欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>二次根式教案

      二次根式教案

      時(shí)間:2024-08-14 18:32:55 教案 我要投稿

      二次根式教案范文匯總八篇

        作為一無名無私奉獻(xiàn)的教育工作者,通常需要準(zhǔn)備好一份教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那么寫教案需要注意哪些問題呢?以下是小編為大家收集的二次根式教案8篇,希望對大家有所幫助。

      二次根式教案范文匯總八篇

      二次根式教案 篇1

        1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?

        2.學(xué)生觀察下面的例子,并計(jì)算:

        由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

        類似地,請每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

       。ā0,b0)

        使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過程.

        類似地,請每個(gè)同學(xué)再舉一個(gè)例子,

        請學(xué)生們思考為什么b的取值范圍變小了?

        與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.

        對比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法

        增強(qiáng)學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.

        對學(xué)生進(jìn)一步強(qiáng)化被開方數(shù)的取值范圍,以及分母不能為零.

        強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).

        教學(xué)過程設(shè)計(jì)

        問題與情境師生行為設(shè)計(jì)意圖

        活動二自我檢測

        活動三挑戰(zhàn)逆向思維

        把反過來,就得到

       。ā0,b0)

        利用它就可以進(jìn)行二次根式的化簡.

        例2化簡:

       。1)

       。2)(b≥0).

        解:(1)(2)練習(xí)2化簡:

       。1)(2)活動四談?wù)勀愕氖斋@

        1.商的算術(shù)平方根的'性質(zhì)(注意公式成立的條件).

        2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.

        找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.

        二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

        找學(xué)生口述解題過程,教師將過程寫在黑板上.

        請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.

        請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

        為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.

        此處進(jìn)行簡單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.

        讓學(xué)困生在自己做題時(shí)有一個(gè)參照.

        充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

      二次根式教案 篇2

        一、教學(xué)目標(biāo)

        1.了解二次根式的意義;

        2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

        3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

        4.通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

        5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

        二、教學(xué)重點(diǎn)和難點(diǎn)

        重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍.

        難點(diǎn):確定二次根式中字母的取值范圍.

        三、教學(xué)方法

        啟發(fā)式、講練結(jié)合.

        四、教學(xué)過程

        (一)復(fù)習(xí)提問

        1.什么叫平方根、算術(shù)平方根?

        2.說出下列各式的意義,并計(jì)算:

        通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

        觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

        表示的是算術(shù)平方根.

        (二)引入新課

        我們已遇到的這樣的'式子是我們這節(jié)課研究的內(nèi)容,引出:

        新課:二次根式

        定義: 式子 叫做二次根式.

        對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

        (1)式子 只有在條件a0時(shí)才叫二次根式, 是二次根式嗎? 呢?

        若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

        (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

        根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

        例1 當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

        分析: , , , 、 、 、 四個(gè)是二次根式. 因?yàn)閍是實(shí)數(shù)時(shí),a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時(shí),a+10又如當(dāng)0

        例2 x是怎樣的實(shí)數(shù)時(shí),式子 在實(shí)數(shù)范圍有意義?

        解:略.

        說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x-3是非負(fù)數(shù),式子 有意義.

        例3 當(dāng)字母取何值時(shí),下列各式為二次根式:

        (1) (2) (3) (4)

        分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.

        解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時(shí), 是二次根式.

        (2)-3x0,x0,即x0時(shí), 是二次根式.

        (3) ,且x0,x0,當(dāng)x0時(shí), 是二次根式.

        (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時(shí), 是二次根式.

        例4 下列各式是二次根式,求式子中的字母所滿足的條件:

        (1) ; (2) ; (3) ; (4)

        分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

        解:(1)由2a+30,得 .

        (2)由 ,得3a-10,解得 .

        (3)由于x取任何實(shí)數(shù)時(shí)都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).

        (4)由-b20得b20,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0.

        (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

        1.式子 叫做二次根式,實(shí)際上是一個(gè)非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式.

        2.式子中,被開方數(shù)(式)必須大于等于零.

        (四)練習(xí)和作業(yè)

        練習(xí):

        1.判斷下列各式是否是二次根式

        分析:(2) 中, , 是二次根式;(5)是二次根式. 因?yàn)閤是實(shí)數(shù)時(shí),x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時(shí),又如當(dāng)x-1時(shí)=,因此(1)(3)(4)不是二次根式,(6)無意義.

        2.a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

        五、作業(yè)

        教材P.172習(xí)題11.1;A組1;B組1.

        六、板書設(shè)計(jì)

      二次根式教案 篇3

        【 學(xué)習(xí)目標(biāo) 】

        1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

        2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。

        3、情感、態(tài)度與價(jià)值觀:通過小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

        【 學(xué)習(xí)重難點(diǎn) 】

        1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計(jì)算。

        2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

        【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

        【 學(xué)習(xí)流程 】

        一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

        學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

        二、 課堂教學(xué)

        (一)合作學(xué)習(xí)階段。

        教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的'問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對普遍存在的問題做好記錄。

        (二)集體講授階段。(15分鐘左右)

        1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

        2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。

        3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。

        (三)當(dāng)堂檢測階段

        為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時(shí)的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。

        (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

        三、 課后作業(yè)(課后作業(yè)見附件2)

        教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

        四、板書設(shè)計(jì)

        課題:二次根式(1)

        二次根式概念 例題 例題

        二次根式性質(zhì)

        反思:

      二次根式教案 篇4

        教材分析:

        本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問題,來提高我們用數(shù)學(xué)解決實(shí)際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

        學(xué)生分析:

        本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

        設(shè)計(jì)理念:

        新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實(shí)踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說明所獲討論的有效性,并對推論進(jìn)行評價(jià)。從而營造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

        教學(xué)目標(biāo)知識與技能目標(biāo):

        會化簡二次根式,了解同類二次根式的概念,會進(jìn)行簡單的'二次根式的加減法;通過加減運(yùn)算解決生活的實(shí)際問題。

        過程與方法目標(biāo):

        通過類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實(shí)際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

        情感態(tài)度與價(jià)值觀:

        通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗(yàn)到成功的樂趣.

        重點(diǎn)、難點(diǎn):重點(diǎn):

        合并被開放數(shù)相同的同類二次根式,會進(jìn)行簡單的二次根式的加減法。

        難點(diǎn):

        二次根式加減法的實(shí)際應(yīng)用。

        關(guān)鍵問題 :

        了解同類二次根式的概念,合并同類二次根式,會進(jìn)行二次根式的加減法。

        教學(xué)方法:.

        1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

        2. 類比法:由實(shí)際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。

        3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個(gè)別問題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。

      二次根式教案 篇5

        一、內(nèi)容和內(nèi)容解析

        1.內(nèi)容

        二次根式的概念.

        2.內(nèi)容解析

        本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).

        教材先設(shè)置了三個(gè)實(shí)際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.

        本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

        二、目標(biāo)和目標(biāo)解析

        1.教學(xué)目標(biāo)

       。1)體會研究二次根式是實(shí)際的需要.

       。2)了解二次根式的概念.

        2. 教學(xué)目標(biāo)解析

        (1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

       。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

        三、教學(xué)問題診斷分析

        對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時(shí)注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.

        本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性.

        四、教學(xué)過程設(shè)計(jì)

        1.創(chuàng)設(shè)情境,提出問題

        問題1你能用帶有根號的的式子填空嗎?

       。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

       。2)一個(gè)長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

       。3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

        師生活動:學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價(jià).

        【設(shè)計(jì)意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會研究二次根式的必要性.

        問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

        師生活動:教師引導(dǎo)學(xué)生說出各式的.意義,概括它們的共同特征:都表示一個(gè)非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.

        【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊.

        2.抽象概括,形成概念

        問題3 你能用一個(gè)式子表示一個(gè)非負(fù)數(shù)的算術(shù)平方根嗎?

        師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

        【設(shè)計(jì)意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

        追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

        師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.

        【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.

        3.辨析概念,應(yīng)用鞏固

        例1 當(dāng) 時(shí)怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義?

        師生活動:引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負(fù)數(shù)的理解.

        例2 當(dāng) 是怎樣的實(shí)數(shù)時(shí), 在實(shí)數(shù)范圍內(nèi)有意義? 呢?

        師生活動:先讓學(xué)生獨(dú)立思考,再追問.

        【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解.

        問題4 你能比較 與0的大小嗎?

        師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對二次根式本身為非負(fù)數(shù)的理解,

        【設(shè)計(jì)意圖】通過這一活動的設(shè)計(jì),提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.

        4.綜合運(yùn)用,鞏固提高

        練習(xí)1 完成教科書第3頁的練習(xí).

        練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時(shí),下列各式有意義.

       。1) ;(2) ;(3) ;(4) .

        【設(shè)計(jì)意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

        【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

        5.總結(jié)反思

        教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.

       。1)本節(jié)課你學(xué)到了哪一類新的式子?

       。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

        (3)二次根式與算術(shù)平方根有什么關(guān)系?

        師生活動:教師引導(dǎo),學(xué)生小結(jié).

        【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法.

        6.布置作業(yè):

        教科書習(xí)題16.1第1,3,5, 7,10題.

        五、目標(biāo)檢測設(shè)計(jì)

        1. 下列各式中,一定是二次根式的是( )

        A. B. C. D.

        【設(shè)計(jì)意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).

        2. 當(dāng) 時(shí),二次根式 無意義.

        【設(shè)計(jì)意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

        3.當(dāng) 時(shí),二次根式 有最小值,其最小值是 .

        【設(shè)計(jì)意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運(yùn)用.

        4.對于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.

        【設(shè)計(jì)意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個(gè)式子的分母不能為0,解題時(shí)需要綜合考慮.

      二次根式教案 篇6

        教學(xué)目的

        1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個(gè)根式是否為最簡二次根式;

        2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡二次根式。

        教學(xué)重點(diǎn)

        最簡二次根式的定義。

        教學(xué)難點(diǎn)

        一個(gè)二次根式化成最簡二次根式的方法。

        教學(xué)過程

        一、復(fù)習(xí)引入

        1.把下列各根式化簡,并說出化簡的根據(jù):

        2.引導(dǎo)學(xué)生觀察考慮:

        化簡前后的根式,被開方數(shù)有什么不同?

        化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

        3.啟發(fā)學(xué)生回答:

        二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

        二、講解新課

        1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

        滿足下列兩個(gè)條件的二次根式叫做最簡二次根式:

        (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

        (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

        最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

        2.練習(xí):

        下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

        3.例題:

        例1 把下列各式化成最簡二次根式:

        例2 把下列各式化成最簡二次根式:

        4.總結(jié)

        把二次根式化成最簡二次根式的.根據(jù)是什么?應(yīng)用了什么方法?

        當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

        當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

        此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

        三、鞏固練習(xí)

        1.把下列各式化成最簡二次根式:

        2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

      二次根式教案 篇7

        1.教學(xué)目標(biāo)

        (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會進(jìn)行簡單的二次根式的乘法運(yùn)算;

        (2)會用公式化簡二次根式.

        2.目標(biāo)解析

        (1)學(xué)生能通過計(jì)算發(fā)現(xiàn)規(guī)律并對其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

        (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.

        教學(xué)問題診斷分析

        本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時(shí)該選用何公式簡化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號意識的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.

        在教學(xué)時(shí),通過實(shí)例運(yùn)算,對于將一個(gè)二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

        本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.

        教學(xué)過程設(shè)計(jì)

        1.復(fù)習(xí)引入,探究新知

        我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.

        問題1 什么叫二次根式?二次根式有哪些性質(zhì)?

        師生活動 學(xué)生回答。

        【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡需要用到二次根式的性質(zhì).

        問題2 教材第6頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

        師生活動 學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容.

        【設(shè)計(jì)意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培養(yǎng)學(xué)生的符號意識.

        2.觀察比較,理解法則

        問題3 簡單的根式運(yùn)算.

        師生活動 學(xué)生動手操作,教師檢驗(yàn).

        問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價(jià)值?

        師生活動 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

        【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的`性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.

        3.例題示范,學(xué)會應(yīng)用

        例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

        師生活動 提問:你是怎么理解例(1)的?

        如果學(xué)生回答不完善,再追問:這個(gè)問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡的效果?

        師生合作回答上述問題.對于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.

        再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

        【設(shè)計(jì)意圖】通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡.

        例2 計(jì)算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

        師生活動 學(xué)生計(jì)算,教師檢驗(yàn).

        (1)在被開方數(shù)相乘的時(shí)候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

        (2)二次根式的乘法運(yùn)算類似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的.對于根號外有系數(shù)的根式在相乘時(shí),可以將系數(shù)先相乘作為積的系數(shù),再對根式進(jìn)行運(yùn)算;

        (3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

        【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡化運(yùn)算.讓學(xué)生認(rèn)識到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.

        教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進(jìn)行判斷,在移出根號時(shí)正確處理符號問題.

        4.鞏固概念,學(xué)以致用

        練習(xí):教科書第7頁練習(xí)第1題. 第10頁習(xí)題16.2第1題.

        【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況.

        5.歸納小結(jié),反思提高

        師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:

        (1)你能說明二次根式的乘法法則是如何得出的嗎?

        (2)你能說明乘法法則逆用的意義嗎?

        (3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

        6.布置作業(yè):教科書第7頁第2、3題.習(xí)題16.2第1,6題.

        五、目標(biāo)檢測設(shè)計(jì)

        1.下列各式中,一定能成立的是( )

        A.二次根式的乘除 B.二次根式的乘除

        C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).

        2.化簡二次根式的乘除 ______________________________。

        【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.

        3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是(  )

        A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式.

      二次根式教案 篇8

        教學(xué)設(shè)計(jì)思想

        新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個(gè)實(shí)際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過學(xué)生所熟悉的實(shí)際問題建立二次根式的`概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問題符號化的過程中,進(jìn)一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。

        教學(xué)目標(biāo)

        知識與技能

        1.知道什么是二次根式,并會用二次根式的意義解題;

        2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

        過程與方法

        通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;

        情感態(tài)度價(jià)值觀

        1.經(jīng)歷將現(xiàn)實(shí)問題符號化的過程,發(fā)展應(yīng)用的意識;

        2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

        教學(xué)重點(diǎn)和難點(diǎn)

        重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;

        難點(diǎn):確定二次根式中字母的取值范圍。

        教學(xué)方法

        啟發(fā)式、講練結(jié)合

        教學(xué)媒體

        多媒體

        課時(shí)安排

        1課時(shí)

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式的加減教案01-19

      二次根式教案優(yōu)秀06-26

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案匯總6篇05-07

      關(guān)于二次根式教案五篇05-08

      【推薦】二次根式教案4篇05-09