欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實用文>教案>二次根式教案

      二次根式教案

      時間:2024-07-22 05:52:59 教案 我要投稿

      二次根式教案模板合集九篇

        作為一名默默奉獻(xiàn)的教育工作者,時常需要用到教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編收集整理的二次根式教案9篇,歡迎大家借鑒與參考,希望對大家有所幫助。

      二次根式教案模板合集九篇

      二次根式教案 篇1

        1.教學(xué)目標(biāo)

        (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會進(jìn)行簡單的二次根式的乘法運算;

        (2)會用公式化簡二次根式.

        2.目標(biāo)解析

        (1)學(xué)生能通過計算發(fā)現(xiàn)規(guī)律并對其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

        (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.

        教學(xué)問題診斷分析

        本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運算感到困難.運算習(xí)慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運算習(xí)慣.

        在教學(xué)時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

        本節(jié)課的教學(xué)難點為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.

        教學(xué)過程設(shè)計

        1.復(fù)習(xí)引入,探究新知

        我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.

        問題1 什么叫二次根式?二次根式有哪些性質(zhì)?

        師生活動 學(xué)生回答。

        【設(shè)計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質(zhì).

        問題2 教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

        師生活動 學(xué)生計算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容.

        【設(shè)計意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培養(yǎng)學(xué)生的符號意識.

        2.觀察比較,理解法則

        問題3 簡單的根式運算.

        師生活動 學(xué)生動手操作,教師檢驗.

        問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?

        師生活動 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

        【設(shè)計意圖】讓學(xué)生運用法則進(jìn)行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運算能力.

        3.例題示范,學(xué)會應(yīng)用

        例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

        師生活動 提問:你是怎么理解例(1)的?

        如果學(xué)生回答不完善,再追問:這個問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡的效果?

        師生合作回答上述問題.對于根式運算的最后結(jié)果,一般被開方數(shù)中有開得盡方的.因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.

        再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

        【設(shè)計意圖】通過運算,培養(yǎng)學(xué)生的運算能力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡.

        例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

        師生活動 學(xué)生計算,教師檢驗.

        (1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

        (2)二次根式的乘法運算類似于整式的乘法運算,交換律、結(jié)合律都是適用的.對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進(jìn)行運算;

        (3)例(3)的運算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

        【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),強調(diào)利用運算律進(jìn)行運算,利用乘法公式簡化運算.讓學(xué)生認(rèn)識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關(guān)于整式運算的公式和方法也適用.

        教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進(jìn)行判斷,在移出根號時正確處理符號問題.

        4.鞏固概念,學(xué)以致用

        練習(xí):教科書第7頁練習(xí)第1題. 第10頁習(xí)題16.2第1題.

        【設(shè)計意圖】鞏固性練習(xí),同時檢驗乘法法則的掌握情況.

        5.歸納小結(jié),反思提高

        師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:

        (1)你能說明二次根式的乘法法則是如何得出的嗎?

        (2)你能說明乘法法則逆用的意義嗎?

        (3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

        6.布置作業(yè):教科書第7頁第2、3題.習(xí)題16.2第1,6題.

        五、目標(biāo)檢測設(shè)計

        1.下列各式中,一定能成立的是( )

        A.二次根式的乘除 B.二次根式的乘除

        C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運算的基礎(chǔ).

        2.化簡二次根式的乘除 ______________________________。

        【設(shè)計意圖】二次根式是特殊的實數(shù),實數(shù)的相關(guān)運算法則也適用于二次根式.

        3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是(  )

        A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

        【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式.

      二次根式教案 篇2

        一、復(fù)習(xí)引入

        學(xué)生活動:請同學(xué)們完成下列各題:

        1.計算

       。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

        二、探索新知

        如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

        整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.

        例1.計算:

       。1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.

        解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

        (1)(+6)(3-)(2)(+)(-)

        分析:剛才已經(jīng)分析,二次根式的'多項式乘以多項式運算在乘法公式運算中仍然成立.

        解:(1)(+6)(3-)

        =3-()2+18-6=13-3(2)(+)(-)=()2-()2

        =10-7=3

        三、鞏固練習(xí)

        課本P20練習(xí)1、2.

        四、應(yīng)用拓展

        例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

        化簡+,并求值.

        分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?

      二次根式教案 篇3

        教學(xué)設(shè)計思想

        新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實際問題建立二次根式的`概念,使學(xué)生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進(jìn)一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。

        教學(xué)目標(biāo)

        知識與技能

        1.知道什么是二次根式,并會用二次根式的意義解題;

        2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

        過程與方法

        通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;

        情感態(tài)度價值觀

        1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應(yīng)用的意識;

        2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

        教學(xué)重點和難點

        重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;

        難點:確定二次根式中字母的取值范圍。

        教學(xué)方法

        啟發(fā)式、講練結(jié)合

        教學(xué)媒體

        多媒體

        課時安排

        1課時

      二次根式教案 篇4

        第十六章 二次根式

        代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

        5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

        6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

        7.解:(1) . (2)寬:3 ;長:5 .

        8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

        9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

        10.解析:在利用=|a|=化簡二次根式時,當(dāng)根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

        解:乙的解答是錯誤的.因為當(dāng)a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

        本節(jié)課通過“觀察——歸納——運用”的模式,讓學(xué)生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.

        在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學(xué)生發(fā)揮主體作用不夠.

        在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.

        練習(xí)(教材第4頁)

        1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

        2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

        習(xí)題16.1(教材第5頁)

        1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時,有意義.

        2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

        3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

        4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

        5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

        6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

        7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時,在實數(shù)范圍內(nèi)有意義.

        8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時,t= =,當(dāng)h=25時,t= =.故當(dāng)h=10和h=25時,小球落地所用的時間分別為 s和 s.

        9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

        10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時, r= =,當(dāng)V=10π時,r= =1,當(dāng)V=20π時,r= =.

        如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

        〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡.

        解:由數(shù)軸可得:a+b<0,a-b>0,

        ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

        [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

        已知a,b,c為三角形的三條邊,則+= .

        〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

        [解題策略] 此類化簡問題要特別注意符號問題.

        化簡:.

        〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

        解:當(dāng)x≥3時,=|x-3|=x-3;

        當(dāng)x<3時,=|x-3|=-(x-3)=3-x.

        [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進(jìn)行討論.

        5

        O

        M

      二次根式教案 篇5

        一、教學(xué)目標(biāo)

        1。使學(xué)生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

        2。使學(xué)生掌握化簡一個二次根式成最簡二次根式的方法。

        3。使學(xué)生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

        二、教學(xué)重點和難點

        1。重點:能夠把所給的二次根式,化成最簡二次根式。

        2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

        三、教學(xué)方法

        通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

        四、教學(xué)手段

        利用投影儀。

        五、教學(xué)過程

        (一)引入新課

        提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

        了。這樣會給解決實際問題帶來方便。

       。ǘ┬抡n

        由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

        這兩個二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

        總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

        1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

        2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

        例1 指出下列根式中的最簡二次根式,并說明為什么。

        分析:

        說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

        例2 把下列各式化成最簡二次根式:

        說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的`因數(shù)或因式開出來,從而將式子化簡。

        例3 把下列各式化簡成最簡二次根式:

        說明:

        1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點,即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

        2。要提問學(xué)生

        問題,通過這個小題使學(xué)生明確如何使用化簡中的條件。

        通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。

        注意:

       、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

        ②當(dāng)一個式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

       。ㄈ┬〗Y(jié)

        1。滿足什么條件的根式是最簡二次根式。

        2。把一個二次根式化成最簡二次根式的主要方法。

       。ㄋ模┚毩(xí)

        1。指出下列各式中的最簡二次根式:

        2。把下列各式化成最簡二次根式:

        六、作業(yè)

        教材P。187習(xí)題11。4;A組1;B組1。

        七、板書設(shè)計

      二次根式教案 篇6

        1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?

        2.學(xué)生觀察下面的例子,并計算:

        由學(xué)生總結(jié)上面兩個式的關(guān)系得:

        類似地,請每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:

        (≥0,b0)

        使學(xué)生回憶起二次根式乘法的運算方法的推導(dǎo)過程.

        類似地,請每個同學(xué)再舉一個例子,

        請學(xué)生們思考為什么b的取值范圍變小了?

        與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.

        對比二次根式的乘法推導(dǎo)出除法的運算方法

        增強學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.

        對學(xué)生進(jìn)一步強化被開方數(shù)的取值范圍,以及分母不能為零.

        強化學(xué)生的解題格式一定要標(biāo)準(zhǔn).

        教學(xué)過程設(shè)計

        問題與情境師生行為設(shè)計意圖

        活動二自我檢測

        活動三挑戰(zhàn)逆向思維

        把反過來,就得到

       。ā0,b0)

        利用它就可以進(jìn)行二次根式的化簡.

        例2化簡:

       。1)

       。2)(b≥0).

        解:(1)(2)練習(xí)2化簡:

       。1)(2)活動四談?wù)勀愕氖斋@

        1.商的算術(shù)平方根的性質(zhì)(注意公式成立的'條件).

        2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.

        找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計算,然后再找學(xué)生指出不足.

        二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

        找學(xué)生口述解題過程,教師將過程寫在黑板上.

        請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.

        請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

        為了更快地發(fā)現(xiàn)學(xué)生的錯誤之處,以便糾正.

        此處進(jìn)行簡單處理是因為有二次根式的乘法公式的逆用作基礎(chǔ)理解并不難.

        讓學(xué)困生在自己做題時有一個參照.

        充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

      二次根式教案 篇7

        教學(xué)目的

        1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

        2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

        教學(xué)重點

        最簡二次根式的定義。

        教學(xué)難點

        一個二次根式化成最簡二次根式的方法。

        教學(xué)過程

        一、復(fù)習(xí)引入

        1.把下列各根式化簡,并說出化簡的根據(jù):

        2.引導(dǎo)學(xué)生觀察考慮:

        化簡前后的根式,被開方數(shù)有什么不同?

        化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

        3.啟發(fā)學(xué)生回答:

        二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

        二、講解新課

        1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

        滿足下列兩個條件的二次根式叫做最簡二次根式:

        (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

        (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

        最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

        2.練習(xí):

        下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

        3.例題:

        例1 把下列各式化成最簡二次根式:

        例2 把下列各式化成最簡二次根式:

        4.總結(jié)

        把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

        當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的'算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

        當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

        此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

        三、鞏固練習(xí)

        1.把下列各式化成最簡二次根式:

        2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

        四、小結(jié)

        本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。

        五、布置作業(yè)

        下列各式化成最簡二次根式:

      二次根式教案 篇8

        【教學(xué)目標(biāo)】

        1.運用法則

        進(jìn)行二次根式的乘除運算;

        2.會用公式

        化簡二次根式。

        【教學(xué)重點】

        運用

        進(jìn)行化簡或計算

        【教學(xué)難點】

        經(jīng)歷二次根式的乘除法則的探究過程

        【教學(xué)過程】

        一、情境創(chuàng)設(shè):

        1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的.哪些性質(zhì)?

        2.計算:

        二、探索活動:

        1.學(xué)生計算;

        2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?

        3.概括:

        得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。

        將上面的公式逆向運用可得:

        積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

        三、例題講解:

        1.計算:

        2.化簡:

        小結(jié):如何化簡二次根式?

        1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

        2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

        四、課堂練習(xí):

        (一).P62 練習(xí)1、2

        其中2中(5)

        注意:

        不是積的形式,要因數(shù)分解為36×16=242.

        (二).P67 3 計算 (2)(4)

        補充練習(xí):

        1.(x>0,y>0)

        2.拓展與提高:

        化簡:1).(a>0,b>0)

        2).(y

        2.若,求m的取值范圍。

        ☆3.已知:,求的值。

        五、本課小結(jié)與作業(yè):

        小結(jié):二次根式的乘法法則

        作業(yè):

        1).課課練P9-10

        2).補充習(xí)題

      二次根式教案 篇9

        一、教學(xué)目標(biāo)

        1.理解分母有理化與除法的關(guān)系.

        2.掌握二次根式的分母有理化.

        3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.

        4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

        二、教學(xué)設(shè)計

        小結(jié)、歸納、提高

        三、重點、難點解決辦法

        1.教學(xué)重點:分母有理化.

        2.教學(xué)難點:分母有理化的技巧.

        四、課時安排

        1課時

        五、教具學(xué)具準(zhǔn)備

        投影儀、膠片、多媒體

        六、師生互動活動設(shè)計

        復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

        七、教學(xué)過程

        【復(fù)習(xí)提問】

        二次根式混合運算的步驟、運算順序、互為有理化因式.

        例1 說出下列算式的運算步驟和順序:

       。1) (先乘除,后加減).

       。2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).

       。3)辨別有理化因式:

        有理化因式: 與 , 與 , 與 …

        不是有理化因式: 與 , 與 …

        化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的.方法(依據(jù)分式的基本性質(zhì)).

        例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

        引入新課題.

        【引入新課】

        化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

        例2 把下列各式的分母有理化:

       。1) ; (2) ; (3)

        解:略.

        注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

      【二次根式教案】相關(guān)文章:

      二次根式教案05-22

      二次根式教案優(yōu)秀06-26

      二次根式的加減教案01-19

      二次根式優(yōu)秀教案03-14

      二次根式教案[熱]07-10

      二次根式教案優(yōu)秀(熱門)12-19

      二次根式教案15篇02-27

      二次根式教案優(yōu)秀(經(jīng)典3篇)06-05

      二次根式教案匯總6篇05-07

      有關(guān)二次根式教案3篇05-06