初中數(shù)學教案(合集15篇)
在教學工作者實際的教學活動中,通常需要準備好一份教案,教案是教學活動的總的組織綱領和行動方案。那么寫教案需要注意哪些問題呢?下面是小編精心整理的初中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。
初中數(shù)學教案1
教學目標
。ㄒ唬┲R與能力
1.通過對不等式的復習和具體實例總結(jié)一元一次不等式組以及一元一次不等式組的解集的概念。2.通過例題教會學生解一元一次不等式組,并教會學生通過在數(shù)軸上表示不等式的解集得到不等式組的解集,讓學生感受數(shù)形結(jié)合的作用。
。ǘ┻^程與方法
1.創(chuàng)設情境,通過實例引導學生考慮多個不等式聯(lián)合的解法。2.通過例題總結(jié)解一元一次不等式組的方法,并總結(jié)一元一次不等式組的解與一元一次不等式的解之間的關系。
(三)情感、態(tài)度與價值觀
1.通過數(shù)軸的表示不等式組的解,讓學生加深對數(shù)形結(jié)合的作用的理解,使他們逐步熟悉和掌握這一重要的思想方法。2.在對例題的講解中,使學生認識一元一次不等式組的解集即每個不等式解集的公共部分,從而滲透“交集”的思想。
3.在解不等式組的過程中讓學生體會數(shù)學解題的'直觀性和簡潔性的數(shù)學美 教學重、難點 重點:掌握一元一次不等式組的解法,會用數(shù)軸表示一元一次不等式組解集 的情況。難點 :1.弄清一元一次不等式的解集與一元一次不等式組的解集之間的關系。2.靈活運用一元一次不等式組的知識解決問題。
教學過程
一.設置情景,引入課題
學生活動:請學生觀看購物街轉(zhuǎn)轉(zhuǎn)盤游戲.(在看之前先讓學生看一看游戲規(guī)則:轉(zhuǎn)輪上平均分布著5、10、15一直到100共20個數(shù)字。每位選手最多有兩次機會。選手轉(zhuǎn)動轉(zhuǎn)輪的數(shù)字之和,最大且不超過100者為勝出,可以獲得相應的獎品。選手每次必須把轉(zhuǎn)輪轉(zhuǎn)動1圈才有效.)
設第三位選手第二次轉(zhuǎn)的數(shù)字為x,他要勝出應滿足什么條件? 預設學生
1x?10?75,預設學生2
x?10?教師提出問題:這兩個條件只需滿足一個還是缺一不可?
預設學生:同時具備??x?10?75
x?10?100?教師活動:
1、講解聯(lián)立符號的作用,并引入課題.2、給出定義:由幾個含有同一未知數(shù)的一元一次不等式所組成的一組不等式,叫做一元一次不等式組.【設計意圖】從一個學生感興趣的游戲入手.問題的提出具有一定的現(xiàn)實性和探究性,目的是激發(fā)學生探究新知的欲望,在教師的引導下,將生活中的問題轉(zhuǎn)化為數(shù)學問題,從而引出本課題.學生活動
用心找一找:下列不等式組中哪些是一元一次不等式組?
?3?x?4?2x?x?2?1?2y?7?6?x?2?2a?7?1?(1)?(2)?(3)?1(4)?(5)??5x?3?4x?1 3x?3?1x?33a?3?0?1????7?2x?6?3x??x?預設學生1:(2)(3)(4)(5)預設學生2:(2)(4)(5)預設學生3:(2)(4)
【設計意圖】教師組織學生分組討論,明析一元一次不等式組的定義.使學生進一步明確“幾個含有同一個未知數(shù)的一元一次不等式組成.”
二、探索過程
問題一:??x?10?75這兩個不等式的解分別是什么呢?
x?10?100??x?65 ?x?90?問題二:怎么表示不等式組的解呢?
什么是不等式組的解呢?
【設計意圖】通過這兩個問題的探討,讓學生在解不等式的過程中得出不等式組的解法和不等式組的解的表示方法.文字語言:大于65小于或等于90的數(shù).圖形語言: O***0
數(shù)學式子:65<x≤90 學生活動:探究不等式組的解
問題:求下列不等式組的解,并找出其中的規(guī)律(1)??x?3?x?2?x?3?x?3(2)?(3)?(4)? ?x?7?x??5?x?5?x?7學生預設1:通過數(shù)軸,能求出不等式組的解
學生預設2:找不出其中的規(guī)律
【設計意圖】讓學生利用數(shù)軸尋找不等式組的解,并表示出來,引導學生找出其中的規(guī)律,培養(yǎng)學生善于現(xiàn)問題、總結(jié)規(guī)律的能力
三、練習鞏固,拓展提高
學生活動:1.寫出下列不等式組的解
(1)不等式組??x??5的解在數(shù)軸上表示為____________則不等式組的解為 x??2??x??5的解在數(shù)軸上表示為_______________則不等式組的解?x??2(2)不等式組?為
(3)不等式組??x??1的解為 x?2??x??1的解為 x?2?(4)不等式組 ?2.選擇題:(1)不等式組??x?2的解是()x?2??2 ?2 C.無解 ?2(2)不等式組??x??2的負整數(shù)解是()x??3?A.–2,0,-1 B.-2 C.–2,-1 D.不能確定
【設計意圖】讓學生及時鞏固,準確找出不等式組的解,在找不等式組的解的過程中引入整數(shù)解.四、合作小結(jié),課外探索 學生活動:
1每位同學寫一個以x為未知數(shù)的一元一次不等式;
2、同桌的兩個不等式組在一起叫做什么?三位同學的不等式組在一起呢?
3、每位同學把你所寫的不等式解出來;
4、同桌所組成的不等式組的解是什么?
【設計意圖】通過問題串,在生生、師生互動的情況下,復習一元一次不等式組的定義和解.增強了學生之間的合作交流.五、布置作業(yè)
3個小組計劃在10天內(nèi)生產(chǎn)500件產(chǎn)品(每天生產(chǎn)量相同),按原先的生產(chǎn)速度,不能完成任務;如果每個小組每天比原先多生產(chǎn)1件產(chǎn)品,就能提前完成任務.每個小組原先每天生產(chǎn)多少件產(chǎn)品?
【設計意圖】通過實際問題的解決,有利于學生體會到數(shù)學來源于生活,并能有效地復習鞏固本堂課所學的知識和方法.【板書設計】
一元一次不等式組 ?x?10?75??x?10?100?x?65 文字語言:大于??x?9065小于或等于90的數(shù).圖形語言: O***0數(shù)學式子:65<x≤90
求下列不等式組的解,并找出其中的規(guī)律(1)??x?3?x?7(2)??x?2?x?3?x??5(3)??x?5(4)規(guī)律:大大取大,小小取小;
大小小大中間找
大大小小為
初中數(shù)學教案2
一、教學案例的特點
1、案例與論文的區(qū)別
從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。
從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。
2、案例與教案、教學設計的區(qū)別
教案和教學設計都是事先設想的教學思路,是對準備實施的教學措施的簡要說明;教學案例則是對已經(jīng)發(fā)生的教學過程的反映。一個寫在教之前,一個寫在教之后;一個是預期達到什么目標,一個是結(jié)果達到什么水平。教學設計不宜于交流,教學案例適宜于交流。
3、案例與教學實錄的區(qū)別
案例與教學實錄的體例比較接近,它們都是對教學情景的描述,但教學實錄是有聞必錄,而案例則是有所選擇的,教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷或理性思考)。
4、教學案例的特點是
——真實性:案例必須是在課堂教學中真實發(fā)生的事件;
——典型性:必須是包括特殊情境和典型案例問題的故事;
——濃縮性:必須多角度地呈現(xiàn)問題,提供足夠的信息;
——啟發(fā)性:必須是經(jīng)過研究,能夠引起討論,提供分析和反思。
二、數(shù)學案例的結(jié)構要素
從文章結(jié)構上看,數(shù)學案例一般包含以下幾個基本的元素。
(1)背景。案例需要向讀者交代故事發(fā)生的有關情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學校還是普通學校,是一個重點班級還是普通班級,是有經(jīng)驗的優(yōu)秀教師還是年青的新教師執(zhí)教,是經(jīng)過準備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的發(fā)生是否有什么特別的原因或條件。
(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉(zhuǎn)變學困生,還是強調(diào)怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學生的獨立學習情況,等等;蛘呤且粋什么樣的數(shù)學任務解決過程和方法,在課程標準中數(shù)學任務認知水平的要求怎么樣,在課堂教學中數(shù)學任務認知水平的發(fā)展怎么樣等等。動筆前都要有一個比較明確的想法。比如學校開展研究性學習活動,不同的研究課題、研究小組、研究階段,會面臨不同的問題、情境、經(jīng)歷,都有自己的獨特性。寫作時應該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。
(3)情節(jié)。有了主題,寫作時就不會有聞必錄,而要是對原始材料進行篩選。首先需要教師對課堂教學中師生雙方(外顯的和內(nèi)隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內(nèi)容,把關鍵性的細節(jié)寫清楚。比如介紹教師如何指導學生掌握學習數(shù)學的方法,就要把學生怎么從“不會”到“會”的轉(zhuǎn)折過程,要把學習發(fā)生發(fā)展過程的細節(jié)寫清楚,要把教師觀察到的學生學習行為,學習行為反映的學生思想、情感、態(tài)度寫清楚,或者把小組合作學習的突出情況寫清楚,或者把個別學生獨立學習的典型行為寫清楚。不能把“任務”布置了一番,把“方法”介紹了一番,說到“任務”的完成過程,說到“掌握”的程度就一筆帶過了。
(4)結(jié)果。一般來說,教案和教學設計只有設想的措施而沒有實施的結(jié)果,教學實錄通常也只記錄教學的過程而不介紹教學的效果;而案例則不僅要說明教學的思路、描述教學的'過程,還要交代學生學習的結(jié)果,即這種教學措施的即時效果,包括學生的反映和教師的感受等。讀者知道了結(jié)果,將有助于加深對整個過程的內(nèi)涵的了解。
(5)反思。對于案例所反映的主題和內(nèi)容,包括教育教學指導思想、過程、結(jié)果,對其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎上的議論,可以進一步揭示事件的意義和價值。比如同樣是一個學困生轉(zhuǎn)化的事例,我們可以從社會學、教育學、心理學、學習理論等不同的理論角度切入,揭示成功的原因和科學的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。
三、初中數(shù)學教學案例主題的選擇
新課程理念下的初中數(shù)學教學案例,可從以下六方面選擇主題:
(1)體現(xiàn)讓學生動手實踐、自主探究、合作交流的教學方式;
(2)體現(xiàn)教師幫助學生在自主探究、合作交流的過程中真正理解和掌握基本的數(shù)學知識和技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗;
(3)體現(xiàn)讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程,采用“問題情境——建立模型——解釋、應用與拓展”的模式教學的成功經(jīng)驗;
(4)體現(xiàn)數(shù)學與信息技術整合的教學方法;
(5)體現(xiàn)教師在教學過程中的組織者、引導者與合作者的作用;
(6)體現(xiàn)教學中對學生情感、態(tài)度的關注和評價,以及怎樣幫助不同的人在數(shù)學上獲得不同的發(fā)展,等等。
初中數(shù)學教案3
一、素質(zhì)教育目標
(一)知識教學點
1.掌握的三要素,能正確畫出.
2.能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù).
(二)能力訓練點
1.使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步形成應用數(shù)學的意識.
2.對學生滲透數(shù)形結(jié)合的思想方法.
(三)德育滲透點
使學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.
(四)美育滲透點
通過畫,給學生以圖形美的教育,同時由于數(shù)形的結(jié)合,學生會得到和諧美的享受.
二、學法引導
1.教學方法:根據(jù)教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法.
2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.
三、重點、難點、疑點及解決辦法
1.重點:正確掌握畫法和用上的點表示有理數(shù).
2.難點:有理數(shù)和上的點的對應關系。
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片.
六、師生互動活動設計
師生同步畫,學生概括三要素,師出示投影,生動手動腦練習
七、教學步驟
(一)創(chuàng)設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數(shù)呢?
這種表示數(shù)的圖形就是今天我們要學的內(nèi)容—(板書課題).
【教法說明】從溫度計用標有讀數(shù)的刻度來表示溫度的高低這個事實出發(fā),引出本節(jié)課所要學的內(nèi)容—.再從溫度計這個實物形象抽象出來研究.既激發(fā)了學生的學習興趣,又使學生受到把實際問題抽象成數(shù)學問題的訓練,培養(yǎng)了用數(shù)學的.意識.
(二)探索新知,講授新課
1.的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零,具體做法如下:
第一步:畫直線定原點原點表示0(相當于溫度計上的0℃).
第二步:規(guī)定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當?shù)拈L度為單位長度(相當于溫度計上每1℃占1小格的長度).
【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養(yǎng)學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.
讓學生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點表示什么數(shù)?
(2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數(shù)?原點向左個單位長度的B點表示什么數(shù)?
根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充。
初中數(shù)學教案4
教學目標:
1、知識與技能:(1)通過學生熟悉的問題情景,以過探索有理數(shù)減法法則得出的過程,理解有理數(shù)減法法則的合理性。
(2)能熟練進行有理數(shù)的減法法則。
2、過程與方法
通過實例,歸納出有理數(shù)的減法法則,培養(yǎng)學生的邏輯思維能力和運算能力,通過減法到加法的轉(zhuǎn)化,讓學生初步體會人歸的數(shù)學思想。
重點、難點
1、重點:有理數(shù)減法法則及其應用。
2、難點:有理數(shù)減法法則的應用符號的改變。
教學過程:
一、創(chuàng)設情景,導入新課
1、有理數(shù)加法運算是怎樣做的?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?
導語:可見,有理數(shù)的減法運算在現(xiàn)實生活中也有著很廣泛的應用。(出示課題)
二、合作交流,解讀探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?
3、通過以上列式,你能發(fā)現(xiàn)減法運算與加法運算的關系嗎?
(學生分組討論,大膽發(fā)言,總結(jié)有理數(shù)的減法法則)
減去一個數(shù)等于加上這個數(shù)的相反數(shù)
教師提問、啟發(fā):(1)法則中的“減去一個數(shù)”,這個數(shù)指的是哪個數(shù)?“減去”兩字怎樣理解?(2)法則中的“加上這個數(shù)的'相反數(shù)”“加上”兩字怎樣理解?“這個數(shù)的相反數(shù)”又怎樣理解?(3)你能用字母表示有理數(shù)減法法則嗎?
三、應用遷移,鞏固提高
1、P.24例1 計算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、課內(nèi)練習:P.241、2、3
3、游戲:兩人一組,用撲克牌做有理數(shù)減法運算游戲(每人27張牌,黑牌點數(shù)為正數(shù),紅牌點數(shù)為負數(shù),王牌點數(shù)為0。每人每次出一張牌,兩人輪流先出(先出者為被減數(shù)),先求出這兩張牌點數(shù)之差者獲勝,直至其中一人手中無牌為止)。
四、總結(jié)反思
(1) 有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
(2) 有理數(shù)減法的步驟:先變?yōu)榧臃,再改變減數(shù)的符號,最后按有理數(shù)加法法則計算。
五、作業(yè)
P.27習題1.4A組1、2、5、6
備選題
填空:比2小-9的數(shù)是 。
а比а+2小 。
若а小于0,е是非負數(shù),則2а-3е 0。
初中數(shù)學教案5
教學目標
1、理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;
2、能根據(jù)有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負數(shù)加法的區(qū)別;
3、三個或三個以上有理數(shù)相加時,能正確應用加法交換律和結(jié)合律簡化運算過程;
4、通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;
5、本節(jié)課通過行程問題說明有理數(shù)的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數(shù)學知識來源于生活,并應用于生活。
教學建議
。ㄒ唬┲攸c、難點分析
本節(jié)教學的重點是依據(jù)有理數(shù)的加法法則熟練進行有理數(shù)的加法運算。難點是有理數(shù)的加法法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。
。2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
。3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的.加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。
。ǘ┲R結(jié)構
。ㄈ┙谭ńㄗh
1、對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數(shù)、相反數(shù)、絕對值等知識。
2、有理數(shù)的加法法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3、應強調(diào)加法交換律“a+b=b+a”中字母a、b的任意性。
4、計算三個或三個以上的加法算式,應建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數(shù)間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結(jié)合律可以使加法運算更為簡化。
5、可以給出一些類似“兩數(shù)之和必大于任何一個加數(shù)”的判斷題,以明確由于負數(shù)參與加法運算,一些算術加法中的正確結(jié)論在有理數(shù)加法運算中未必也成立。
6、在探討導出有理數(shù)的加法法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數(shù)運算法則。
初中數(shù)學教案6
湖北省咸寧市咸安區(qū)實驗中學 章福枝
一、內(nèi)容與內(nèi)容解析(一)內(nèi)容
一元一次不等式組的概念及解法
。ǘ﹥(nèi)容解析
上節(jié)課學習了一元一次不等式,知道了一元一次不等式的有關概念及解法,本節(jié)課主要是學習一元一次不等式組及其解法,這是學習利用一元一次不等式組解決實際問題的關鍵.教材通過一個實例入手,引出要解決的問題,必須同時滿足兩個不等式,讓學生經(jīng)歷通過具體問題抽象出不等式組的過程,進而通過一元一次不等式來類推學習一元一次不等式組、一元一次不等式組解集、解一元一次不等式組這些概念.學習不等式組時,我們可以類比方程組、方程組的解來理解不等式組、不等式組的解集的概念.求不等式組的解集時,利用數(shù)軸很直觀,這是一種數(shù)與形結(jié)合的思想方法,不僅現(xiàn)在有用,今后我們還會有更深的體驗. 基于以上的分析,本節(jié)課的教學重點:一元一次不等式組的解法.
二、目標及目標解析(一)目標
。1)理解一元一次不等式組、一元一次不等式組的解集等概念.(2)會解一元一次不等式組,并會用數(shù)軸確定解集.(二)目標解析
達到目標(1)的標志是:學生能說出一元一次不等式組的特征.
達到目標(2)的標志是:學生能解一元一次不等式組,能在數(shù)軸上確定不等式組的解集,并獲得解一元一次不等式組的'步驟.
三、教學問題診斷分析 通過前面的學習,學生已經(jīng)掌握一元一次不等式的概念及解法,但是對于學生用數(shù)軸來表示不等式組的解集時還不夠熟練,理解還不夠深刻. 本節(jié)課的教學難點:在數(shù)軸上找公共部分,確定不等式組的解集.
四、教學過程設計
。ㄒ唬┨岢鰡栴} 形成概念
問題:用每分鐘可抽30噸水的抽水機來抽污水管道里的積存污水,估計積存的污水超過1200噸而不足1500噸,那么將污水抽完所用的時間的范圍是什么? 設問(1):依據(jù)題意,你能得出幾個不等關系? 設問(2):設抽完污水所用的時間還是范圍?
小組討論,交流意見,再獨立設未知數(shù),列出所用的不等關系. 教師追問(1):類比方程組的概念,說出什么是一元一次不等式組?怎樣表示? 學生自學概念,說出表示方法.教師追問(2):類比方程組的解怎樣確定不等式組中x的取值范圍? 學生經(jīng)過小組討論,老師點撥:不等式組中各個不等式解集的公共部分就是不等式組x的取值范圍. 教師追問(3):怎樣解不等式,并用數(shù)軸表示解集? 學生獨立完成. 教師追問(4):通過數(shù)軸,怎樣得出不等式組的解集? 學生獨立完成,老師點評 教師追問(5):什么是一元一次不等式組的解集?什么是解一元一次不等式組? 學生自學概念.
設計意圖:培養(yǎng)學生獨立思考、合作交流意識,提高學生的觀察、分析、猜測、概括和自學能力.并且滲透類比思想,得出一元一次不等式組以及其解集的概念,利用數(shù)軸的直觀理解不等式解集的意義.
。ǘ┙夥ㄌ接 步驟歸納 例1 解下列不等式組
學生嘗試獨立解不等式組,老師強調(diào)規(guī)范格式
設問1:當兩個不等式的解集沒有公共部分,表示什么意思? 設問2:解一元一次不等式組的一般步驟是什么?
學生總結(jié)歸納,老師適當補充,得出解一元一次不等式組的一般步驟是:(1)求每個不等式的解集;(2)利用數(shù)軸找出各個不等式的解集的公共部分;(3)寫出不等式組的解集.
設計意圖:初步感受解一元一次不等式組的方法和步驟.
。ㄈ⿷锰岣 深化認知
例2 x取那些整數(shù)值時,不等式5x+2>3(x-1)與
都成立?
設問1:不等式都成立表示什么意思? 小組討論
設問2:要求x取哪些整數(shù)值,要先解決什么問題? 學生先合作交流,再獨立解不等式組 設問3.怎樣取值?
學生在不等式組的解集范圍內(nèi),取整數(shù)值.老師強調(diào)即求不等式組的特殊解. 設計意圖:通過例2可以讓學生構建不等式組,并解出不等式組,同時根據(jù)解集求出不等式組的特殊解,這是對學生解不等式組的一次提高訓練.
。ㄋ模w納總結(jié) 反思提高
教師與學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答以下問題.(1)什么是一元一次不等式組?什么是一元一次不等式組的解集?(2)解一元一次不等式組的一般步驟?
。3)一元一次不等式組解集的一般規(guī)律是什么?
設計意圖:通過問題歸納總結(jié)本節(jié)課所學的主要內(nèi)容.
(五)布置作業(yè) 課外反饋 教科書習題9.3第1,2,3題
設計意圖:通過課后作業(yè),教師及時了解學生對本節(jié)課知識的掌握情況,以便對教學進度和方法進行適當?shù)恼{(diào)整.
初中數(shù)學教案7
一、主題分析與設計
本節(jié)課是蘇科版義務教育課程標準實驗教科書七年級數(shù)學(下冊)第七章第2節(jié)內(nèi)容——探索平行線的性質(zhì),它是直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎,是"空間與圖形"的重要組成部分。
《數(shù)學課程標準》強調(diào):數(shù)學教學是數(shù)學活動的教學,是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學習數(shù)學的重要方式;合作交流的學習形式是培養(yǎng)孩子積極參與、自主學習的有效途徑。本節(jié)課將以"生活·數(shù)學"、"活動·思考"、"表達·應用"為主線開展課堂教學,以學生看得到、感受得到的基本素材創(chuàng)設問題情境,引導學生活動,并在活動中激發(fā)學生認真思考、積極探索,主動獲取數(shù)學知識,從而促進學生研究性學習方式的形成,同時通過小組內(nèi)學生相互協(xié)作研究,培養(yǎng)學生合作性學習精神。
二、教學目標
1、知識與技能:掌握平行線的性質(zhì),能應用性質(zhì)解決相關問題。
2、數(shù)學思考:在平行線的性質(zhì)的探究過程中,讓學生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。初中數(shù)學教育敘事
3、解決問題:通過探究平行線的性質(zhì),使學生形成數(shù)形結(jié)合的數(shù)學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。
4、情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數(shù)學的熱情和團結(jié)合作、勇于探索、鍥而不舍的精神。
三、教學重、難點
1、重點:對平行線性質(zhì)的掌握與應用
2、難點:對平行線性質(zhì)1的探究
四、教學用具
1、教具:多媒體平臺及多媒體課件
2、學具:三角尺、量角器、剪刀
五、教學過程
。ㄒ唬﹦(chuàng)設情境,設疑激思
1、播放一組幻燈片。
內(nèi)容:
、俟┗疖囆旭偟蔫F軌上;
、谟斡境刂械挠镜栏魴冢
、蹤M格紙中的線。
2、提問溫故:日常生活中我們經(jīng)常會遇到平行線,你能說出直線平行的條件嗎?
3、學生活動:針對問題,學生思考后回答——①同位角相等兩直線平行;②內(nèi)錯角相等兩直線平行;③同旁內(nèi)角互補兩直線平行;
4、教師肯定學生的回答并提出新問題:若兩直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角各有什么關系呢?從而引出課題:7。2探索平行線的性質(zhì)(板書)
(二)數(shù)形結(jié)合,探究性質(zhì)
1、畫圖探究,歸納猜想
教師提要求,學生實踐操作:任意畫出兩條平行線(a ∥ b),畫一條截線c與這兩條平行線相交,標出8個角。(統(tǒng)一采用阿拉伯數(shù)字標角)
教師提出研究性問題一:
指出圖中的同位角,并度量這些角,把結(jié)果填入下表:
教師提出研究性問題二:
將畫出圖中的同位角任先一組剪下后疊合。
學生活動一:畫圖————度量————填表————猜想
學生活動二:畫圖————剪圖————疊合
讓學生根據(jù)活動得出的數(shù)據(jù)與操作得出的結(jié)果歸納猜想:兩直線平行,同位角相等。
教師提出研究性問題三:
再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?
學生活動:探究、按小組討論,最后得出結(jié)論:仍然成立。
2、教師用《幾何畫板》課件驗證猜想,讓學生直觀感受猜想
3、教師展示平行線性質(zhì)1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
。ㄈ┮晁伎,培養(yǎng)創(chuàng)新
教師提出研究性問題四:
請判斷兩條平行線被第三條直線所截,內(nèi)錯角、同旁內(nèi)角各有什么關系?
學生活動:獨立探究————小組討論————成果展示。
教師活動:評價學生的研究成果,并引導學生說理
因為a ∥ b(已知)
所以∠ 1= ∠ 2(兩直線平行,同位角相等)
又∠ 1= ∠ 3(對頂角相等)
∠ 1+ ∠ 4=180°(鄰補角的定義)
所以∠ 2= ∠ 3(等量代換)
∠ 2+ ∠ 4=180°(等量代換)
教師展示:
平行線性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)
平行線性質(zhì)2:兩條平行線被第三條直線所截,同旁內(nèi)角互補。(兩直線平行,同旁內(nèi)角互補)
。ㄋ模⿲嶋H應用,優(yōu)勢互補
1、(搶答)課本P13練一練1、2及習題7。2 1、5
2、(討論解答)課本P13習題7。2 2、3、4
。ㄎ澹┱n堂總結(jié):這節(jié)課你有哪些收獲?
1、學生總結(jié):平行線的性質(zhì)1、2、3
2、教師補充總結(jié):
、庞"運動"的觀點觀察數(shù)學問題;(如我們前面將同位角剪下疊合后分析問題)
、朴脭(shù)形結(jié)合的方法來解決問題;(如我們前面將同位角測量后分析問題)
、怯脺蚀_的語言來表達問題;(如平行線的性質(zhì)1、2、3的表述)
、扔眠壿嬐评淼男问絹碚撟C問題。(如我們前面對性質(zhì)2和3的說理過程)
。┳鳂I(yè)
學習與評價P5 1、2、3(填空);4、5、6(選擇);7、8(拓展與延伸)
六、教學反思:
數(shù)學課要注重引導學生探索與獲取知識的過程而不單注重學生對知識內(nèi)容的認識,因為"過程"不僅能引導學生更好地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數(shù)學知識解決問題的意識;感受生活與數(shù)學的聯(lián)系,獲得"情感、態(tài)度、價值觀"方面的體驗。這節(jié)課的教學實現(xiàn)了三個方面的轉(zhuǎn)變:
、俳痰霓D(zhuǎn)變:本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者。教師成為了學生的'導師、伙伴、甚至成為了學生的學生,在課堂上除了導引學生活動外,還要認真聆聽學生"教"你他們活動的過程和通過活動所得的知識或方法。
、趯W的轉(zhuǎn)變:學生的角色從學會轉(zhuǎn)變?yōu)闀䦟W,跟老師學轉(zhuǎn)變?yōu)樽灾魅W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地"學"數(shù)學,而是深入地"做"數(shù)學。
③課堂氛圍的轉(zhuǎn)變:整節(jié)課以"流暢、開放、合作、‘隱'導"為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以"對話"、"討論"為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
總之,在數(shù)學教學的花園里,教師只要為學生布置好和諧的場景和明晰的路標,然后就讓他們自由地快活地去跳舞吧
初中數(shù)學教案8
一、素質(zhì)教育目標
。ㄒ唬┲R教學點
1.理解畫兩個角的差,一個角的幾倍、幾分之一的方法.
2.掌握用量角器畫兩個角的和差,一個角的幾倍、幾分之一的畫法.用三角板畫一些特殊角的畫法.
。ǘ┠芰τ柧汓c
通過畫角的和、差、倍、分,三角板和量角器的使用,培養(yǎng)學生動手能力和操作技巧.
(三)德育滲透點
通過利用三角板畫特殊角的方法,說明幾何知識常用來解決實際問題,進行幾何學在生產(chǎn)、生活中起著重要作用的教育,鼓勵他們努力學習。
。ㄋ模┟烙凉B透點
通過學生動手操作,使學生體會到簡單幾何圖形組合的多樣性,領會幾何圖形美.
二、學法引導
1.教師教法:嘗試指導,以學生操作為主.
2.學生學法:在教師的指導下,積極動手參與,認真思考領會歸納.
三、重點、難點、疑點及解決辦法
。ㄒ唬┲攸c
用量角器畫角的和、差、倍、分及用三角板畫特殊角.
。ǘ╇y點
準確使用量角器畫一個角的幾分之一.
。ㄈ┮牲c
量角器的正確使用.
。ㄋ模┙鉀Q辦法
通過正確指導,規(guī)范操作,使學生掌握畫法要領,并以練習加以鞏固,從而解決重難點及疑點.
四、課時安排
1課時
五、教具學具準備
一副三角板、量角器.
六、師生互動活動設計
1.通過教師設,學生動手及思考創(chuàng)設出情境,引出課題.
2.通過學生嘗試解決、教師把握幾何語言美的方法,放手由學生自己解決有關角的畫法.
3.通過提問的形式完成小結(jié).
七、教學步驟
。ㄒ唬┟鞔_目標
使學生會用量角器畫角及角的`和、差、倍、分,培養(yǎng)學生動手能力和操作能力.
(二)整體感知
通過教師指導,學生動手操作完成對畫圖能力和操作能力的掌握.
圖1
。ㄈ┙虒W過程
創(chuàng)設情境,引出課題
教師在黑板上畫出(如圖1).
師:現(xiàn)有工具量角器和三角板,誰到黑板上畫一個角等于呢?請同學們觀察他的操作,老師要找同學說明他的畫法.
【教法說明】有上節(jié)課的基礎,學生會先用量角器測量的度數(shù),再畫一個度數(shù)等于這個度數(shù)的角,學生也會敘述其畫法.
提出問題:若老師想畫的余角、補角呢?
學生會想到畫、減去的度數(shù)后的角,即為的余角、補角.
師:是否還有別的方法?
這時學生一定會積極思考,立刻回答還有困難.教師抓住時機點明課題:同學們不用著急,今天我們就研究角的畫法,學習用三角板、量角器畫角的和、差、倍、分以及一些特殊角.老師提出的問題你們會解決的.另外,角的畫法在我們?nèi)粘I钪袘脧V泛,希望同學們認真學習.(板書課題……)
。郯鍟1.7角的畫法
探究新知
1.畫一個角等于已知角
找學生再次敘述方法:用量角器量出已知角的度數(shù),再畫一個等于這個度數(shù)的角.
操作:略.
注意:量角器使用三要素:對中、重合、讀數(shù).
2.用三角板畫特殊角
師:請同學們準備好練習本和一副三角板,再找同學說出一副三角板中各角度數(shù).
學生活動:用三角板在練習本上畫出直角、角、角、角.
提出問題:你能利用一副三角板畫出、的角嗎?
學生活動:討論畫、的角的方法,在練習本上畫出圖形,同桌可相互交換檢查,找學生到黑板上畫.
【教法說明】有前一節(jié)角的和、差的理解和、 、角的畫法,學生對畫、的角不會有困難.因此,教師要敢于放手,讓學生自己去嘗試解決問題的方法,也培養(yǎng)他們的動手操作的能力,但對于畫法學生不會敘述得太嚴密,教師要把關,培養(yǎng)學生幾何語言的嚴密性.
教師根據(jù)前面學生所畫圖形,引導學生寫出畫法.(以角的畫法為例,與例題相符.)
圖1
畫法如圖l,①利用三角板,畫
、谠诘耐獠,再畫就是要畫的的角.
反饋練習:用三角板畫、的角.
【教法說明】由學生獨立完成以上三個角的畫圖.教師不給任何提示,只要求寫出畫角的方法,注意觀察畫法,是否寫出了“在角的內(nèi)部畫的角”.區(qū)別例題中兩角和的畫法.
提出問題:由一副三角板可以畫出多少度的角?
學生討論得出可以畫出的角.
這些角都是的倍數(shù),用三角板也只限畫這樣的角.由此得出:由量角器畫任意角的和、差、倍、分角.
3.畫任意兩個角的和差及一個角的幾倍、幾分之一.
問題:如圖1,已知、(),如何畫出與的和?與的差?
圖1
學生活動:討論畫,的方法,并在練習本上根據(jù)自己的想法畫圖.
根據(jù)學生的討論回答,老師歸納以下方法:
。1)用量角器量出、的度數(shù),計算出它們度數(shù)的和、差,再用量角器畫出等于它們度數(shù)和、差的角.
。2)用量角器把移到上,如果本方法.
圖1
教師示范,寫出兩種畫法:
畫法一:(1)用量角器量得,.
。2)畫,就是要畫的角如圖1.
圖2
畫法二:(1)用量角器畫.
。2)以點為頂點,射為一邊,在的外部畫.
就是要畫的角如圖2.
學生活動:敘述用兩種方法畫的畫法.出示例1由學生完成,要求用兩種方法,找同學板演.
例1?已知,畫出它們的余角.
畫法一:(1)量得.
圖1圖2
。2)畫,就是所要畫的角,見圖1.
畫法二:利用三角板,以的頂點為頂點,一邊為邊,畫直角,使的另一邊在直角的內(nèi)部,如圖2,就是所要畫的角.
【教法說明】第二種畫法學生可能敘述或書寫不太完整,教師要注意其嚴密性.
反饋練習
1.已知,畫出它的補角.
2.已知,畫它們的角平分線.
3.畫的角,并把它分成三等份.
【教法說明】本練習只要求圖形正確即可,不要求寫出畫法.
。ㄋ模┛偨Y(jié)、擴展
以提問的形式歸納出以下知識脈絡:
八、布置作業(yè)
課本第46頁習題1.5A組第2、3題.
初中數(shù)學教案9
教學目標:
1、理解切線的判定定理,并學會運用。
2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。
教學重點:切線的判定定理和切線判定的方法。
教學難點:切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學生開始時掌握不好并極容易忽視一.
教學過程:
一、復習提問
【教師】問題1.怎樣過直線l上一點P作已知直線的垂線?
問題2.直線和圓有幾種位置關系?
問題3.如何判定直線l是⊙O的切線?
啟發(fā):(1)直線l和⊙O的公共點有幾個?
。2)圓心O到直線L的距離與半徑的數(shù)量關系 如何?
學生答完后,教師強調(diào)(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)
再啟發(fā):若把距離OA理解為 OA⊥l,OA=r;把點A理解為半徑在圓上的端點 ,請同學們試將上面定理用新的理解改寫成新的命題,此命題就 是這節(jié)課要學的“切線的判定定理”(板書課題)
二、引入新課內(nèi)容
【學生】命題:經(jīng)過半徑的在圓上的端點且垂直于半 徑的直線是圓的切線。
證明定理:啟發(fā)學生分清命題的題設和結(jié)論,寫出已 知、求證,分析證明思路,閱讀課本P60。
定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的`切線.
定理的證明:已知:直線l經(jīng)過半徑OA的外端點A,直線l⊥OA,
求證:直線l是⊙O的切線
證明:略
定理的符號語言:∵直線l⊥OA,直線l經(jīng)過半徑OA的外端A
∴直線l為⊙O的切線。
是非題:
。1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )
(2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )
三、例題講解
例1、已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB。
求證:直線AB是⊙O的切線。
引導學生分析:由于AB過⊙O上的點C,所以連結(jié)OC,只要證明AB⊥OC即可。
證明:連結(jié)OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直線AB經(jīng)過半徑OC的外端C
∴直線AB是⊙O的切線。
練習1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。
練習2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。
求證:CD是⊙O的切線。
例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。
求證:DE是⊙O的切線。
思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?
四、小結(jié)
1.切線的判定定理。
2.判定一條直線是圓的切線的方法:
、俣x:直線和圓有唯一公共點。
、跀(shù)量關系:直線到圓心的距離等于該圓半徑(即d = r)。[
、矍芯的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。
3.證明一條直線是圓的切線的輔助線和證法規(guī)律。
凡是已知公共點(如:直線經(jīng)過圓上的點;直線和圓有一個公共點;)往往是"連結(jié)"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。
五、布置作業(yè):略
《切線的判定》教后體會
本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導,學生為主體”的二期課改的理念出發(fā),通過學生自我活動得到數(shù)學結(jié)論作為教學重點,呈現(xiàn)學生真實的思維過程為教學宗旨,進行教學設計,目的在于讓學生對知識有一個本質(zhì)的、有效的理解。本節(jié)課切實反映了平時的教學情況,為前來調(diào)研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:
成功之處:
一、 教材的二度設計順應了學生的認知規(guī)律
這批學生習慣于單一知識點的學習,即得出一個知識點,必須由淺入深反復進行練習,鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結(jié)論,導致錯誤,久之便會失去學習數(shù)學的興趣和信心。本教時課本上將切線判定定理和性質(zhì)定理的導出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學生往往會因第一時間得不到及時的鞏固,對定理本質(zhì)的東西不能很好地理解,在運用時抓不住關鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學生更是因知識點多不知所措,在云里霧里。二度設計將切線的判定方法作為第一課時,切線的性質(zhì)定理以及兩個定理的綜合運用作為第二課時,這樣的設計即是對前面所學的“直線與圓相切的判定方法”的復習,又是對后面學習綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學呈現(xiàn)了一個循序漸進、溫過知新的過程。從學生的反饋情況判斷,教學效果較為理想。
二、重視學生數(shù)感的培養(yǎng)呼應了課改的理念
數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學習就會輕松。擁有數(shù)感,不僅會對數(shù)學知識反應靈敏,更會在生活中不知不覺運用數(shù)學思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導,學生發(fā)現(xiàn)完成的,而三個習題則完全放手讓學生去思考完成,不乏有不會做和做得復雜的學生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學生嘗試總結(jié)規(guī)律,也是對學生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學生得出,事實證明,學生有這樣的理解、概括和表達能力。通過思考得出正確的結(jié)論,這個結(jié)論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。
不足之處:
一、這節(jié)課沒有“高潮”,沒有讓學生特別興奮激起求知欲的情境,整個教學過程是在一個平靜、和諧的氛圍中完成的。
二、課的引入太直截了當,脫離不了應試教學的味道。
三、教學風格的定勢使所授知識不能很合理地與生活實際相聯(lián)系,一定程度上阻礙了學生解決實際問題能力的發(fā)展。
通過本節(jié)課的教學,我深刻感悟到在教學實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學形狀,適應現(xiàn)代教育,適應現(xiàn)代學生。課堂教學中,敢于實驗,舍得放手,盡量培養(yǎng)學生主體意識,問題讓學生自己去揭示,方法讓學生自己去探索,規(guī)律讓學生自己去發(fā)現(xiàn),知識讓學生自己去獲得,教師只提供給學生現(xiàn)實情境、充足的思考時間和活動空間,給學生表現(xiàn)自我的機會和成功的體驗,培養(yǎng)學生的自我意識,發(fā)揮學生的主體作用,來真正實現(xiàn)《數(shù)學課程標準》中提出的“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者”這一教學理念。
初中數(shù)學教案10
教學目標:
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數(shù)學與日常生活密切相關,認識到許多實際問題可以用數(shù)學方法解決。
教學重點:歸納一元次方程的概念
教學難點:感受方程作為刻畫現(xiàn)實世界有效模型的意義.
教學過程:
一、情景導入:
我能猜出你們的年齡,相信嗎?
只要任何一個同學回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學生說出結(jié)果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學生討論并回答
二、知識探究:
1、方程的教學(投影演示)
小彬和小明也在進行猜年齡游戲,我們來看一看。
找出這道題中的等量關系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、 判斷下列式子是不是方程?
。1)X+2=3(是)(2)X+3Y=6(是)
。3)3M-6(不是)(4)1+2=3(不是)
。5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?
你能找出題中的等量關系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統(tǒng)計數(shù)據(jù)(20xx年3月28日新華社公布)
截至20xx年11月1日0時,全國每10萬人中具有大學文化程度的人數(shù)為3611人,比1990年7月1日0時增長了153.94%
1990年6月底每10萬人中約有多少人具有大學文化程度?情景三:西湖中學的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?
下面是剛才根據(jù)幾道情景題所列的`方程,分析下列方程有何共同點?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個方程中,只含有一個未知數(shù)X(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。
問:大家剛才都已經(jīng)自己列出了方程,那個同學能夠說一下你是怎樣列出方程的,列方程應該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關系(2)設未知數(shù)(3)列方程
四、隨堂練習
1、投影趣味習題,
2、做一做
下面有兩道題,請選做一題。
。1)、請根據(jù)方程2X+3=21自己設計一道有實際背景的應用題。
。2)、發(fā)揮你的想象,用自己的年齡編一道應用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
數(shù)學教案-你今年幾歲了搜集整理
初中數(shù)學教案11
初中數(shù)學分層次教學案例
【案例主題:】學生參與教學,體現(xiàn)了現(xiàn)代教學理念:活動、合作、自由、民主、創(chuàng)新。
【背景:】我在進行數(shù)學七年級上冊圖形的認識的應用教學時,處理定理時,隨著教學過程的深入,很有感想:??
例題:課本p123證明兩個角之間的關系,
請同學們總結(jié)一下他們可能出現(xiàn)的情況。
【活動過程】師:誰能總結(jié)一下判定兩個角比較大小的方法?(學生都在緊張的思考中)(突然間,我發(fā)現(xiàn)一名平時學習較困難的學生閆家銜這次第一個舉起了手,很驚奇,便馬上讓他發(fā)言了。也有了我思想上的一次飛躍。)
生:我認為前面,度量,而剛才第一條,第二條的疊合法。(這時,教室里鴉雀無聲,個別同學在譏笑,這位學生頓時有些難堪,想坐下去,我趕緊制止。)
師:很好!那你準備應該怎么做呢?生:嗯,(一下子來勁了):接著這位同學上黑板畫了圖,寫出自己度量的方法和自己的想法。
師:剛才閆家銜同學真的不錯,不但提出了新的方法,而且還給出了說理,我和全班同學都為你今天的表現(xiàn)感到非常高興(教室里響起一片掌聲)。要有勇氣展示自己,你今天的表現(xiàn)就非常非常地出色,你今后的表現(xiàn)一定會更出色。好,下面我就讓我們一同來總結(jié)一下菱形的證明方法。
在師生的共同研討下得出了這些方法。
師:今天的課程內(nèi)容還有一項,那就是請閆家銜同學談談這堂課的感想。
生:??以前我不敢發(fā)言,我怕說的不對會被同學們笑話,而今天的他的方法恰好是我前幾天才預習過的,所以一下子??我今天才發(fā)現(xiàn)不是這樣??我今后還會努力發(fā)言的??
【理念反思】:從這一個學生的舉手發(fā)言到說得頭頭是道的'“意外”中,我明白了:學生需要一個能充分展示自我的自由空間,作為老師,我們需要給學生一個自由的民主的氛圍,能充分培養(yǎng)學生的自信,使“學困生”也能產(chǎn)生發(fā)言的欲望,也能對問題暢所欲言,教師還應能及時捕捉到這一閃光點,給每一位學生都有展示的機會。也就是說要使學生全部積極參與教學,因為它集中體現(xiàn)了現(xiàn)代課程理念:活動、合作、自由、民主、創(chuàng)新。
1、活動、合作是現(xiàn)代課程中的新的理念,只有參與,才能合作創(chuàng)新。
2、民主是現(xiàn)代課程中的重要理念。民主最直接的體現(xiàn)是在課程實施中學生能夠平等地參與。沒有主動參與,只有被動接受,就沒有民主可言。相反,如果沒有民主,學生的參與
就不是主動性參與,而是被動的、消極的參與。
3、在提問時,應設計開放性的問題,如:“請你幫助設計一下,有幾種方案等問題?這樣才沒有限制學生的思維,給學生創(chuàng)設一個自由的空間,學生在這個空間中可以按自己的方式展開想象,才能暢所欲言。
4、在課堂上,老師應不只關注“優(yōu)等生”,而應平等地對待每一個學生,讓學困生”和“學優(yōu)生”同時享有尊嚴和擁有一份自信。特別是發(fā)現(xiàn)到一個學困生在舉了手時,應及時給“學困生”展示的機會,讓他們發(fā)言,學生在發(fā)言中,雖然有時不能把問題完全解決,老師也要充分的肯定這個學生的成績和能夠大膽發(fā)言的勇氣。
初中數(shù)學教案12
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;
3.使學生初步理解數(shù)形結(jié)合的思想方法.
教學重點和難點
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應關系.
課堂教學過程 設計
一、從學生原有認知結(jié)構提出問題
1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內(nèi)容——.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的`溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數(shù)的點:
例2 指出上A,B,C,D,E各點分別表示什么數(shù).
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?
最后引導學生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)
指導學生閱讀教材后指出:是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數(shù)學教案13
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:
、伲趯嵺`操作過程中,逐步探索圖形之間的平移關系;
、冢瑢M合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續(xù)變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結(jié)合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
創(chuàng)設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結(jié),老師給予適當?shù)腵指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調(diào)動學生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補充。
課堂小結(jié):
在教師的引導下學生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節(jié)的內(nèi)容并不是很復雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質(zhì)的提高。
初中數(shù)學教案14
一、檢查反饋
本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面。現(xiàn)將檢查情況總結(jié)如下教案方面的特點與不足。
特點:
1、絕大多數(shù)教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文李雅芳等能突出對學科素養(yǎng)的高度關注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側(cè)重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學的反思意識,反思深刻、務實、有針對性。
2、注重選擇恰當?shù)慕虒W方法,注重在靈活多樣的教學方法中培養(yǎng)學生的合作意識和創(chuàng)新精神。
3、教案能體現(xiàn)多媒體教學手段,注重培養(yǎng)學生的探究精神和創(chuàng)新能力。
不足:
1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結(jié),從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業(yè)方面的特點與不足
特點:
1、能按進度布置作業(yè),作業(yè)設置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的.錯誤做法及糾正措施。
3、學生在書寫方面有很大進步。從檢查可以發(fā)現(xiàn)教師對學生作業(yè)的書寫格式有明確的要求。
不足:
1、對于學生書寫的工整性,還需加強教育。
2、教師在批閱作業(yè)時,要稍細心些,發(fā)現(xiàn)問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。
初中數(shù)學教案15
教學 目的
1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;
2.會運用積和商的算術平方根的性質(zhì),把一個二次根式化為最簡二次根式。
教學 重點
最簡二次根式的定義。
教學 難點
一個二次根式化成最簡二次根式的方法。
教學 過程
一、復習引入
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導學生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學生回答:
二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
二、講解新課
1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。
2.練習:
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結(jié)
把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?
當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。
當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的'分母化成能開得盡方的因式,然后分子、分母再分別化簡。
三、鞏固練習
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
四、小結(jié)
本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術平方根和商的算術平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。
五、布置作業(yè)
(1)把下列各式化成最簡二次根式:
【初中數(shù)學教案】相關文章:
初中數(shù)學教案11-04
初中數(shù)學教案02-21
初中數(shù)學教案【精品】07-13
初中數(shù)學教案優(yōu)秀03-21
初中數(shù)學教案:公式12-29
初中數(shù)學教案范文12-16
[推薦]初中數(shù)學教案05-16
初中數(shù)學教案精選15篇03-31
初中數(shù)學教案(精選15篇)02-24
初中數(shù)學教案(精選20篇)10-11