數(shù),思考:一個數(shù)的因數(shù)的個數(shù)是有限的還是無限的?其中最大的因數(shù)是幾?最小的呢?讓學生的思維有了明確的指向。整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,教師始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
。ㄈ┳プW生思維的“最近發(fā)展區(qū)”,讓學生在“獨立思考——集體交流——互相討論”的過程中,促使學生學會有序思考,從而形成基本的技能與方法,既關注了過程,又關注了結(jié)果。
找一個數(shù)的因數(shù)的方法是本節(jié)課的難點,在教學過程中讓學生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學生完成的不是很好,我就決定先交流再讓學生尋找,這樣就用了很多時間,最后就沒有很多的時間去練習,我認為雖然時間用的過多,但我認為學生探索的比較充分,學生也有收獲。如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下三分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導和總結(jié)。
。ㄋ模┳兪酵卣,實踐應用---—促進智能內(nèi)化
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的.情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養(yǎng),并及時讓學生感受到學習成功的喜悅,享受數(shù)學,感悟文化魅力。
(五)重視數(shù)學意義的滲透與拓展,力求用數(shù)學的本質(zhì)吸引學生,樹立為學生的繼續(xù)學習和終身發(fā)展服務的意識。本節(jié)課的設計,我就關注了學生的學習后勁。如列舉法的介紹,有序思考的解決問題的策略等。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我讓學生先進性了預習,做好了一定的準備工作。在第一部分認識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。
倍數(shù)教學反思15
教學《倍數(shù)與因數(shù)》,這是一個非?菰锏恼n題,但我巧妙地運用課文中的情景圖與學生的生活實際聯(lián)系,通過水果店各種水果的單價所顯示的數(shù)進行分類,得出自然數(shù)、整數(shù)、小數(shù)、分數(shù)和負數(shù),使學生體會生活中各種不同的數(shù)。為了讓學生理解倍數(shù)與因數(shù)的含意,教學過程中,我立足體現(xiàn)一個“實”字,讓學生從算式中找出能整除的算式,揭示整除、倍數(shù)、因數(shù)之間的關系,再通過舉例去驗證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識的規(guī)律。學生在學習中實實在在經(jīng)歷了一個探究的過程!皠幽X筋出教室”這一游戲的'設計,學生在積極參與探討、質(zhì)疑、創(chuàng)造的教學活動,既鞏固了知識,又享受了數(shù)學思維的快樂。
在授課時,我體驗到了學生的快樂。當學生用自己的學號說整除、因數(shù)、倍數(shù)之間的關系時,由于像順口溜,很有趣。每個學生都很感興趣,說得很努力。原來,數(shù)學也很有趣……
【倍數(shù)教學反思】相關文章:
教學倍數(shù)教學反思02-25
認識倍數(shù)教學反思02-14
倍數(shù)特征教學反思03-16
因數(shù)與倍數(shù)教學反思04-01
倍數(shù)的特征教學反思04-21
3的倍數(shù)特征教學反思07-12