欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>七年級數(shù)學(xué)有理數(shù)的乘法教案

      七年級數(shù)學(xué)有理數(shù)的乘法教案

      時間:2023-07-28 10:35:10 教案 我要投稿
      • 相關(guān)推薦

      七年級數(shù)學(xué)有理數(shù)的乘法教案

        作為一名教學(xué)工作者,常常要根據(jù)教學(xué)需要編寫教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。教案應(yīng)該怎么寫才好呢?下面是小編收集整理的七年級數(shù)學(xué)有理數(shù)的乘法教案,歡迎大家分享。

      七年級數(shù)學(xué)有理數(shù)的乘法教案

      七年級數(shù)學(xué)有理數(shù)的乘法教案1

        一、課題2.4有理數(shù)的減法

        二、教學(xué)目標(biāo)

        1.使學(xué)生掌握有理數(shù)減法法則并熟練地進(jìn)行有理數(shù)減法運(yùn)算;

        2.培養(yǎng)學(xué)生觀察、分析、歸納及運(yùn)算能力.

        三、教學(xué)重點(diǎn)

        有理數(shù)減法法則

        四、教學(xué)難點(diǎn)

        有理數(shù)減法法則

        五、教學(xué)用具

        三角尺、小黑板、小卡片

        六、課時安排

        1課時

        七、教學(xué)過程

       。ㄒ唬、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

        1.計(jì)算:

        (1)(—2.6)+(—3.1);(2)(—2)+3;(3)8+(—3);(4)(—6.9)+0.

        2.化簡下列各式符號:

       。1)—(—6);(2)—(+8);(3)+(—7);

        (4)+(+4);(5)—(—9);(6)—(+3).

        3.填空:

        (1)______+6=20;(2)20+______=17;

        (3)______+(—2)=—20;(4)(—20)+______=—6.

        在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學(xué)里就是減法運(yùn)算.如______+6=20,就是求20—6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運(yùn)算.

       。ǘ、師生共同研究有理數(shù)減法法則

        問題1(1)(+10)—(+3)=______;

       。2)(+10)+(—3)=______.

        教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,即(+10)—(+3)=(+10)+(—3).

        教師啟發(fā)學(xué)生思考:減法可以轉(zhuǎn)化成加法運(yùn)算.但是,這是否具有一般性?問題2(1)(+10)—(—3)=______;

        (2)(+10)+(+3)=______.

        對于(1),根據(jù)減法意義,這就是要求一個數(shù),使它與—3相加等于+10,這個數(shù)是多少?

        (2)的結(jié)果是多少?

        于是,(+10)—(—3)=(+10)+(+3).

        至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:

        減去一個數(shù),等于加上這個數(shù)的相反數(shù).

        教師強(qiáng)調(diào)運(yùn)用此法則時注意“兩變”:一是減法變?yōu)榧臃;二是減數(shù)變?yōu)槠湎喾磾?shù).減數(shù)變號(減法============加法)

        (三)、運(yùn)用舉例變式練習(xí)

        例1計(jì)算:

        (1)(—3)—(—5);(2)0—7.

        例2計(jì)算:

        (1)18—(—3);(2)(—3)—18;(3)(—18)—(—3);(4)(—3)—(—18).

        通過計(jì)算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):

        在小學(xué)里學(xué)習(xí)的'減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負(fù)數(shù),其差就大于被減數(shù).

        例3世界上最高的山峰是珠穆朗瑪峰,其海拔高度大約為是8848米,吐魯番盆地的海拔高度大約是-155米,兩處高度相差多少米?

        閱讀課本63頁例3

        (四)、小結(jié)

        1.教師指導(dǎo)學(xué)生閱讀教材后強(qiáng)調(diào)指出:

        由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法.有理數(shù)的加法和減法,當(dāng)引進(jìn)負(fù)數(shù)后就可以統(tǒng)一用加法來解決.

        2.不論減數(shù)是正數(shù)、負(fù)數(shù)或是零,都符合有理數(shù)減法法則.在使用法則時,注意被減數(shù)是永不變的.

       。ㄎ澹⒄n堂練習(xí)

        1.計(jì)算:

       。1)—8—8;(2)(—8)—(—8);(3)8—(—8);(4)8—8;

        2.計(jì)算:

        (1)16—47;(2)28—(—74);(3)(—37)—(—85);(4)(—54)—14;

       。5)123—190;(6)(—112)—98;(7)(—131)—(—129);(8)341—249.

        3.計(jì)算:

        (1)1.6—(—2.5);(2)0.4—1;(3)(—3.8)—7;

       。4)(—5.9)—(—6.1);

       。5)(—2.3)—3.6;(6)4.2—5.7;(7)(—3.71)—(—1.45);(8)6.18—(—2.93).

        利用有理數(shù)減法解下列問題

        4.世界最高峰是珠穆朗瑪峰,海拔高度是8848m,陸上最低處是位于亞洲西部的死海湖,湖面海拔高度是—392m.兩處高度相差多少?

        八、布置課后作業(yè):

        課本習(xí)題2.6知識技能的2.3.4和問題解決1

        九、板書設(shè)計(jì)

        2.5有理數(shù)的減法

       。ㄒ唬┲R回顧(三)例題解析(五)課堂小結(jié)

        例1、例2、例3

       。ǘ┯^察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計(jì)

        十、課后反思

      七年級數(shù)學(xué)有理數(shù)的乘法教案2

        教學(xué)目標(biāo)

        1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運(yùn)算法則,并初步理解有理數(shù)乘法法則的合理性;

        2.能根據(jù)有理數(shù)乘法法則熟練地進(jìn)行有理數(shù)乘法運(yùn)算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;

        3.三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運(yùn)算過程;

        4.通過有理數(shù)乘法法則及運(yùn)算律在乘法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;

        5.本節(jié)課通過行程問題說明法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。

        教學(xué)建議

        (一)重點(diǎn)、難點(diǎn)分析

        本節(jié)的教學(xué)重點(diǎn)是能夠熟練進(jìn)行運(yùn)算。依據(jù)法則和運(yùn)算律靈活進(jìn)行有理數(shù)乘法運(yùn)算是進(jìn)一步學(xué)習(xí)除法運(yùn)算和乘方運(yùn)算的基礎(chǔ)。運(yùn)算和加法運(yùn)算一樣,都包括符號判定與絕對值運(yùn)算兩個步驟。因數(shù)不包含0的乘法運(yùn)算中積的符號取決于因數(shù)中所含負(fù)號的個數(shù)。當(dāng)負(fù)號的個數(shù)為奇數(shù)時,積的符號為負(fù)號;當(dāng)負(fù)號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運(yùn)用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡化運(yùn)算過程。

        本節(jié)的難點(diǎn)是對法則的理解。法則中的“同號得正,異號得負(fù)”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負(fù)號。積的絕對值是這兩個因數(shù)的絕對值的積。

       。ǘ┲R結(jié)構(gòu)

       。ㄈ┙谭ńㄗh

        1.有理數(shù)乘法法則,實(shí)際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。

        2.兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負(fù)”.絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法.

        3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。

        4.幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數(shù)為0.

        5.小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。

        6.如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。

        教學(xué)設(shè)計(jì)示例

        (第一課時)

        教學(xué)目標(biāo)

        1.使學(xué)生在了解意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;

        2.通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力;

        3.通過教材給出的行程問題,認(rèn)識數(shù)學(xué)來源于實(shí)踐并反作用于實(shí)踐。

        教學(xué)重點(diǎn)和難點(diǎn)

        重點(diǎn):依據(jù)法則,熟練進(jìn)行運(yùn)算;

        難點(diǎn):有理數(shù)乘法法則的理解.

        課堂教學(xué)過程 設(shè)計(jì)

        一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

        1.計(jì)算(-2)+(-2)+(-2).

        2.有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運(yùn)算是在有理數(shù)的什么范圍中進(jìn)行的?(非負(fù)數(shù))

        3.有理數(shù)加減運(yùn)算中,關(guān)鍵問題是什么?和小學(xué)運(yùn)算中最主要的不同點(diǎn)是什么?(符號問題)

        4.根據(jù)有理數(shù)加減運(yùn)算中引出的新問題主要是負(fù)數(shù)加減,運(yùn)算的關(guān)鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負(fù)數(shù)問題,符號的確定)

        二、師生共同研究有理數(shù)乘法法則

        問題1 水庫的.水位每小時上升3厘米,2小時上升了多少厘米?

        解:3×2=6(厘米) ①

        答:上升了6厘米.

        問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?

        解:-3×2=-6(厘米) ②

        答:上升-6厘米(即下降6厘米).

        引導(dǎo)學(xué)生比較①,②得出:

        把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).

        這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(-2)=?(-3)×(-2)=?(學(xué)生答)

        把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.

        把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.

        此外,(-3)×0=0.

        綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:

        兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;

        任何數(shù)同0相乘,都得0.

        繼而教師強(qiáng)調(diào)指出:

        “同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中中特別注意“負(fù)負(fù)得正”和“異號得負(fù)”.

        用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負(fù)”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了.

        因此,在進(jìn)行有理數(shù)乘法時,需要時時強(qiáng)調(diào):先定符號后定值.

        三、運(yùn)用舉例,變式練習(xí)

        例1 計(jì)算:

        例2 某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.

        (1)t小時后溫度是多少?

        (2)當(dāng)a,t分別是下列各數(shù)時的結(jié)果:

       、賏=3,t=2;②a=-3,t=2;

       、赼=3,t=-2;④a=-3,t=-2;

        教師引導(dǎo)學(xué)生檢驗(yàn)一下(2)中各結(jié)果是否合乎實(shí)際.

        課堂練習(xí)

        1.口答:

        (1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;

        (5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);

        2.口答:

        (1)1×(-5); (2)(-1)×(-5); (3)+(-5);

        (4)-(-5); (5)1×a; (6)(-1)×a.

        這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強(qiáng)調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;-a未必是負(fù)數(shù),也可以是正數(shù)或0.

        3.當(dāng)a,b是下列各數(shù)值時,填寫空格中計(jì)算的積與和:

        4.填空:

        (1)1×(-6)=______;(2)1+(-6)=_______;

        (3)(-1)×6=________;(4)(-1)+6=______;

        (5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

        (9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.

        5.判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:

        (1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

        四、小結(jié)

        今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個負(fù)數(shù)相乘得正數(shù),簡單地說:“負(fù)負(fù)得正”.

        五、作業(yè)

        1.計(jì)算:

        (1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

        (4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).

        2.計(jì)算:

        3.填空(用“>”或“<”號連接):

        (1)如果 a<0,b<0,那么 ab ________0;

        (2)如果 a<0,b<0,那么ab _______0;

        (3)如果a>0時,那么a ____________2a;

        (4)如果a<0時,那么a __________2a.

        探究活動

        問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?

        答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠(yuǎn)不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的.

        道理竟是如此簡單,證明竟是如此巧妙,這要?dú)w功于“±1”語言.

      七年級數(shù)學(xué)有理數(shù)的乘法教案3

        學(xué)習(xí)目標(biāo):

        1、知識目標(biāo):了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運(yùn)用有理數(shù)的法則進(jìn)行準(zhǔn)確運(yùn)算。

        2、能力目標(biāo):通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。

        3、情感目標(biāo):培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。

        學(xué)習(xí)重點(diǎn)、難點(diǎn)

        重點(diǎn):有理數(shù)乘法運(yùn)算法則的推導(dǎo)及熟練運(yùn)用。

        難點(diǎn):有理數(shù)乘法運(yùn)算中積的符號的確定。

        學(xué)習(xí)過程

        一、預(yù)習(xí)導(dǎo)航

        1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?

        求幾個的運(yùn)算,叫乘法。

        一個數(shù)同0相乘,得0。

        2、請你列舉幾道小學(xué)學(xué)過的乘法算式。

        二、合作探究、展示交流

        1、問題1:森林里住著一只蝸牛,每天都要離開家去尋找食物,如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘后蝸牛在什么位置?

        規(guī)定:向右為正,現(xiàn)在之后為正。

        3分鐘后蝸牛應(yīng)在o點(diǎn)的()邊()cm處。

        可以列式為:(+2)(+3)=

        問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?

        規(guī)定:向右為正,現(xiàn)在之后為正。

        3分鐘后蝸牛應(yīng)在o點(diǎn)的()邊()cm處。

        可以列式為:

        問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?

        規(guī)定:向右為正,現(xiàn)在之后為正。

        3分鐘前蝸牛應(yīng)在o點(diǎn)的()邊()cm處。

        可以表示為:

        問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?

        規(guī)定:向右為正,現(xiàn)在之后為正。

        3分鐘前蝸牛應(yīng)在o點(diǎn)的()邊()cm處。

        可以表示為:

        2、觀察這四個式子:

       。+2)(+ 3)=+6(—2)(—3)=+6

       。ā2)(+3)=—6(+2)(—3)=—6

        根據(jù)你對有理數(shù)乘法的思考,總結(jié)填空:

        正數(shù)乘正數(shù)積為__數(shù):負(fù)數(shù)乘負(fù)數(shù)積為__數(shù):

        負(fù)數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負(fù)數(shù)積為__數(shù):

        乘積的絕對值等于各乘數(shù)絕對值的_____。

        思考:當(dāng)一個因數(shù)為0時,積是多少?

        3、試著總結(jié)一下有理數(shù)乘法法則吧:

        兩數(shù)相乘,同號得,異號得,并把絕對值。

        任何數(shù)同0相乘,都得。

        三、小試牛刀。

        1、你能確定下列乘積的符號嗎?

        3 7積的符號為;(—3)7積的.符號為;

        3(—7)積的符號為;(—3)(—7)積的符號為。

        2先閱讀,再填空:

       。ā5)x(—3)。同號兩數(shù)相乘

        (—5)x(—3)=+()得正

        5 x 3= 15把絕對值相乘

        所以(—5)x(—3)= 15

        填空:(—7)x 4____________________

       。ā7)x 4 = —()___________

        7x 4 = 28_____________

        所以(—7)x 4 = ____________

        [例1]計(jì)算:

       。1)(—5)(2)(—5)

        (3)(—6)(—0.45)(4)(—7)0=

        解:(1)(—5)(—6)=+(56)=+30=30

        請同學(xué)們仿照上述步驟計(jì)算(2)(3)(4)。

       。2)(—5)6 = =

       。3)(—6)(—0.45)= =

       。4)(—7)0=

        讓我們來總結(jié)求解步驟:

        兩個數(shù)相乘,應(yīng)先確定積的,再確定積的。

        四、鞏固練習(xí)

        1、小組口算比賽,看誰更棒

       。1)3(—4)(2)2(—6)(3)(—6)2

       。4)6(—2)(5)(—6)0(6)0(—6)

        2、仔細(xì)計(jì)算。,注意積的符號和絕對值。

        (1)(—4)0.25(2)(—0.5)(—2)(3)(—)

       。4)(—2)(—)(5)(—)(—)(6)(—)5

        3、用正負(fù)數(shù)表示氣溫的變化量,上升為正,下降為負(fù)。登山隊(duì)攀登一座山峰,每登高1千米,氣溫的變化量為—6℃,攀登3千米后,氣溫有什么變化?

        五、一分鐘過關(guān)檢測

        1、下列說法錯誤的是()

        A、一個數(shù)同0相乘,仍得0

        B、一個數(shù)同1相乘,仍得原數(shù)

        C、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)

        D、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)

        2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()

        A、10 B、12 C、—20 D、不是以上的答案

        3、計(jì)算下列各題:

       。1)(—10)(—9)=(2)(—9)(—10)=;(3)9(—2)=;(4)(—2)9 =;

        (5)(—6)(—5)=;(6)(—5)(—6)=

        六、體會聯(lián)想:

        1、有理數(shù)的乘法的計(jì)算步驟分哪兩步?

        2、有理數(shù)的乘法法則是什么?

      七年級數(shù)學(xué)有理數(shù)的乘法教案4

        教學(xué)目的:

        1.知識與技能

        體會有理數(shù)乘法的實(shí)際意義;

        掌握有理數(shù)乘法的運(yùn)算法則和乘法法則,靈活地運(yùn)用運(yùn)算律簡化運(yùn)算。

        2.過程與方法

        經(jīng)歷有理數(shù)乘法的推導(dǎo)過程,用分類討論的思想歸納出兩數(shù)相乘的法則,感悟中、小學(xué)數(shù)學(xué)中的乘法運(yùn)算的重要區(qū)別。

        通過體驗(yàn)有理數(shù)的乘法運(yùn)算,感悟和歸納出進(jìn)行乘法運(yùn)算的一般步驟。

        3.情感、態(tài)度與價值觀

        通過類比和分類的思想歸納乘法法則,發(fā)展舉一反三的能力。

        教學(xué)重點(diǎn):

        應(yīng)用法則正確地進(jìn)行有理數(shù)乘法運(yùn)算。

        教學(xué)難點(diǎn):

        兩負(fù)數(shù)相乘,積的符號為正。

        教具準(zhǔn)備:

        多媒體。

        教學(xué)過程:

        一、引入

        前面我們已經(jīng)學(xué)習(xí)了有理數(shù)的加法運(yùn)算和減法運(yùn)算,今天,我們開始研究有理數(shù)的乘法運(yùn)算.

        問題一:有理數(shù)包括哪些數(shù)?

        回答:有理數(shù)包括正整數(shù)、正分?jǐn)?shù)、負(fù)整數(shù)、負(fù)分?jǐn)?shù)和零.

        問題二:小學(xué)已經(jīng)學(xué)過的乘法運(yùn)算,屬于有理數(shù)中哪些數(shù)的運(yùn)算?

        回答:屬于正有理數(shù)和零的乘法運(yùn)算.或答:屬于正整數(shù)、正分?jǐn)?shù)和零的乘法運(yùn)算.

        計(jì)算下列各題;

        以上這些題,都是對正有理數(shù)與正有理數(shù)、正有理數(shù)與零、零與零的乘法,方法與小學(xué)學(xué)過的相同,今天我們要研究的有理數(shù)的乘法運(yùn)算,重點(diǎn)就是要解決引入負(fù)有理數(shù)之后,怎樣進(jìn)行乘法運(yùn)算的問題.

        二、新課

        我們以蝸牛爬行距離為例,為區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正,為區(qū)分時間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正。

        如圖,一只蝸牛沿直線l爬行,它現(xiàn)在的位置恰在l上的點(diǎn)O。

        1.正數(shù)與正數(shù)相乘

        問題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

        講解:3分后蝸牛應(yīng)在l上點(diǎn)O右邊6cm處,這可表示為

        (+2)×(+3)=+6

        答:結(jié)果向東運(yùn)動了6米.

        2.負(fù)數(shù)與正數(shù)相乘

        問題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

        講解:3分后蝸牛應(yīng)在l上點(diǎn)O右邊6cm處,這可表示為

        (-2)×(+3)=(-6)

        3.正數(shù)與負(fù)數(shù)相乘

        問題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

        講解:3分后蝸牛應(yīng)為l上點(diǎn)O左邊6cm處,這可以表示為

        (+2)×(-3)=-6

        4.負(fù)數(shù)與負(fù)數(shù)相乘

        問題四:如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

        講解:3分前蝸牛應(yīng)為l上點(diǎn)O右邊6cm處,這可以表示為

        (-2)×(-3)=+6

        5.零與任何數(shù)相乘或任何數(shù)與零相乘

        問題五:原地不動或運(yùn)動了零次,結(jié)果是什么?

        答:結(jié)果都是仍在原處,即結(jié)果都是零,若用式子表達(dá):

        0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.

        綜合上述五個問題得出:

        (1)(+2)×(+3)=+6;

        (2)(-2)×(+3)=-6;

        (3)(+2)×(-3)=-6;

        (4)(-2)×(-3)=+6.

        (5)任何數(shù)與零相乘都得零.

        觀察上述(1)~(4)回答:

        1.積的'符號與因數(shù)的符號有什么關(guān)系?

        2.積的絕對值與因數(shù)的絕對值有什么關(guān)系?

        答:1.若兩個因數(shù)的符號相同,則積的符號為正;若兩個因數(shù)的符號相反,則積的符號為負(fù).2.積的絕對值等于兩個因數(shù)的絕對值的積.

        由此我們可以得到:

        兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘.

        (1)~(5)包括了兩個有理數(shù)相乘的所有情況,綜合上述各種情況,得到有理數(shù)乘法的法則:

        口答:確定下列兩數(shù)積的符號:

        例題:計(jì)算下列各題:

        解題步驟:

        1.認(rèn)清題目類型.

        2.根據(jù)法則確定積的符號.

        3.絕對值相乘.

        練習(xí):

        1.口答下列各題:

        (1)6×(-9);(2)(-6)×(-9);

        (3)(-6)×9;(4)(-6)×1;

        (5)(-6)×(-1);(6)6×(-1);

        (7)(-6)×0;(8)0×(-6);

        (9)(-6)×0.25;(10)(-0.5)×(-8);

        注意:由(4)(5)(6)得:一個數(shù)與1相乘得原數(shù),一個數(shù)與-1相乘,得原數(shù)的相反數(shù).

        2.在表中的各個小方格里,填寫所在的橫行的第一個數(shù)與所在直列的第一個數(shù)的積:

        3.計(jì)算下列各題:

        (1)(-36)×(-15);(2)-48×1.25;

        4.填空:

        (1)1×(-5)=____;(-1)×(-5)=____;

        +(-5)=____;-(-5)=____;

        (2)1×a=____;(-1)×a=____;

        (3)1×|-5|=____;-1×|-5|=____;

       。瓅-5|=____

        (4)1+(-5)=____;(-1)+(-5)=____;

        (-1)+5=____.

        三、小結(jié)

        (1)指導(dǎo)學(xué)生看書,精讀乘法法則.

        (2)強(qiáng)調(diào)運(yùn)用法則進(jìn)行有理數(shù)乘法的步驟.

        (3)比較有理數(shù)乘法的符號法則與有理數(shù)加法的符號法則的區(qū)別,以達(dá)到進(jìn)一步鞏固有理數(shù)乘法法則的目的.

        四、作業(yè)

        1.計(jì)算:

        (1)(-16)×15;(2)(-9)×(-14);

        (3)(-36)×(-1);(4)13×(-11);

        (5)(-25)×16;(6)(-10)×(-16).

        2.計(jì)算:

        (1)2.9×(-0.4);(2)-30.5×0.2;

        (3)0.72×(-1.25);(4)100×(-0.001);

        (5)-4.8×(-1.25);(6)-4.5×(-0.32).

        3.計(jì)算:

        4.填空:(用“>”或“<”號連接)

        (1)如果a<0,b>0,那么,ab____0;

        (2)如果a<0,b<0,那么,ab____0;

        (3)當(dāng)a>0時,a____2a;

        (4)當(dāng)a<0時,a____2a.

        板書設(shè)計(jì)

        1.4有理數(shù)的乘法

        法則:練習(xí)

        教學(xué)設(shè)計(jì)思路

        本節(jié)課是在小學(xué)已接觸到的乘法、初中剛學(xué)習(xí)過的有理數(shù)的加減法基礎(chǔ)上進(jìn)行的。通過對實(shí)際問題的解決,引入有理數(shù)的乘法法則。在講解運(yùn)動的例子時運(yùn)用現(xiàn)代化教學(xué)手段,把圖形中的“靜”變“動”,增強(qiáng)了直觀性,初步培養(yǎng)想象能力。

        教學(xué)反思

        強(qiáng)調(diào)學(xué)生與教師一起共同參與教學(xué)活動,我們堅(jiān)持把教學(xué)活動過程體現(xiàn)在教學(xué)中,又激發(fā)學(xué)生的思維積極性,讓學(xué)生學(xué)會分析問題和解決問題。

      【七年級數(shù)學(xué)有理數(shù)的乘法教案】相關(guān)文章:

      有理數(shù)的乘法數(shù)學(xué)教案06-27

      有理數(shù)的乘法教案03-25

      《有理數(shù)的乘法》教案02-26

      有理數(shù)乘法與除法的教案02-25

      有理數(shù)的乘法教學(xué)反思03-23

      初中數(shù)學(xué)有理數(shù)教案02-23

      小學(xué)數(shù)學(xué)乘法教案02-02

      有理數(shù)的減法人教版數(shù)學(xué)七年級上冊教案04-30

      分?jǐn)?shù)乘法數(shù)學(xué)教案02-13