- 二次根式教案 推薦度:
- 相關(guān)推薦
二次根式教案合集六篇
作為一位兢兢業(yè)業(yè)的人民教師,總歸要編寫(xiě)教案,借助教案可以更好地組織教學(xué)活動(dòng)。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編幫大家整理的二次根式教案6篇,僅供參考,大家一起來(lái)看看吧。
二次根式教案 篇1
教學(xué)目標(biāo)
1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;
2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):含二次根式的式子的混合運(yùn)算.
難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子.
教學(xué)過(guò)程設(shè)計(jì)
一、復(fù)習(xí)
1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來(lái),并說(shuō)明各 式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來(lái).
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,
計(jì)算結(jié)果要把分母有理化.
3.在二次根式的化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡(jiǎn)及求值等問(wèn)題中,常運(yùn)用三個(gè)可逆的式子:
二、例題
例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;
(3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;
(4)題的'分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.
x-2且x0.
解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個(gè)二次根式的被開(kāi)方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.
解 因?yàn)?-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問(wèn):上面的代數(shù)式中的兩個(gè)二次根式的被開(kāi)方數(shù)的式子如何化為完全平方式?
分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.
注意:
所以在化簡(jiǎn)過(guò)程中,
例6
分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習(xí)
1.選擇題:
A.a(chǎn)2B.a(chǎn)2
C.a(chǎn)2D.a(chǎn)<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計(jì)算:
四、小結(jié)
1.本節(jié)課復(fù)習(xí)的五個(gè)基本問(wèn)題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡(jiǎn)、計(jì)算及求值的過(guò)程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開(kāi)方數(shù)為非負(fù)數(shù),以確定被開(kāi)方數(shù)中的字母或式子的取值范圍.
3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.
4.通過(guò)例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問(wèn)題.
五、作業(yè)
1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡(jiǎn)二次根式:
二次根式教案 篇2
目 標(biāo)
1. 熟練地運(yùn)用二次根式的性質(zhì)化簡(jiǎn)二次根式;
2. 會(huì)運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題;
3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。
教學(xué)設(shè)想
本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。
教 學(xué) 程序 與 策 略
一、預(yù)習(xí)檢測(cè):
1.解決節(jié)前問(wèn)題:
如圖,架在消防車(chē)上的.云梯AB長(zhǎng)為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?
歸納:
在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一 些問(wèn)題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問(wèn)題時(shí)經(jīng)常用到二次根式及其運(yùn)算。
二、合作交流:
1、:如圖,扶梯AB的坡比(BE與AE的長(zhǎng)度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過(guò)了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)
讓學(xué)生有充分的時(shí)間閱讀問(wèn)題,并結(jié)合圖形分析問(wèn)題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長(zhǎng)是已知的?哪些線段的長(zhǎng)是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡(jiǎn)嗎?
注意解題格式
教 學(xué) 程 序 與 策 略
三、鞏固練習(xí):
完成課本P17、1,組長(zhǎng)檢查反饋;
四、拓展提高:
1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過(guò)多少cm。
師生共同分析解題思路,請(qǐng)學(xué)生寫(xiě)出解題過(guò)程。
五、課堂小結(jié):
1.談一談:本節(jié)課你有什么收獲?
2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題時(shí)應(yīng)注意的的問(wèn)題
六、堂堂清
1: 作業(yè)本(2)
2:課本P17頁(yè):第4、5題選做。
二次根式教案 篇3
教學(xué)目的
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
教學(xué)過(guò)程
一、復(fù)習(xí)引入
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?
化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
二、講解新課
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開(kāi)方數(shù)的.因數(shù)是整數(shù),因式是整式;
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結(jié)
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
三、鞏固練習(xí)
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
二次根式教案 篇4
一、教學(xué)目標(biāo)
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過(guò)二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.
4.通過(guò)學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
二、教學(xué)設(shè)計(jì)
小結(jié)、歸納、提高
三、重點(diǎn)、難點(diǎn)解決辦法
1.教學(xué)重點(diǎn):分母有理化.
2.教學(xué)難點(diǎn):分母有理化的技巧.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
七、教學(xué)過(guò)程
【復(fù)習(xí)提問(wèn)】
二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.
例1 說(shuō)出下列算式的`運(yùn)算步驟和順序:
。1) (先乘除,后加減).
。2) (有括號(hào),先去括號(hào);不宜先進(jìn)行括號(hào)內(nèi)的運(yùn)算).
。3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡(jiǎn)一個(gè)式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).
例如:等式子的化簡(jiǎn),如果分母是兩個(gè)二次根式的和,應(yīng)該怎樣化簡(jiǎn)?
引入新課題.
【引入新課】
化簡(jiǎn)式子 ,乘以什么樣的式子,分母中的根式符號(hào)可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個(gè)式子就是 ,從而可將式子化簡(jiǎn).
例2 把下列各式的分母有理化:
。1) ; (2) ; (3)
解:略.
注:通過(guò)例題的講解,使學(xué)生理解和掌握化簡(jiǎn)的步驟、關(guān)鍵問(wèn)題、化簡(jiǎn)的依據(jù).式子的化簡(jiǎn),若分子與分母可分解因式,則可先分解因式,再約分,使化簡(jiǎn)變得簡(jiǎn)單.
二次根式教案 篇5
1.請(qǐng)同學(xué)們回憶(≥0,b≥0)是如何得到的?
2.學(xué)生觀察下面的例子,并計(jì)算:
由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:
類(lèi)似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:
。ā0,b0)
使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過(guò)程.
類(lèi)似地,請(qǐng)每個(gè)同學(xué)再舉一個(gè)例子,
請(qǐng)學(xué)生們思考為什么b的取值范圍變小了?
與學(xué)生一起寫(xiě)清解題過(guò)程,提醒他們被開(kāi)方式一定要開(kāi)盡.
對(duì)比二次根式的'乘法推導(dǎo)出除法的運(yùn)算方法
增強(qiáng)學(xué)生的自信心,并從一開(kāi)始就使他們參與到推導(dǎo)過(guò)程中來(lái).
對(duì)學(xué)生進(jìn)一步強(qiáng)化被開(kāi)方數(shù)的取值范圍,以及分母不能為零.
強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).
教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題與情境師生行為設(shè)計(jì)意圖
活動(dòng)二自我檢測(cè)
活動(dòng)三挑戰(zhàn)逆向思維
把反過(guò)來(lái),就得到
(≥0,b0)
利用它就可以進(jìn)行二次根式的化簡(jiǎn).
例2化簡(jiǎn):
。1)
。2)(b≥0).
解:(1)(2)練習(xí)2化簡(jiǎn):
。1)(2)活動(dòng)四談?wù)勀愕氖斋@
1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).
2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡(jiǎn)單的二次根式的化簡(jiǎn).
找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?
找學(xué)生口述解題過(guò)程,教師將過(guò)程寫(xiě)在黑板上.
請(qǐng)學(xué)生仿照例題自己解決這兩道小題,組長(zhǎng)檢查本組的學(xué)習(xí)情況.
請(qǐng)學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.
為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.
此處進(jìn)行簡(jiǎn)單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.
讓學(xué)困生在自己做題時(shí)有一個(gè)參照.
充分發(fā)揮組長(zhǎng)的作用,盡可能在課堂上將問(wèn)題解決.
二次根式教案 篇6
課題:二次根式
教學(xué)目標(biāo) 1、知識(shí)與技能
理解a(a≥0)是一個(gè)非負(fù)數(shù), (a≥0)
2、過(guò)程與方法
。1)數(shù)學(xué)思考:學(xué)會(huì)獨(dú)立思考、體會(huì)數(shù)學(xué)的體驗(yàn)歸納、類(lèi)比的思想
方法
(2) 問(wèn)題解決:能夠利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)計(jì)算,能夠互助
交流合作,分析問(wèn)題,總結(jié)反思
3、情感、態(tài)度與價(jià)值觀
體驗(yàn)成功的樂(lè)趣,鍛煉克服困難的意志,培養(yǎng)嚴(yán)謹(jǐn)
求實(shí)的科學(xué)態(tài)度
教學(xué)重難點(diǎn) 教學(xué)重點(diǎn):二次根式的概念
教學(xué)難點(diǎn):二次根式中根號(hào)下必須為非負(fù)數(shù)
教學(xué)過(guò)程
一、課前回顧
。2分鐘)
學(xué)生與老師共同回顧上節(jié)課所學(xué)內(nèi)容,溫故而知新。 什么是二次根式?
二次根式中字母的取值范圍:
、俦婚_(kāi)方數(shù)大于等于零;
、诜帜钢杏凶帜笗r(shí),要保證分母不為零。
、鄱鄠(gè)條件組合時(shí),應(yīng)用不等式組求解
一、情境引入(3分鐘)
由生活中的實(shí)例引入投影的概念,引起學(xué)生的學(xué)習(xí)興趣
已知下列各正方形的面積,求其邊長(zhǎng)。
二、探究1(10分鐘)
練習(xí)1:
計(jì)算下列各式:
三、探究2(10分鐘)
可以發(fā)現(xiàn)它們有如下規(guī)律:
一般的,二次根式有下列性質(zhì):
練習(xí)2:
典型例題 例1:計(jì)算:
例2:計(jì)算:
達(dá)標(biāo)測(cè)試(5分鐘)
課堂測(cè)試,檢驗(yàn)學(xué)習(xí)結(jié)果
1、判斷題
2、若 ,則x的取值范圍為 ( A )
。ˋ) x≤1 (B) x≥1
。–) 0≤x≤1 (D)一切有理數(shù)
3、計(jì)算
4、化簡(jiǎn)
5、已知a,b,c為△ABC的三邊長(zhǎng),化簡(jiǎn):
這一類(lèi)問(wèn)題注意把二次根式的運(yùn)算搭載在三角形三邊之間的.關(guān)系這個(gè)知識(shí)點(diǎn)上,特別要應(yīng)用好。
應(yīng)用提高(5分鐘)
能力提升,學(xué)有余力的同學(xué)可以仔細(xì)研究 如圖,P是直角坐標(biāo)系中一點(diǎn)。
。1)用二次根式表示點(diǎn)P到原點(diǎn)O的距離;
(2)如果 求點(diǎn)P到原點(diǎn)O的距離
體驗(yàn)收獲 今天我們學(xué)習(xí)了哪些知識(shí)
二次根式的兩條性質(zhì)。
布置作業(yè) 教材8頁(yè)習(xí)題第3、4題。
【二次根式教案】相關(guān)文章:
二次根式教案05-22
二次根式的加減教案01-19
二次根式優(yōu)秀教案03-14
二次根式教案優(yōu)秀06-26
二次根式教案[熱]07-10
二次根式教案15篇02-27
【實(shí)用】二次根式教案四篇04-04
【實(shí)用】二次根式教案三篇04-07
二次根式教案合集八篇04-05