欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當前位置:好文網(wǎng)>實用文>教案>二次根式教案

      二次根式教案

      時間:2024-06-22 08:25:18 教案 我要投稿

      關(guān)于二次根式教案合集7篇

        作為一名為他人授業(yè)解惑的教育工作者,有必要進行細致的教案準備工作,借助教案可以讓教學工作更科學化。那么問題來了,教案應(yīng)該怎么寫?下面是小編精心整理的二次根式教案7篇,僅供參考,大家一起來看看吧。

      關(guān)于二次根式教案合集7篇

      二次根式教案 篇1

        1.教學目標

        (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會進行簡單的二次根式的乘法運算;

        (2)會用公式化簡二次根式.

        2.目標解析

        (1)學生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內(nèi)容;

        (2)學生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.

        教學問題診斷分析

        本節(jié)課的學習中,學生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關(guān),由于該內(nèi)容與以前學過的實數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯(lián)系性上下力氣.,培養(yǎng)學生良好的運算習慣.

        在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

        本節(jié)課的教學難點為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.

        教學過程設(shè)計

        1.復(fù)習引入,探究新知

        我們前面已經(jīng)學習了二次根式的概念和性質(zhì),本節(jié)課開始我們要學習二次根式的乘除.本節(jié)課先學習二次根式的乘法.

        問題1 什么叫二次根式?二次根式有哪些性質(zhì)?

        師生活動 學生回答。

        【設(shè)計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質(zhì).

        問題2 教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

        師生活動 學生計算、思考并嘗試歸納,引導(dǎo)學生用自己的語言描述乘法法則的內(nèi)容.

        【設(shè)計意圖】學生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學生用數(shù)學語言和文字分別描述法則,以培養(yǎng)學生的符號意識.

        2.觀察比較,理解法則

        問題3 簡單的根式運算.

        師生活動 學生動手操作,教師檢驗.

        問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?

        師生活動 學生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

        【設(shè)計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的`算術(shù)平方根的性質(zhì),性質(zhì)是為運算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力.

        3.例題示范,學會應(yīng)用

        例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

        師生活動 提問:你是怎么理解例(1)的?

        如果學生回答不完善,再追問:這個問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?

        師生合作回答上述問題.對于根式運算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.

        再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

        【設(shè)計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進行二次根式的化簡.

        例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

        師生活動 學生計算,教師檢驗.

        (1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

        (2)二次根式的乘法運算類似于整式的乘法運算,交換律、結(jié)合律都是適用的.對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進行運算;

        (3)例(3)的運算是選學內(nèi)容.讓學有余力的學生學到“根號下為字母的二次根式”的運算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

        【設(shè)計意圖】引導(dǎo)學生及時總結(jié),強調(diào)利用運算律進行運算,利用乘法公式簡化運算.讓學生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關(guān)于整式運算的公式和方法也適用.

        教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.

        4.鞏固概念,學以致用

        練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.

        【設(shè)計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.

        5.歸納小結(jié),反思提高

        師生共同回顧本節(jié)課所學內(nèi)容,并請學生回答以下問題:

        (1)你能說明二次根式的乘法法則是如何得出的嗎?

        (2)你能說明乘法法則逆用的意義嗎?

        (3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

        6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.

        五、目標檢測設(shè)計

        1.下列各式中,一定能成立的是( )

        A.二次根式的乘除 B.二次根式的乘除

        C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進行二次根式的乘法運算的基礎(chǔ).

        2.化簡二次根式的乘除 ______________________________。

        【設(shè)計意圖】二次根式是特殊的實數(shù),實數(shù)的相關(guān)運算法則也適用于二次根式.

        3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是(  )

        A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式.

      二次根式教案 篇2

        【教學目標】

        1.運用法則

        進行二次根式的乘除運算;

        2.會用公式

        化簡二次根式。

        【教學重點】

        運用

        進行化簡或計算

        【教學難點】

        經(jīng)歷二次根式的乘除法則的探究過程

        【教學過程】

        一、情境創(chuàng)設(shè):

        1.復(fù)習舊知:什么是二次根式?已學過二次根式的哪些性質(zhì)?

        2.計算:

        二、探索活動:

        1.學生計算;

        2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?

        3.概括:

        得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。

        將上面的公式逆向運用可得:

        積的`算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

        三、例題講解:

        1.計算:

        2.化簡:

        小結(jié):如何化簡二次根式?

        1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

        2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

        四、課堂練習:

        (一).P62 練習1、2

        其中2中(5)

        注意:

        不是積的形式,要因數(shù)分解為36×16=242.

        (二).P67 3 計算 (2)(4)

        補充練習:

        1.(x>0,y>0)

        2.拓展與提高:

        化簡:1).(a>0,b>0)

        2).(y

        2.若,求m的取值范圍。

        ☆3.已知:,求的值。

        五、本課小結(jié)與作業(yè):

        小結(jié):二次根式的乘法法則

        作業(yè):

        1).課課練P9-10

        2).補充習題

      二次根式教案 篇3

        教學目標

        課標要求:學生要學會學習、自主學習,要為學生終生學習打下堅實的基礎(chǔ),根據(jù)教學大綱和新課標的要求,根據(jù)教材內(nèi)容和學生的特點我確定了本節(jié)課的教學目標 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學生的歸納概括能力。 3、通過對二次根式的概念和性質(zhì)的探究,提高數(shù)學探究能力和歸納表達能力。 4、學生經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應(yīng)用的意識。

        教學重點:二次根式的概念和基本性質(zhì)

        教學難點:二次根式的基本性質(zhì)的靈活運用

        教法和學法

        教學活動的本質(zhì)是一種合作,一種交流。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導(dǎo)者與合作者,本節(jié)課主要采用自主學習,合作探究,引領(lǐng)提升的方式展開教學。依據(jù)學生的年齡特點和已有的知識基礎(chǔ),本節(jié)課注重加強知識間的縱向聯(lián)系,,拓展學生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學習打下堅實的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學生養(yǎng)成聯(lián)系和發(fā)展的觀點學習數(shù)學的習慣。

        教學過程

        活動一:根據(jù)學生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設(shè)置問題情境,讓學生感受到研究二次根式來源于生活又服務(wù)于生活。 思考:用帶有根號的式子填空,看看寫出的結(jié)果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應(yīng)為 cm

        (2)面積為S的正方形的邊長為

        (3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

        (4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學生發(fā)現(xiàn)所填結(jié)果都表示一個數(shù)的.算術(shù)平方根,教師引導(dǎo)學生用一個式子表示這些有共同特點的式子。學生表示為,此時教師啟發(fā)學生回憶已學平方根的性質(zhì)讓學生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓(xùn)練,讓學生體會二次根式概念的初步應(yīng)用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉(zhuǎn)化的思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

        活動二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質(zhì):雙重非負性。培養(yǎng)學生的分類討論和概括能力。例2:,則變式:,

        活動三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質(zhì),首先讓學生通過探究活動感受這條結(jié)論,然后再從算術(shù)平方根的意義出發(fā),結(jié)合具體例子對這條結(jié)論進行分析,引導(dǎo)學生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運算與平方運算的關(guān)系,培養(yǎng)學生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學生口述教師板書,后面的兩題由學生板演引導(dǎo)學生分析(2)(4)實質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內(nèi)分解因式

        活動四:探究二次根式的性質(zhì)3 3.探究 在活動三的基礎(chǔ)上出示課本第4頁的探究: 引導(dǎo)學生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學生歸納出二次根式的又一個性質(zhì)。培養(yǎng)學生觀察、對比的能力和意識。 此時引導(dǎo)學生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結(jié)果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結(jié)果看:()2=a(a),(a為任意數(shù)

      二次根式教案 篇4

        【 學習目標 】

        1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應(yīng)用它解決相關(guān)問題。

        2、過程與方法:進一步體會分類討論的數(shù)學思想。

        3、情感、態(tài)度與價值觀:通過小組合作學習,體驗在合作探索中學習數(shù)學的樂趣。

        【 學習重難點 】

        1、重點:準確理解二次根式的概念,并能進行簡單的計算。

        2、難點:準確理解二次根式的雙重非負性。

        【 學習內(nèi)容 】課本第2— 3頁

        【 學習流程 】

        一、 課前準備(預(yù)習學案見附件1)

        學生在家中認真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習學案。

        二、 課堂教學

        (一)合作學習階段。

        教師出示課堂教學目標及引導(dǎo)材料,各學習小組結(jié)合本節(jié)課學習目標,根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學習中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的.前提下認真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。

        (二)集體講授階段。(15分鐘左右)

        1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進行解答,不足的本組成員可以補充。

        2. 教師對合作學習中存在的普遍的不能解決的問題進行集體講解。

        3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

        (三)當堂檢測階段

        為了及時了解本節(jié)課學生的學習效果,及對本節(jié)課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

        (注:合作學習階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)

        三、 課后作業(yè)(課后作業(yè)見附件2)

        教師發(fā)放根據(jù)本節(jié)課所學內(nèi)容制定的針對性作業(yè),以幫助學生進一步鞏固提高課堂所學。

        四、板書設(shè)計

        課題:二次根式(1)

        二次根式概念 例題 例題

        二次根式性質(zhì)

        反思:

      二次根式教案 篇5

        目 標

        1. 熟練地運用二次根式的性質(zhì)化簡二次根式;

        2. 會運用二次根式解決簡單的實際問題;

        3. 進一步體驗二次根式及其運算的實際意義和應(yīng)用價值。

        教學設(shè)想

        本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復(fù)雜。

        教 學 程序 與 策 略

        一、預(yù)習檢測

        1.解決節(jié)前問題:

        如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

        歸納:

        在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。

        二、合作交流:

        1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

        讓學生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的'路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運算?能化簡嗎?

        注意解題格式

        教 學 程 序 與 策 略

        三、鞏固練習:

        完成課本P17、1,組長檢查反饋;

        四、拓展提高:

        1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

        師生共同分析解題思路,請學生寫出解題過程。

        五、課堂小結(jié):

        1.談一談:本節(jié)課你有什么收獲?

        2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題

        六、堂堂清

        1: 作業(yè)本(2)

        2:課本P17頁:第4、5題選做。

      二次根式教案 篇6

        一、教學目標

        1.理解分母有理化與除法的關(guān)系.

        2.掌握二次根式的分母有理化.

        3.通過二次根式的分母有理化,培養(yǎng)學生的運算能力.

        4.通過學習分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學思想

        二、教學設(shè)計

        小結(jié)、歸納、提高

        三、重點、難點解決辦法

        1.教學重點:分母有理化.

        2.教學難點:分母有理化的技巧.

        四、課時安排

        1課時

        五、教具學具準備

        投影儀、膠片、多媒體

        六、師生互動活動設(shè)計

        復(fù)習小結(jié),歸納整理,應(yīng)用提高,以學生活動為主

        七、教學過程

        【復(fù)習提問】

        二次根式混合運算的步驟、運算順序、互為有理化因式.

        例1 說出下列算式的運算步驟和順序:

        (1) (先乘除,后加減).

       。2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).

        (3)辨別有理化因式:

        有理化因式: 與 , 與 , 與 …

        不是有理化因式: 與 , 與 …

        化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的'方法(依據(jù)分式的基本性質(zhì)).

        例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

        引入新課題.

        【引入新課】

        化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

        例2 把下列各式的分母有理化:

       。1) ; (2) ; (3)

        解:略.

        注:通過例題的講解,使學生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

      二次根式教案 篇7

        第十六章 二次根式

        代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

        5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的'最小值為5.)

        6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

        7.解:(1) . (2)寬:3 ;長:5 .

        8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

        9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

        10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

        解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

        本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

        在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

        在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

        練習(教材第4頁)

        1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

        2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

        習題16.1(教材第5頁)

        1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

        2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

        3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

        4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

        5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

        6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

        7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.

        8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

        9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

        10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

        如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

        〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

        解:由數(shù)軸可得:a+b<0,a-b>0,

        ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

        [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

        已知a,b,c為三角形的三條邊,則+= .

        〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

        [解題策略] 此類化簡問題要特別注意符號問題.

        化簡:.

        〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

        解:當x≥3時,=|x-3|=x-3;

        當x<3時,=|x-3|=-(x-3)=3-x.

        [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

        5

        O

        M

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式的加減教案01-19

      二次根式教案優(yōu)秀06-26

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案匯總6篇05-07

      關(guān)于二次根式教案五篇05-08

      【推薦】二次根式教案4篇05-09