欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>二次根式教案

      二次根式教案

      時(shí)間:2024-10-13 23:02:01 教案 我要投稿

      二次根式教案集合九篇

        作為一位杰出的老師,就有可能用到教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。我們應(yīng)該怎么寫教案呢?下面是小編為大家整理的二次根式教案9篇,歡迎大家分享。

      二次根式教案集合九篇

      二次根式教案 篇1

        【教學(xué)目標(biāo)】

        1.運(yùn)用法則

        進(jìn)行二次根式的乘除運(yùn)算;

        2.會(huì)用公式

        化簡(jiǎn)二次根式。

        【教學(xué)重點(diǎn)】

        運(yùn)用

        進(jìn)行化簡(jiǎn)或計(jì)算

        【教學(xué)難點(diǎn)】

        經(jīng)歷二次根式的乘除法則的探究過(guò)程

        【教學(xué)過(guò)程】

        一、情境創(chuàng)設(shè):

        1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過(guò)二次根式的哪些性質(zhì)?

        2.計(jì)算:

        二、探索活動(dòng):

        1.學(xué)生計(jì)算;

        2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?

        3.概括:

        得出:二次根式相乘,實(shí)際上就是把被開(kāi)方數(shù)相乘,而根號(hào)不變。

        將上面的公式逆向運(yùn)用可得:

        積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的.積。

        三、例題講解:

        1.計(jì)算:

        2.化簡(jiǎn):

        小結(jié):如何化簡(jiǎn)二次根式?

        1.(關(guān)鍵)將被開(kāi)方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

        2.P62結(jié)果中,被開(kāi)方數(shù)應(yīng)不含能開(kāi)得盡方的因數(shù)或因式。

        四、課堂練習(xí):

        (一).P62 練習(xí)1、2

        其中2中(5)

        注意:

        不是積的形式,要因數(shù)分解為36×16=242.

        (二).P67 3 計(jì)算 (2)(4)

        補(bǔ)充練習(xí):

        1.(x>0,y>0)

        2.拓展與提高:

        化簡(jiǎn):1).(a>0,b>0)

        2).(y

        2.若,求m的取值范圍。

        ☆3.已知:,求的值。

        五、本課小結(jié)與作業(yè):

        小結(jié):二次根式的乘法法則

        作業(yè):

        1).課課練P9-10

        2).補(bǔ)充習(xí)題

      二次根式教案 篇2

        教學(xué)目的

        1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;

        2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

        教學(xué)重點(diǎn)

        最簡(jiǎn)二次根式的定義。

        教學(xué)難點(diǎn)

        一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。

        教學(xué)過(guò)程

        一、復(fù)習(xí)引入

        1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):

        2.引導(dǎo)學(xué)生觀察考慮:

        化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?

        化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。

        3.啟發(fā)學(xué)生回答:

        二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

        二、講解新課

        1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

        滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

        (1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;

        (2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。

        最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的'指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。

        2.練習(xí):

        下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:

        3.例題:

        例1 把下列各式化成最簡(jiǎn)二次根式:

        例2 把下列各式化成最簡(jiǎn)二次根式:

        4.總結(jié)

        把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

        當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

        當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

        此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

        三、鞏固練習(xí)

        1.把下列各式化成最簡(jiǎn)二次根式:

        2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

        四、小結(jié)

        本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。

        五、布置作業(yè)

        下列各式化成最簡(jiǎn)二次根式:

      二次根式教案 篇3

        活動(dòng)1、提出問(wèn)題

        一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

        問(wèn)題:10+20是什么運(yùn)算?

        活動(dòng)2、探究活動(dòng)

        下列3個(gè)小題怎樣計(jì)算?

        問(wèn)題:1)-還能繼續(xù)往下合并嗎?

        2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?

        二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數(shù)相同的進(jìn)行合并。

        活動(dòng)3

        練習(xí)1指出下列每組的`二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

        創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。

        學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。

        教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。

        我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

        教師引導(dǎo)驗(yàn)證:

        ①設(shè)=,類比合并同類項(xiàng)或面積法;

       、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路

       、巯然(jiǎn),再合并

        學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同的能合并。

        教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。

        提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。

      二次根式教案 篇4

        【1】二次根式的加減教案

        教材分析:

        本節(jié)內(nèi)容出自九年級(jí)數(shù)學(xué)上冊(cè)第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問(wèn)題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問(wèn)題的需要。通過(guò)探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問(wèn)題,來(lái)提高我們用數(shù)學(xué)解決實(shí)際問(wèn)題的意識(shí)和能力。另外,通過(guò)本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

        學(xué)生分析:

        本節(jié)課的內(nèi)容是知識(shí)的延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過(guò)自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評(píng)價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹(shù)立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

        設(shè)計(jì)理念:

        新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來(lái)倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過(guò)去知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過(guò)程中教師設(shè)置開(kāi)放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問(wèn)題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說(shuō)明所獲討論的有效性,并對(duì)推論進(jìn)行評(píng)價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

        教學(xué)目標(biāo)知識(shí)與技能目標(biāo):

        會(huì)化簡(jiǎn)二次根式,了解同類二次根式的`概念,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法;通過(guò)加減運(yùn)算解決生活的實(shí)際問(wèn)題。

        過(guò)程與方法目標(biāo):

        通過(guò)類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過(guò)程;學(xué)生經(jīng)歷由實(shí)際問(wèn)題引入數(shù)學(xué)問(wèn)題的過(guò)程,發(fā)展學(xué)生的抽象概括能力。

        情感態(tài)度與價(jià)值觀:

        通過(guò)對(duì)二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),使他們體驗(yàn)到成功的樂(lè)趣.

        重點(diǎn)、難點(diǎn):重點(diǎn):

        合并被開(kāi)放數(shù)相同的同類二次根式,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法。

        難點(diǎn):

        二次根式加減法的實(shí)際應(yīng)用。

        關(guān)鍵問(wèn)題 :

        了解同類二次根式的概念,合并同類二次根式,會(huì)進(jìn)行二次根式的加減法。

        教學(xué)方法:.

        1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問(wèn)題相結(jié)合,采用“問(wèn)題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

        2. 類比法:由實(shí)際問(wèn)題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。

        3.嘗試訓(xùn)練法:通過(guò)學(xué)生嘗試,教師針對(duì)個(gè)別問(wèn)題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。

        【2】二次根式的加減教案

        教學(xué)目標(biāo):

        1.知識(shí)目標(biāo):二次根式的加減法運(yùn)算

        2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過(guò)二次根式的加減法運(yùn)算解決實(shí)際問(wèn)題。

        3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

        重難點(diǎn)分析:

        重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。

        難點(diǎn):正確合并被開(kāi)方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。

        教學(xué)關(guān)鍵:通過(guò)復(fù)習(xí)舊知識(shí),運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問(wèn)題激發(fā)學(xué)生求知欲;通過(guò)學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個(gè)學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

        運(yùn)用教具:小黑板等。

        教學(xué)過(guò)程:

      問(wèn)題與情景

      師生活動(dòng)

      設(shè)計(jì)目的

      活動(dòng)一:

      情景引入,導(dǎo)學(xué)展示

      1.把下列二次根式化為最簡(jiǎn)二次根式: , ; , , 。上述兩組二次根式,有什么特點(diǎn)?

      2.現(xiàn)有一塊長(zhǎng)7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個(gè)面積分別是8dm 和18dm 的正方形木板?

      這道題是舊知識(shí)的回顧,老師可以找同學(xué)直接回答。對(duì)于問(wèn)題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽(tīng)學(xué)生的`交流,指導(dǎo)學(xué)生探究。

      問(wèn):什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

      由此也可以看到二次根式的加減只有通過(guò)找出被開(kāi)方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

      加強(qiáng)新舊知識(shí)的聯(lián)系。通過(guò)觀察,初步認(rèn)識(shí)同類二次根式。

      引出二次根式加減法則。

      3. A、B層同學(xué)自主學(xué)習(xí)15頁(yè)例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

      例1.計(jì)算:

      (1) ;

      (2) - ;

      例2. 計(jì)算:

      1)

      2)

      例3.要焊接一個(gè)如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

      活動(dòng)二:分層練習(xí),合作互助

      1.下列計(jì)算是否正確?為什么?

      (1)

      (2) ;

      (3) 。

      2.計(jì)算:

      (1) ;

      (2)

      (3)

      (4)

      3.(見(jiàn)課本16頁(yè))

      補(bǔ)充:

      活動(dòng)三:分層檢測(cè),反饋小結(jié)

      教材17頁(yè)習(xí)題:

      A層、 B層:2、3.

      C層1、2.

      小結(jié):

      這節(jié)課你學(xué)到了什么知識(shí)?你有什么收獲?

      作業(yè):課堂練習(xí)冊(cè)第5、6頁(yè)。

      自學(xué)的同時(shí)抽查部分同學(xué)在黑板上板書計(jì)算過(guò)程。抽2名C層同學(xué)在黑板上完成例1板書過(guò)程,學(xué)生在計(jì)算時(shí)若出現(xiàn)錯(cuò)誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書過(guò)程,若出現(xiàn)錯(cuò)誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書過(guò)程,并做適當(dāng)?shù)姆治鲋v解。

      此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計(jì)算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問(wèn)題要全面,不能漏掉任何一段鋼材。

      老師提示:

      1)解決問(wèn)題的方案是否得當(dāng);2)考慮的問(wèn)題是否全面。3)計(jì)算是否準(zhǔn)確。

      A層同學(xué)完成16頁(yè)練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問(wèn)題時(shí)共同分析矯正或請(qǐng)教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。

      點(diǎn)撥:1)對(duì) 的化簡(jiǎn)是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時(shí),是否能正確處理;

      3)運(yùn)算法則的運(yùn)用是否正確

      先測(cè)試,再小組內(nèi)互批,查找問(wèn)題。學(xué)生反思本節(jié)課學(xué)到的知識(shí),談自己的感受。

      小結(jié)時(shí)教師要關(guān)注:

      1)學(xué)生是否抓住本課的重點(diǎn);

      2)對(duì)于常見(jiàn)錯(cuò)誤的認(rèn)識(shí)。

      把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個(gè)層次,教學(xué)中做到分層要求。

      學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過(guò)程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識(shí)的欲望。

      二次根式的加減運(yùn)算融入實(shí)際問(wèn)題中去,提高了學(xué)生的學(xué)習(xí)興趣和對(duì)數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)和能力。

      小組成員互相檢查學(xué)生對(duì)于新的知識(shí)掌握的情況,鞏固學(xué)生剛掌握的知識(shí)能力。達(dá)到共同把關(guān)、合作互助的目的。

      培養(yǎng)學(xué)生的計(jì)算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

      對(duì)課堂的問(wèn)題及時(shí)反饋,使學(xué)生熟練掌握新知識(shí)。

      每個(gè)學(xué)生對(duì)于知識(shí)的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵(lì)學(xué)生。

      二次根式教案 篇5

        一、教學(xué)目標(biāo)

        1.理解分母有理化與除法的關(guān)系.

        2.掌握二次根式的分母有理化.

        3.通過(guò)二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.

        4.通過(guò)學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

        二、教學(xué)設(shè)計(jì)

        小結(jié)、歸納、提高

        三、重點(diǎn)、難點(diǎn)解決辦法

        1.教學(xué)重點(diǎn):分母有理化.

        2.教學(xué)難點(diǎn):分母有理化的技巧.

        四、課時(shí)安排

        1課時(shí)

        五、教具學(xué)具準(zhǔn)備

        投影儀、膠片、多媒體

        六、師生互動(dòng)活動(dòng)設(shè)計(jì)

        復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主

        七、教學(xué)過(guò)程

        【復(fù)習(xí)提問(wèn)】

        二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.

        例1 說(shuō)出下列算式的運(yùn)算步驟和順序:

        (1) (先乘除,后加減).

        (2) (有括號(hào),先去括號(hào);不宜先進(jìn)行括號(hào)內(nèi)的運(yùn)算).

       。3)辨別有理化因式:

        有理化因式: 與 , 與 , 與 …

        不是有理化因式: 與 , 與 …

        化簡(jiǎn)一個(gè)式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

        例如:等式子的`化簡(jiǎn),如果分母是兩個(gè)二次根式的和,應(yīng)該怎樣化簡(jiǎn)?

        引入新課題.

        【引入新課】

        化簡(jiǎn)式子 ,乘以什么樣的式子,分母中的根式符號(hào)可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個(gè)式子就是 ,從而可將式子化簡(jiǎn).

        例2 把下列各式的分母有理化:

       。1) ; (2) ; (3)

        解:略.

        注:通過(guò)例題的講解,使學(xué)生理解和掌握化簡(jiǎn)的步驟、關(guān)鍵問(wèn)題、化簡(jiǎn)的依據(jù).式子的化簡(jiǎn),若分子與分母可分解因式,則可先分解因式,再約分,使化簡(jiǎn)變得簡(jiǎn)單.

      二次根式教案 篇6

        1.請(qǐng)同學(xué)們回憶(≥0,b≥0)是如何得到的?

        2.學(xué)生觀察下面的例子,并計(jì)算:

        由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:

        類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:

       。ā0,b0)

        使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過(guò)程.

        類似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,

        請(qǐng)學(xué)生們思考為什么b的取值范圍變小了?

        與學(xué)生一起寫清解題過(guò)程,提醒他們被開(kāi)方式一定要開(kāi)盡.

        對(duì)比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法

        增強(qiáng)學(xué)生的自信心,并從一開(kāi)始就使他們參與到推導(dǎo)過(guò)程中來(lái).

        對(duì)學(xué)生進(jìn)一步強(qiáng)化被開(kāi)方數(shù)的取值范圍,以及分母不能為零.

        強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).

        教學(xué)過(guò)程設(shè)計(jì)

        問(wèn)題與情境師生行為設(shè)計(jì)意圖

        活動(dòng)二自我檢測(cè)

        活動(dòng)三挑戰(zhàn)逆向思維

        把反過(guò)來(lái),就得到

       。ā0,b0)

        利用它就可以進(jìn)行二次根式的化簡(jiǎn).

        例2化簡(jiǎn):

       。1)

        (2)(b≥0).

        解:(1)(2)練習(xí)2化簡(jiǎn):

       。1)(2)活動(dòng)四談?wù)勀愕氖斋@

        1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

        2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).

        找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.

        二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

        找學(xué)生口述解題過(guò)程,教師將過(guò)程寫在黑板上.

        請(qǐng)學(xué)生仿照例題自己解決這兩道小題,組長(zhǎng)檢查本組的.學(xué)習(xí)情況.

        請(qǐng)學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

        為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.

        此處進(jìn)行簡(jiǎn)單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.

        讓學(xué)困生在自己做題時(shí)有一個(gè)參照.

        充分發(fā)揮組長(zhǎng)的作用,盡可能在課堂上將問(wèn)題解決.

      二次根式教案 篇7

        一、教學(xué)目標(biāo)

        1.了解二次根式的意義;

        2. 掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;

        3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

        4.通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

        5. 通過(guò)二次根式性質(zhì) 和 的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美.

        二、教學(xué)重點(diǎn)和難點(diǎn)

        重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍.

        難點(diǎn):確定二次根式中字母的取值范圍.

        三、教學(xué)方法

        啟發(fā)式、講練結(jié)合.

        四、教學(xué)過(guò)程

        (一)復(fù)習(xí)提問(wèn)

        1.什么叫平方根、算術(shù)平方根?

        2.說(shuō)出下列各式的意義,并計(jì)算:

        通過(guò)練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

        觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

        表示的是算術(shù)平方根.

        (二)引入新課

        我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

        新課:二次根式

        定義: 式子 叫做二次根式.

        對(duì)于 請(qǐng)同學(xué)們討論論應(yīng)注意的.問(wèn)題,引導(dǎo)學(xué)生總結(jié):

        (1)式子 只有在條件a0時(shí)才叫二次根式, 是二次根式嗎? 呢?

        若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分.

        (2) 是二次根式,而 ,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次

        根式指的是某種式子的外在形態(tài).請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

        例1 當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

        分析: , , , 、 、 、 四個(gè)是二次根式. 因?yàn)閍是實(shí)數(shù)時(shí),a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時(shí),a+10又如當(dāng)0

        例2 x是怎樣的實(shí)數(shù)時(shí),式子 在實(shí)數(shù)范圍有意義?

        解:略.

        說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x-3是非負(fù)數(shù),式子 有意義.

        例3 當(dāng)字母取何值時(shí),下列各式為二次根式:

        (1) (2) (3) (4)

        分析:由二次根式的定義 ,被開(kāi)方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式.

        解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時(shí), 是二次根式.

        (2)-3x0,x0,即x0時(shí), 是二次根式.

        (3) ,且x0,x0,當(dāng)x0時(shí), 是二次根式.

        (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時(shí), 是二次根式.

        例4 下列各式是二次根式,求式子中的字母所滿足的條件:

        (1) ; (2) ; (3) ; (4)

        分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數(shù)都大于等于零.

        解:(1)由2a+30,得 .

        (2)由 ,得3a-10,解得 .

        (3)由于x取任何實(shí)數(shù)時(shí)都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).

        (4)由-b20得b20,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0.

        (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

        1.式子 叫做二次根式,實(shí)際上是一個(gè)非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式.

        2.式子中,被開(kāi)方數(shù)(式)必須大于等于零.

        (四)練習(xí)和作業(yè)

        練習(xí):

        1.判斷下列各式是否是二次根式

        分析:(2) 中, , 是二次根式;(5)是二次根式. 因?yàn)閤是實(shí)數(shù)時(shí),x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時(shí),又如當(dāng)x-1時(shí)=,因此(1)(3)(4)不是二次根式,(6)無(wú)意義.

        2.a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

        五、作業(yè)

        教材P.172習(xí)題11.1;A組1;B組1.

        六、板書設(shè)計(jì)

      二次根式教案 篇8

        1.教學(xué)目標(biāo)

        (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過(guò)程;會(huì)進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算;

        (2)會(huì)用公式化簡(jiǎn)二次根式.

        2.目標(biāo)解析

        (1)學(xué)生能通過(guò)計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

        (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式.

        教學(xué)問(wèn)題診斷分析

        本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過(guò)的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.

        在教學(xué)時(shí),通過(guò)實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:(1)如果被開(kāi)方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見(jiàn)教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見(jiàn)教科書例6解法2);(2)如果被開(kāi)方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn).

        本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn).

        教學(xué)過(guò)程設(shè)計(jì)

        1.復(fù)習(xí)引入,探究新知

        我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開(kāi)始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.

        問(wèn)題1 什么叫二次根式?二次根式有哪些性質(zhì)?

        師生活動(dòng) 學(xué)生回答。

        【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì).

        問(wèn)題2 教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

        師生活動(dòng) 學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的內(nèi)容.

        【設(shè)計(jì)意圖】學(xué)生在自主探究的過(guò)程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語(yǔ)言和文字分別描述法則,以培養(yǎng)學(xué)生的符號(hào)意識(shí).

        2.觀察比較,理解法則

        問(wèn)題3 簡(jiǎn)單的根式運(yùn)算.

        師生活動(dòng) 學(xué)生動(dòng)手操作,教師檢驗(yàn).

        問(wèn)題4 二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?

        師生活動(dòng) 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

        【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況.乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.

        3.例題示范,學(xué)會(huì)應(yīng)用

        例1 化簡(jiǎn):(1)二次根式的乘除; (2)二次根式的乘除.

        師生活動(dòng) 提問(wèn):你是怎么理解例(1)的?

        如果學(xué)生回答不完善,再追問(wèn):這個(gè)問(wèn)題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡(jiǎn)的效果?

        師生合作回答上述問(wèn)題.對(duì)于根式運(yùn)算的最后結(jié)果,一般被開(kāi)方數(shù)中有開(kāi)得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外.

        再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?

        【設(shè)計(jì)意圖】通過(guò)運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡(jiǎn)的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn).

        例2 計(jì)算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

        師生活動(dòng) 學(xué)生計(jì)算,教師檢驗(yàn).

        (1)在被開(kāi)方數(shù)相乘的`時(shí)候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

        (2)二次根式的乘法運(yùn)算類似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的.對(duì)于根號(hào)外有系數(shù)的根式在相乘時(shí),可以將系數(shù)先相乘作為積的系數(shù),再對(duì)根式進(jìn)行運(yùn)算;

        (3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外.

        【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算.讓學(xué)生認(rèn)識(shí)到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.

        教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開(kāi)方數(shù)的符號(hào).可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問(wèn)題.

        4.鞏固概念,學(xué)以致用

        練習(xí):教科書第7頁(yè)練習(xí)第1題. 第10頁(yè)習(xí)題16.2第1題.

        【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況.

        5.歸納小結(jié),反思提高

        師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:

        (1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?

        (2)你能說(shuō)明乘法法則逆用的意義嗎?

        (3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?

        6.布置作業(yè):教科書第7頁(yè)第2、3題.習(xí)題16.2第1,6題.

        五、目標(biāo)檢測(cè)設(shè)計(jì)

        1.下列各式中,一定能成立的是( )

        A.二次根式的乘除 B.二次根式的乘除

        C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).

        2.化簡(jiǎn)二次根式的乘除 ______________________________。

        【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.

        3.已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是(  )

        A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式.

      二次根式教案 篇9

        一、復(fù)習(xí)引入

        學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題:

        1.計(jì)算

        (1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

        二、探索新知

        如果把上面的x、y、z改寫成二次根式呢?以上的運(yùn)算規(guī)律是否仍成立呢?仍成立.

        整式運(yùn)算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的'運(yùn)算規(guī)律也適用于二次根式.

        例1.計(jì)算:

       。1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運(yùn)算規(guī)律,所以直接可用整式的運(yùn)算規(guī)律.

        解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計(jì)算

       。1)(+6)(3-)(2)(+)(-)

        分析:剛才已經(jīng)分析,二次根式的多項(xiàng)式乘以多項(xiàng)式運(yùn)算在乘法公式運(yùn)算中仍然成立.

        解:(1)(+6)(3-)

        =3-()2+18-6=13-3(2)(+)(-)=()2-()2

        =10-7=3

        三、鞏固練習(xí)

        課本P20練習(xí)1、2.

        四、應(yīng)用拓展

        例3.已知=2-,其中a、b是實(shí)數(shù),且a+b≠0,

        化簡(jiǎn)+,并求值.

        分析:由于(+)(-)=1,因此對(duì)代數(shù)式的化簡(jiǎn),可先將分母有理化,再通過(guò)解含有字母系數(shù)的一元一次方程得到x的值,代入化簡(jiǎn)得結(jié)果即可?

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式的加減教案01-19

      二次根式教案優(yōu)秀06-26

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案匯總6篇05-07

      關(guān)于二次根式教案五篇05-08

      【推薦】二次根式教案4篇05-09