- 相關推薦
《最小公倍數(shù)》優(yōu)秀教案
作為一名辛苦耕耘的教育工作者,總不可避免地需要編寫教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。那么問題來了,教案應該怎么寫?以下是小編整理的《最小公倍數(shù)》優(yōu)秀教案,歡迎閱讀與收藏。
《最小公倍數(shù)》優(yōu)秀教案1
教學內(nèi)容:
蘇教版義務教育教科書《數(shù)學>五年級下冊第43~44頁例1 1、例1 2和“練一練’’,第46練習七第9~10題。
教學目標:
1.使學生理解和認識公倍數(shù)和最小公倍數(shù),能用列舉的方法求兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),能通過直觀圖理解兩個數(shù)的倍數(shù)及公倍數(shù)之間的關系。
2.使學生借助直觀認識公倍數(shù),理解公倍數(shù)的特征;通過列舉探索求公倍數(shù)和最小公倍數(shù)的方法,體會方法的合理和多樣;感受數(shù)形結(jié)合的思想,能有條理地進行思考,發(fā)展分析、推理等能力。
3.使學生主動參加思考和探索活動,感受學習的收獲,獲得成功的體驗,樹立學好數(shù)學的信心;培養(yǎng)與同伴合作、交流的意識和良好品質(zhì)。
教學重點:
求兩個數(shù)的公倍數(shù)和最小公倍數(shù)。
教學難點:
理解求公倍數(shù)和最小公倍數(shù)的方法。
教學準備:
小黑板
教學過程:
一、揭示課題
揭題:我們已經(jīng)學習了公因數(shù)和最大公因數(shù),今天這節(jié)課學習公倍數(shù)和最小公倍數(shù)。(板書課題)
提問:看了這個課題,你有什么想法? 你對公倍數(shù)有哪些想法?對最小公倍數(shù)呢?
引導:大家交流的想法,實際上是聯(lián)系公因數(shù)和最大公因數(shù)進行聯(lián)想,提出自己的想法。這樣的'學習方法可以幫助我們學好數(shù)學。那剛才大家的想法是不是正確呢?現(xiàn)在,我們一起來研究公倍數(shù)和最小公倍數(shù)。(板書課題)
二、學習新知
1.認識公倍數(shù)。
。1)出示例11,讓學生說說知道了些什么,提出的什么問題。
引導:用長3厘米、寬2厘米的長方形鋪兩個正方形,哪個正好鋪滿,哪個不能鋪滿?看圖想一想是為什么,你能不能根據(jù)自己的想法寫出算式來說明理由,并和同桌互相說一說?
交流:哪個正方形能正好鋪滿,哪個不能鋪滿?
提問:聯(lián)系鋪滿長方形的圖形,觀察列出的算式,你覺得6和3、2這兩個數(shù)有怎樣的關系?
說明:6既是3的倍數(shù),又是2的倍數(shù),是3和2公有的倍數(shù)。
。2)引導:想一想,這個長方形紙片還能正好鋪滿邊長多少厘米的正方形?為什么?和同桌說說你的想法。
交流:還能正好鋪滿邊長多少厘米的正方形?你是怎樣想的?(明確可以正好鋪滿邊長12厘米、18厘米的正方形)
你發(fā)現(xiàn)正方形的邊長厘米數(shù)只要滿足什么條件,就能用這個長方形正好鋪滿? 像這樣能被正好鋪滿的正方形有多少個,能找得完嗎?
。3) 引導:現(xiàn)在你發(fā)現(xiàn),6、12、18、24這些數(shù)和2、3都有什么關系?說說你的想法。 指出:同學們的理解還真不錯!大家發(fā)現(xiàn)6、12、18、24這樣的數(shù),既是2的倍數(shù),又是3的倍數(shù),也就是2和3公有的倍數(shù),我們稱它們是2和3的公倍數(shù)。(板書:公倍數(shù))
追問:8是2和3的公倍數(shù)嗎?為什么不是?
那哪些數(shù)是2和3的公倍數(shù)呢?(板書:6,12 ,18,24是2和3的公倍數(shù))為什么公倍數(shù)里要用省略號?你還能任意再說幾個2和3的公倍數(shù)嗎?
2.求公倍數(shù)。
出示例12,明確要找6和9的公倍數(shù)和最小的公倍數(shù)。
讓學生獨立找出6和9的公倍數(shù)和最小的公倍數(shù),與同桌交流自己的 方法。 交流:你是怎樣找出6和9的公倍數(shù)和最小的公倍數(shù)的?
結(jié)合學生交流,教師板書用不同方法找的過程和結(jié)論,使學生領會。
小結(jié):大家用不同的方法找出了6和9的公倍數(shù)有18,36,54其中’最小的是18。 18是6和9的最小公倍數(shù)。
追問:有沒有最大的公倍數(shù)?為什么?
說明:兩個數(shù)的公倍數(shù)有無數(shù)個,沒有最大的公倍數(shù)。兩個數(shù)的公倍數(shù)里最小的一個,就是這兩個數(shù)的最小公倍數(shù)。(板書:最小公倍數(shù)——公倍數(shù)中最小的一個)
3.用集合圖表示公倍數(shù)。
引導:你也能用圓圈圖表示6的倍數(shù)、9的倍數(shù)和公倍數(shù)的關系嗎?自己畫一畫。 學生交流,呈現(xiàn)集合相交的圖,(圖見教材,略)分別標注出“6的倍數(shù)”“9的倍數(shù)”“6和9的公倍數(shù)”,并強調(diào)三個部分都有無數(shù)個數(shù),都要用省略號表示。
讓學生看直觀圖說說,哪些數(shù)是6的倍數(shù),哪些數(shù)是9的倍數(shù),哪些數(shù)是6和9的公倍數(shù),最小公倍數(shù)是幾。
指出:從圖上可以直接看出,6和9公有的倍數(shù),是它們的公倍數(shù),其中最小的一個,是它們的最小公倍數(shù)。
三、鞏固深化
1.做“練一練”第1題。
2.做“練一練”第2題。
3.做練習七第9題。
4.做練習七第10題。
四、總結(jié)提升
引導:今今天學習的是什么內(nèi)容?什么是兩個數(shù)的公倍數(shù)和最小公倍數(shù)? 可以怎樣找兩個數(shù)的公倍數(shù)和最小公倍數(shù)?寫公倍數(shù)時要注意什么?
《最小公倍數(shù)》優(yōu)秀教案2
說課:
“公倍數(shù)與最小公倍數(shù)”是純數(shù)學知識,對于小學生來講是抽象的概念,因此通過情景設計----讓學生在尋找最佳慰問點,以此來激發(fā)學生學習的興趣并導入新課。
由于學生在學習“公約數(shù)與最大公約數(shù)”時已掌握了枚舉法、分解質(zhì)因數(shù)及短除法,因此在設計本節(jié)課時意圖讓學生通過已有知識經(jīng)驗去探究新知,而且,在探究活動中讓學生根據(jù)自己的需要、根據(jù)自己的實際知識面來選擇探究的問題,這樣處理更能激發(fā)學生學習的欲望,調(diào)動每一個學生學習的積極性。在成果匯報時,讓學生站到講臺前,講述自己對某一問題的理解,并通過實例來補充說明,這樣可以培養(yǎng)學生的自信心。
教學目標:
1、理解公倍數(shù)、最小公倍數(shù)的意義;會用列舉法、分解質(zhì)因數(shù)、短除法求兩個數(shù)的最小公倍數(shù);會求是互質(zhì)數(shù)或有倍數(shù)關系的兩個數(shù)的最小公倍數(shù)。
2、在知識的探究過程中,讓每個學生體驗成功的喜悅,并培養(yǎng)學生大膽質(zhì)疑的習慣。
教學過程:
一、情景導入
1、從我們學校到中山公園可乘坐A、B兩種車,A車大約每隔400米設有一個車站, B車大約每隔600米設有一個車站。天氣越來越熱了,我們少先隊員開展送愛心活動,在這條線路上擺幾個慰問點,為駕駛員、售票員送上毛巾擦擦汗、送上涼水解解渴,F(xiàn)在請你們小組商量一下,慰問點設在哪里可以同時慰問兩條線路的司售人員,并且要說明你的理由。
2、在這里,我們找A、B兩車的車站就是運用了有關倍數(shù)的知識,那么,你是否知道同時有兩個車站的這幾個數(shù)字表示的是什么呢?
出示課題:公倍數(shù)
誰能用自己的話說一說什么叫公倍數(shù)?
這一個是最小的,我們又稱它為什么?
補充課題:最小公倍數(shù)
誰能再來說一說什么叫最小公倍數(shù)?
今天我們就來研究公倍數(shù)與最小公倍數(shù)。
二、探究
1、看了這個課題,你想在這節(jié)課中了解些什么?請學生寫在紙上,并貼到黑板上。
2、四人一組合作解決1--2個問題,舉例說明,組長筆錄。可以翻書請教,在P.69-- P.71。
3、成果匯報:(由學生任選一種方法)
(1)公倍數(shù)有多少個?
(2)求最小公倍數(shù)的幾種方法:
、倜杜e法:根據(jù)學生舉例填寫集合圈并說出各部分所表示的內(nèi)容(參見下左圖):
②分解質(zhì)因數(shù):如:12與30的最小公倍數(shù)(見上右圖)
最小公倍數(shù)是兩個數(shù)全部公有質(zhì)因數(shù)與各自獨有之因數(shù)的乘積。
。2×3×2×5=60
從這兩個分解質(zhì)因數(shù)的式子里你能看出12與30的.最大公約數(shù)是幾?
最大公約數(shù)與最小公倍數(shù)之間有什么關系?參見下左圖。
最小公倍數(shù)是兩個數(shù)的最大公約數(shù)與各自獨有質(zhì)因數(shù)的乘積。
短除法:如求:36和45的最小公倍數(shù),參見上右圖。
討論:與求最大公約數(shù)比較有什么異同之處?
短除法與分解質(zhì)因數(shù)有什么聯(lián)系?
任選一種方法,求下列各組數(shù)的最小公倍數(shù)(第一組必做,其它可任選,看誰做的又快又多又正確):
16和20;65和130;4和15;18和24。
得出兩個特殊情況:當兩個數(shù)是互質(zhì)數(shù)時,最小公倍數(shù)是這兩個數(shù)的乘積;當兩個數(shù)有倍數(shù)關系時,最小公倍數(shù)是較大的數(shù)。
4、總結(jié):今天你們根據(jù)自己所提出的問題進行了研究學習,每個人的研究都非常成功,對于今天所學的內(nèi)容還有什么疑問?
三、回家作業(yè)布置(感興趣的同學做)
世紀大道是浦東新區(qū)最為壯觀的軸線大道,它橫貫陸家嘴金融貿(mào)易區(qū),起于東方明珠電視塔,止于花木行政文化中心,全長4200米。請你當一位設計師,在大道的一旁每隔()米種一棵香樟,在大道的另一旁每隔()米種一棵銀杏,那么,每()米一棵香樟和一棵銀杏正好面對面,這樣的情況共有()組相對的樹木。
教學反思:
我們的教學是要真正地為學生服務,教師的職責不是將知識灌輸給學生,而是在學生在知識的海洋中遨游時幫他們把好舵。講臺不是老師的,而是師生共同的,誰都能在這里發(fā)表自己的見解。學生只有在被肯定、被信任的時候,才能提高學習興趣、學習動機。
《最小公倍數(shù)》優(yōu)秀教案3
教材分析
該內(nèi)容是在學生已經(jīng)學習了“約數(shù)和倍數(shù)的意義”、“質(zhì)數(shù)和合數(shù)、分解質(zhì)因數(shù)”、“最大公約數(shù)”等的基礎上進行教學的,既是對前面知識的綜合運用,同時又是學生學習“通分”所必不可少的知識基礎。因而是本單元的教學重點,是本冊教材的核心內(nèi)容。本課的教學,對于學生的后續(xù)學習和發(fā)展,具有舉足輕重的作用。借鑒前面的學習方法學習后面的內(nèi)容是本課設計中很重要的一個教學特色,這樣設計不僅使教學變得輕松,而且能使學生在學習知識的同時掌握一些學習方法,這些學習策略和方法的掌握,對于今后的學習是很有幫助的。
學情分析
五年級學生的生活經(jīng)驗和知識背景更為豐富,動手欲較強,學生認識數(shù)的概念時更愿意自主參與,自己發(fā)現(xiàn)。再者,學生個人的解題能力有限,而小組合作則能更好地激發(fā)他們的數(shù)學思維,通過交流獲得數(shù)學信息。
教學目標
。w現(xiàn)多維目標;體現(xiàn)學生思維能力培養(yǎng))
。1)讓學生通過具體的操作和交流活動,認識公倍數(shù)和最小公倍數(shù),會用列舉法求兩個數(shù)的最小公倍數(shù)。
。2)讓學生經(jīng)歷探索和發(fā)現(xiàn)數(shù)學知識的過程,積累數(shù)學活動的經(jīng)驗,培養(yǎng)學生自主探索合作交流的能力。
。3)滲透集合思想,培養(yǎng)學生的抽象概括能力
重點、難點
重點:
公倍數(shù)與最小公倍數(shù)的概念建立。
難點:
運用“公倍數(shù)與最小公倍數(shù)”解決生活實際問題
教法、學法
為了實現(xiàn)教學目標,達到《標準》中的要求,也為了更好的解決教學重、難點,我將本節(jié)課設計成寓教于樂的形式,將教學內(nèi)容融入一環(huán)環(huán)的學生自主探索發(fā)現(xiàn)的過程中,引導學生動手、動腦、動口。
教學流程
媒體運用
任務導學
明確
任務
師:課前我們來做個報數(shù)游戲,看誰的反應最快。請兩大組的同學參加。
師:請報到3的倍數(shù)的同學起立,報到4的倍數(shù)的同學起立。你們發(fā)現(xiàn)了什么?他們?yōu)槭裁匆鹆纱?(因為他們報到的號?shù)既是3的倍數(shù)又是4的倍數(shù))是嗎?咱們一起來驗證一下。(師板書:12、24)
師:像這些數(shù)既是3的倍數(shù),又是4的倍數(shù),我們就把這些數(shù)叫做3和4的公倍數(shù)。(板書:公倍數(shù))今天這節(jié)課我們一起來研究公倍數(shù)。
課堂探究
自主
學習
1、出示例1
師:同學們,仔細讀要求,你們認為解決這個問題要注意什么?
生獨立思考,領會題意和要求。
出示
合作
探究
2、合作交流,動手操作
我們每一對同桌都準備了一張方格紙和一些長3厘米、寬2厘米的長方形,下面就用這些長方形來代替瓷磚在方格紙上來擺一擺、畫一畫或直接算一算。
3、匯報交流
師板書:2的倍數(shù):2、4、6、8、10、12、14……
3的倍數(shù):3、6、9、12、15、18……
2和3的公倍數(shù):6、12、24……
交流
展示
4、明確意義
師提出問題:為什么不能鋪成邊長是4厘米或9厘米的正方形?除了能鋪成邊長是6厘米的正方形之外,還可以鋪成邊長是多少厘米的正方形?最小是多少厘米?你發(fā)現(xiàn)能鋪成的正方形的邊長有什么特點?
。ㄔO計意圖:這幾個問題連環(huán)遞進,通過第一問使學生理解4只是2的倍數(shù),9只是3的倍數(shù),不論是邊長4厘米還是9厘米均不符合題意,從而使學生深刻理解"公"字的含義;通過第二、三問使學生發(fā)現(xiàn)能鋪成的正方形的邊長必須是2和3的公倍數(shù),而只要符合這個條件的正方形是有無數(shù)個的,從而滲透了數(shù)形結(jié)合與極限思想。)
師:通過剛才的報數(shù)和鋪正方形的過程,現(xiàn)在誰能用自己的`話說說什么是公倍數(shù)和最小公倍數(shù)?在韋恩圖上怎么表示?
5、找最小公倍數(shù)
師:是不是只有2和3才有公倍數(shù)呢?其你也舉個例子里找一找他們的公倍數(shù),有一個要求:看誰能在規(guī)定的時間里找到的公倍數(shù)最多,用的方法最巧。
匯報交流:
師:請找到最多的同學說一說,你有什么好方法介紹給大家。
4、發(fā)現(xiàn)特殊關系的兩個數(shù)的最小公倍數(shù)的特點
師讓學生舉例,然后將學生所舉的例子分成了3類。啟發(fā)學生:我是根據(jù)什么標準來分的?你所舉的例子屬于哪一類?咱們再來看一看,他們的最小公倍數(shù)有什么特點?(讓舉例的學生匯報最小公倍數(shù))
得出規(guī)律:兩個數(shù)是互質(zhì)關系的,它們的最小公倍數(shù)就是他們的乘積;
兩個數(shù)是倍數(shù)關系的,它們的最小公倍數(shù)就是較大的那個數(shù)。
如果以后讓你找兩個數(shù)的最小公倍數(shù),你會怎么做?
反饋拓展
拓展
提升
13和2( )1000和25( )
18和6( )8和9( )
1和12( )9和15( )
2、師:運用公倍數(shù)的知識,可以解決許多生活中的實際問題。一天周老師和一位樂清的同學在溫州參加完同學會之后,第二天要趕回來上班,從溫州新南站我們了解到以下一些信息:
師:為了能同時出發(fā),你認為周老師該選擇哪些時間出發(fā)?
3、求三個數(shù)的公倍數(shù)
總結(jié):
這節(jié)課我們學習了什么?你有什么收獲?
《最小公倍數(shù)》優(yōu)秀教案4
教學內(nèi)容:完成練習四的第5~8題。
教學目標
1、通過練習,使學生發(fā)現(xiàn)求兩個數(shù)的最小公倍數(shù)的一些簡捷的方法,并能根據(jù)兩個數(shù)的關系選擇用合理的方法求兩個數(shù)的最小公倍數(shù)。
2、讓學生感受數(shù)學與生活的.聯(lián)系,體會解決問題策略的多樣性。
教學重、難點:求兩個數(shù)的最小公倍數(shù)的一些簡捷的方法。
教學過程:
一、基礎練習
找出下面每組數(shù)的最小公倍數(shù)。
4和6 3和7 5和9 10和6
二、完成第25頁的5~8題。
1、第5題
、 ①讓學生觀察左邊4題,說說這幾組數(shù)有什么共同的特點。
、谡页雒拷M兩個數(shù)的最小公倍數(shù)。
、郾容^和交流:有什么發(fā)現(xiàn)?
。▋蓚數(shù)的最小公倍數(shù)就是它們的乘積。)
、篇毩⑼瓿捎疫4題,再比較交流發(fā)現(xiàn)了什么?
2、第6題
先由學生獨立完成。
然后說說分別是什么方法求出每組上數(shù)的最小公倍數(shù)的?
3、第7題
先讓學生用列表的方法找出答案,并通過交流使學生體會到列表的過
程實際上就是求7和8的最小公倍數(shù)。
4、第8題
先讓學生說說求幾月幾日小林和小軍再次相遇,可以先求哪兩個數(shù)的
最小公倍數(shù),再讓學生獨立解答。
三、小結(jié):通過今天這一節(jié)課的學習,你有什么收獲?
四、思考題
提示:先用列舉法找3、4和6的最小公倍數(shù)。
【《最小公倍數(shù)》優(yōu)秀教案】相關文章:
最小公倍數(shù)優(yōu)秀教案(精選10篇)04-19
最小公倍數(shù)教案01-20
《最小公倍數(shù)》教案08-26
最小公倍數(shù)教學教案02-24
《最小公倍數(shù)》教案15篇03-03
《最小公倍數(shù)》教案(15篇)03-05
【精選】《最小公倍數(shù)》教案三篇04-05