- 初中數學教案 推薦度:
- 初中數學教案 推薦度:
- 相關推薦
初中數學教案(集錦15篇)
作為一位不辭辛勞的人民教師,常常需要準備教案,教案是保證教學取得成功、提高教學質量的基本條件。我們該怎么去寫教案呢?以下是小編整理的初中數學教案,希望對大家有所幫助。
初中數學教案1
教學目標
1.使學生認識字母表示數的意義,了解字母表示數是數學的一大進步;
2.了解代數式的概念,使學生能說出一個代數式所表示的數量關系;
3.通過對用字母表示數的講解,初步培養(yǎng)學生觀察和抽象思維的能力;
4.通過本節(jié)課的教學,使學生深刻體會從特殊到一般的的數學思想方法。
教學建議
1. 知識結構:本小節(jié)先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數的優(yōu)越性,進而引出代數式的概念。
2.教學重點分析:教科書,介紹了小學用字母表示數的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現用字母表示數所具有的簡明、普遍的優(yōu)越性,用字母表示是數學從算術到代數的一大進步,是代數的顯著特點。運用算術的方法解決問題,是小學學生的思維方法 ,現在,從具體的數過渡到用字母表示數,滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數式的概念課文沒有直接給出,而是用實例形象地說明了代數式的概念。對代數式的概念可以從三個方面去理解:
(1)從具體的數到用字母表示數,是抽象思維的開始,體現了特殊與一般的辨證關系,用字母表示數具有簡明、普遍的優(yōu)越性.
(2)代數式中并不要求數和表示數的字母同時出現,單獨的一個數和字母也是代數式.如:2,m都是代數式.
等都不是代數式.
3.教學難點分析:能正確說出一個代數式的數量關系,即用語言表達代數式的意義,一定要理清代數式中含有的各種運算及其順序。用語言表達代數式的意義,具體說法沒有統一規(guī)定,以簡明而不引起誤會為出發(fā)點。
如:說出代數式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書寫代數式的注意事項:
(1)代數式中數字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數字應寫在字母前面.
如3×a ,應寫作3.a 或寫作3a ,a×b 應寫作3.a 或寫作ab .帶分數與字母相乘,應把帶分數化成假分數,
#FormatImgID_0#
.數字與數字相乘一般仍用“×”號.
(2)代數式中有除法運算時,一般按照分數的寫法來寫.
(3)含有加減運算的代數式需注明單位時,一定要把整個式子括起來.
5.對本節(jié)例題的分析:
例1是用代數式表示幾個比較簡單的數量關系,這些小學都學過.比較復雜一些的數量關系的代數式表示,課文安排在下一節(jié)中專門介紹.
例2是說出一些比較簡單的代數式的意義.因為代數式中用字母表示數,所以把字母也看成數,一種特殊的數,就可以像看待原來比較熟悉的數式一樣,說出一個代數式所表示的數量關系,只是另外還要考慮乘號可能省略等新規(guī)定而已.
6.教法建議
(1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發(fā)學生的學習興趣。在教學中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學數學與初中代數的銜接,使學生有一個良好的開端。
(2)在本節(jié)的學習過程中,要使學生理解代數式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現實生活的例子),使學生從感性上認識什么是代數式,理清代數式中的運算和運算順序,才能正確說出一個代數式所表示的數量關系,從而認識字母表示數的意義——普遍性、簡明性,也為列代數式做準備。
(3)條件比較好的.學校,老師可選用一些多媒體課件,激發(fā)學生的學習興趣,增強學生自主學習的能力。
(4)老師在講解第一節(jié)之前,一定要對全章內容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。
(5)因為是新學期代數的第一節(jié)課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。
7.教學重點、難點:
重點:用字母表示數的意義
難點:學會用字母表示數及正確說出一個代數式所表示的數量關系。
教學設計示例
課堂教學過程設計
一、從學生原有的認知結構提出問題
1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?
(通過啟發(fā)、歸納最后師生共同得出用字母表示數的五種運算律)
(1)加法交換律 a+b=b+a;
(2)乘法交換律 a·b=b·a;
(3)加法結合律 (a+b)+c=a+(b+c);
(4)乘法結合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號或者省略不寫,但數與數之間相乘,一般仍用“×”;
(2)上面各種運算律中,所用到的字母a,b,c都是表示數的字母,它代表我們過去學過的一切數
2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?
3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?
(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時,教師應指出:(1)用字母表示數可以把數或數的關系,簡明的表示出來;(2)在公式與中,用字母表示數也會給運算帶來方便;(3)像上面出現的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代數式.那么究竟什么叫代數式呢?代數式的意義又是什么呢?這正是本節(jié)課我們將要學習的內容.
三、講授新課
1代數式
單獨的一個數字或單獨的一個字母以及用運算符號把數或表示數的字母連接而成的式子叫代數式.學習代數,首先要學習用代數式表示數量關系,明確代數上的意義
2舉例說明
例1 填空:
(1)每包書有12冊,n包書有__________冊;
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長是a厘米的正方體的體積是_____立方厘米;
(4)產量由m千克增長10%,就達到_______千克
(此例題用投影給出,學生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 說出下列代數式的意義:
解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方
說明:(1)本題應由教師示范來完成;
(2)對于代數式的意義,具體說法沒有統一規(guī)定,以簡明而不致引起誤會為出發(fā)點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等
例3 用代數式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數式表示用語言敘述的數量關系要注意:①弄清代數式中括號的使用;②字母與數字做乘積時,習慣上數字要寫在字母的前面
四、課堂練習
1填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學生人數是x,其中女生占48%?則女生人數是____,男生人數是____
2說出下列代數式的意義:(投影)
3用代數式表示:(投影)
(1)x與y的和; (2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和; (4)a除以2的商與b除3的商的和
五、師生共同小結
首先,提出如下問題:
1本節(jié)課學習了哪些內容?2用字母表示數的意義是什么?
3什么叫代數式?
教師在學生回答上述問題的基礎上,指出:①代數式實際上就是算式,字母像數字一樣也可以進行運算;②在代數式和運算結果中,如有單位時,要正確地使用括號
六、作業(yè)
1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長
2張強比王華大3歲,當張強a歲時,王華的年齡是多少?
3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3 ,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?
4a千克大米的售價是6元,1千克大米售多少元?
5圓的半徑是R厘米,它的面積是多少?
6用代數式表示:
(1)長為a,寬為b米的長方形的周長;
(2)寬為b米,長是寬的2倍的長方形的周長;
(3)長是a米,寬是長的1/3 的長方形的周長;
(4)寬為b米,長比寬多2米的長方形的周長
初中數學教案2
一、教材分析
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書七年級下冊多邊形內角和。
二、教學目標
1、知識目標:了解多邊形內角和公式。
2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。
三、教學重、難點
重點:探索多邊形內角和。
難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
四、教學方法:
引導發(fā)現法、討論法
五、教具、學具
教具:多媒體課件
學具:三角板、量角器
六、教學媒體:
大屏幕、實物投影
七、教學過程:
(一)創(chuàng)設情境,設疑激思
師:大家都知道三角形的內角和是180o,那么四邊形的內角和,你知道嗎?
活動一:探究四邊形內角和。
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。方法一:用量角器量出四個角的度數,然后把四個角加起來,發(fā)現內角和是360o。
方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現兩個三角形內角和相加是360o。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?活動二:探究五邊形、六邊形、十邊形的內角和。
學生先獨立思考每個問題再分組討論。
關注:(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內角和)
方法1:把五邊形分成三個三角形,3個180o的和是540o。
方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結果得540o。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結果得540o。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結果得540o。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720o,十邊形內角和是1440o。
(二)引申思考,培養(yǎng)創(chuàng)新
師:通過前面的討論,你能知道多邊形內角和嗎?
活動三:探究任意多邊形的內角和公式。
思考:(1)多邊形內角和與三角形內角和的關系?
(2)多邊形的邊數與內角和的關系?
(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?
學生結合思考題進行討論,并把討論后的結果進行交流。
發(fā)現1:四邊形內角和是2個180o的和,五邊形內角和是3個180o的和,六邊形內角和是4個180o的和,十邊形內角和是8個180o的和。
發(fā)現2:多邊形的邊數增加1,內角和增加180o。
發(fā)現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。
得出結論:多邊形內角和公式:(n-2)〃180。
(三)實際應用,優(yōu)勢互補
1、口答:(1)七邊形內角和( )
(2)九邊形內角和( )
(3)十邊形內角和( )
2、搶答:(1)一個多邊形的內角和等于1260o,它是幾邊形?
(2)一個多邊形的內角和是1440o,且每個內角都相等,則每個內角的度數是( )。
3、討論回答:一個多邊形的內角和比四邊形的內角和多540o,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?
(四)概括存儲
學生自己歸納總結:
1、多邊形內角和公式
2、運用轉化思想解決數學問題
3、用數形結合的思想解決問題
(五)作業(yè):練習冊第93頁1、2、3
八、教學反思:
1、教的轉變
本節(jié)課教師的.角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數學問題,體驗發(fā)現的樂趣。
2、學的轉變
學生的角色從學會轉變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變
整節(jié)課以?流暢、開放、合作、‘隱’導?為基本特征,教師對學生的
思維減少干預,教學過程呈現一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以?對話?、?討論?為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現的價值。
初中數學教案3
《正方形》教學設計
教學內容分析:
⑴學習特殊的平行四邊形—正方形,它的特殊的性質和判定。
⑵前面學習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。
、菍Ρ竟(jié)的學習,繼續(xù)培養(yǎng)學生分類研究的思想,并且建立新舊知識的聯系,類比的基礎上進行歸納,梳理知識,進一步發(fā)展學生的推理能力。
學生分析:
、艑W生在小學初步認識了正方形,并且本節(jié)課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。
、茖W生在上幾節(jié)已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。
教學目標:
、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。
⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。
、乔楦袘B(tài)度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:掌握正方形的性質與判定,并進行簡單的推理。
難點:探索正方形的判定,發(fā)展學生的推理能
教學方法:類比與探究
教具準備:可以活動的四邊形模型。
一、教學分析
(一)教學內容分析
1.教材:義務教育課程標準實驗教科書《數學》九年級上冊(人民教育出版社)
2.本課教學內容的地位、作用,知識的前后聯系
《中心對稱圖形》是新人教版九年級數學上冊第二十三章第二單元第二節(jié)課的內容。本節(jié)教材屬于圖形變換的內容,是在學習了“軸對稱和軸對稱圖形”、“旋轉和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學生探索精神和創(chuàng)新意識等方面都有重要意義。
3.本課教學內容的特點,重點分析體現新課程理念的特點
本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質。為使學生感受、理解知識的產生和發(fā)展過程,培養(yǎng)學生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉對稱圖形引出中心對稱圖形的概念;(2)引導學生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質,(3)通過多媒體演示使學生對中心對稱圖形的性質有直觀的表象。我認為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標準理念和學生建構知識的規(guī)律,有利于激發(fā)學生的學習情趣。
(二)教學對象分析
1.學生所在地區(qū)、學校及班級的特色
我授課的班級是西安市閻良區(qū)振興中學九年級一班,作為九年級的學生,在圖形的對稱方面已經積累一些經驗,已經具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學生具有個性活潑,思維活躍,對各種事物充滿好奇,學習情緒易于調動,學習積極性高的特點,但學生的抽象思維能力個體差異較大,并且班級中已出現分化現象。
2.學生的年齡特點和認知特點
班級學生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經驗,因此在課程內容的安排中,適當地創(chuàng)設一些具有一定思維深度的問題,加強學生在學習過程中自主探索與合作交流的緊密結合,促使學生在探究的過程中,更多地獲得成功的體驗,感受學習思考的樂趣。
教學過程:
一:復習鞏固,建立聯系。
【教師活動】
問題設置:①平行四邊形、矩形,菱形各有哪些性質?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學生活動】
學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。
【教師活動】
評析學生的結果,給予表揚。
總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學生活動】
學生拿出自備矩形紙片,動手操作,不難發(fā)現它是正方形。
設置問題:①什么是正方形?
觀察發(fā)現,從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學生活動】認真觀察變化過程,思考之間的聯系,舉手回答設置問題。
設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學生活動】
小組討論,分組回答。
【教師活動】
總結板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設置問題③正方形有那些性質?
【學生活動】
小組討論,舉手搶答。
【教師活動】
表揚學生發(fā)言,板書學生發(fā)現,㈡正方形每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學生活動
折紙發(fā)現,說出自己的發(fā)現。得到正方形的`又一性質。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學生活動
小組充分交流,表達不同的意見。
教師活動
評析活動,總結發(fā)現:
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現在哪里?生活中有哪些利用正方形的例子?
學生交流,感受正方形
三,應用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學生活動
獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學生舉手談論自己的收獲。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。
發(fā)表評論
教學目標:
情意目標:培養(yǎng)學生團結協作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。
教學重點、難點
重點:等腰梯形性質的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
(一)導入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|的探究
【探究性質一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質:等腰梯形的兩條對角線相等。
【探究性質三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質:同以底上的兩個內角相等,對角線相等
(三)質疑反思、小結
讓學生回顧本課教學內容,并提出尚存問題;
學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中數學教案4
【教學目標】
1進一步認識方程及其解的概念。
2理解一元一次方程的概念,會根據簡單數量關系列一元一次方程。 3體驗用嘗試、檢驗解一元一次方程的思想與方法。
【教學重點】
一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗法”求解是本節(jié)教學的重點。
【教學難點】
用嘗試、檢驗的方法解一元一次方程的過程比較復雜,是本節(jié)教學的難點。
【學習準備】
1.下面哪些式子是方程?
(1)3
(2)1;
。2)x31;
(3)3x5;
。4)2xy4;
(5)x31;
。6)3x14.
2.方程與等式有什么聯系與區(qū)別?
方程是解決實際問題的一個重要數學模型,需要我們進一步學習研究。
【課本導學】
思考一閱讀并解答課本第114頁“合作學習”的三個問題,思考:
1.列方程就是根據問題中的相等關系,寫出含有未知數的等式。
。1)原價為50元的衣服,按8折銷售,售價是多少元?原價若為x元呢?
。2)你能舉例說明你對“物體在水下,水深每增加10米,物體承受的壓力就增加
(3)張明投進x個,那么“小杰投進的球的個數”可以怎樣表示?“3人一共投進的球數”怎樣表示?
你是怎么理解“三人平均每人投進14個球”這句話的?
思考二觀察你所列的方程,這些方程之間有哪些共同的特點?請思考:
1.你可以從哪些角度對這些方程進行觀察呢?說說你的想法。
2.具有“合作學習”中所列方程一樣特點的方程叫做一元一次方程,你能說說這個名稱中“元”和“次”的含義嗎?[練習]完成課本第115頁課內練習
1.『歸納』判斷一個方程是不是一元一次方程應抓住哪幾個關鍵特點?
思考三閱讀課本第114頁倒數3行至第115頁正文結束,并思考下面的問題:
1.(1)如果一個數是方程有什么關系?
。2)如果一個數是方程350應該是多少?
(3)要判斷一個數是不是方程3m?2?1?m的解,你會怎么做?2.對方程2x12
14的解,這個數代入方程的左邊計算得到的值與14 3 1
x500的解,這個數代入方程的左邊計算得到的值10 2x12
14進行嘗試求解時,你認為x必須是整數嗎
x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說說你的想法。
[練習]完成課本第115頁課內練習
2.『歸納』1.檢驗一個數是不是一元一次方程的解的步驟有哪些?
2.用嘗試檢驗的方法解一元一次方程,你覺得關鍵的步驟有哪些?【盤點收獲】
【學習檢測】
1.下列說法正確的是()
。╝)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,屬于一元一次方程的是()(a)5x 1
(b)ab8(c)1257(d)5x82x9 3
3.設某數為x,根據下列條件列出求該數的方程:
。1)某數加上1,再乘以2,得6.
。2)某數與7的和的2倍等于10.
(3)某數的5倍比某數小3.
4.某校初一年級328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?
設還需租用x輛,則可列出方程44x+64=328.
(1)寫出一個方程,使它的解是
2.【作業(yè)布置】略
【課后反思】
課堂教學總是在“預設”與“生成”間交融進行,如何根據學情做好充分的預設,又根據課堂生成靈活應變,這既能反映教師的專業(yè)素養(yǎng),又能展示教師的.教學功底.反芻本課,筆者認為還有以下幾方面值得反思與改進:
1.忽略課堂“火花”,錯失追問良機
在交流對方程的共同特征探討的環(huán)節(jié),有一個同學直接說出了“一元一次方程”的名稱.【片斷實錄】
師:討論好了吧.哪個小組先來說說你們所歸納的特點.生8:這些等式都含有未知數的,用x或y來表示.師(板書):嗯,都含有未知數,這個未知數呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.
師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來要具體研究的一元一次方程,這位同學已經預習了呢.我們看,剛才這位同學歸納了:都含有未知數.那么請同學們看得更仔細一點,未知數在這里具有什么特征呢?
不難看出,筆者在這里沒有很好地抓住學生的課堂即時生成資源,用一句“嗯,……,這位同學已經預習了呢.”輕輕帶過,仍然拉著學生回到了預設的軌道“……,請同學們看得更仔細一點,未知數在這里具有什么特征呢?”如果當時直接問她“那么請你講講什
初中數學教案5
教學內容:在學生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關系。
教學目標:1、通過對"撲克"有趣的研究,培養(yǎng)起學生對生活中平常小事的關注。
2、調動學生豐富的聯想,養(yǎng)成一種思考的習慣。
教學重難點:"撲克"與年月日、季度的聯系。
教學過程:
一、談話引入
師:同學們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?
生:......
。ń處熝a充,引發(fā)學生的好奇心。)
師: "撲克"還有一種作用,而且與數學有關!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數
所有牌的和+小王+大王=閏年的天數
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月
6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。
7、一種花色的.和=一個季度的天數
一種花色有13張牌=一個季度有13個星期
三、小結
生活中有很多的數學,他每時每刻都在我們的身邊出現,只是我們大家沒有注意到。請大家都要學會留心觀察,做生活的有心人。
初中數學教案6
教學目標
1.理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程.
教學過程
1.情景導入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.
2.新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的.方程叫做二元一次方程.
3.合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
4.課堂練習:
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_
5.課堂總結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式.
作業(yè)布置
本章的課后的方程式鞏固提高練習。
初中數學教案7
教學目標:
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數學與日常生活密切相關,認識到許多實際問題可以用數學方法解決。
教學重點:歸納一元次方程的概念
教學難點:感受方程作為刻畫現實世界有效模型的意義.
教學過程:
一、情景導入:
我能猜出你們的年齡,相信嗎?
只要任何一個同學回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學生說出結果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學生討論并回答
二、知識探究:
1、方程的教學(投影演示)
小彬和小明也在進行猜年齡游戲,我們來看一看。
找出這道題中的等量關系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、 判斷下列式子是不是方程?
。1)X+2=3(是)(2)X+3Y=6(是)
。3)3M-6(不是)(4)1+2=3(不是)
(5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?
你能找出題中的等量關系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統計數據(20xx年3月28日新華社公布)
截至20xx年11月1日0時,全國每10萬人中具有大學文化程度的人數為3611人,比1990年7月1日0時增長了153.94%
1990年6月底每10萬人中約有多少人具有大學文化程度?情景三:西湖中學的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?
下面是剛才根據幾道情景題所列的方程,分析下列方程有何共同點?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個方程中,只含有一個未知數X(元),并且未知數的指數是1(次),這樣的'方程叫一元一次方程。
問:大家剛才都已經自己列出了方程,那個同學能夠說一下你是怎樣列出方程的,列方程應該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關系(2)設未知數(3)列方程
四、隨堂練習
1、投影趣味習題,
2、做一做
下面有兩道題,請選做一題。
。1)、請根據方程2X+3=21自己設計一道有實際背景的應用題。
。2)、發(fā)揮你的想象,用自己的年齡編一道應用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
數學教案-你今年幾歲了搜集整理
初中數學教案8
教學目標:
1、通過解題,使學生了解到數學是具有趣味性的。
2、培養(yǎng)學生勤于動腦的習慣。
教學過程:
一、出示趣味題
師:老師這里有一些有趣的問題,希望大家開動腦筋,積極思考。
1、小衛(wèi)到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛(wèi)原有( )錢?
2、蘋蘋做加法,把一個加數22錯寫成12,算出結果是48,問正確結果是( )。
3、小明做減法,把減數30寫成20,這樣他算出的得數比正確得數多
( ),如果小明算出的.結果是10,正確結果是( )。
4、同學們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種
辦法來用△表示。
5、把一段布5米,一次剪下1米,全部剪下要( )次。
6、李小松有10本本子,送給小剛2本后,兩人本子數同樣多,小剛原來
有( )本本子。
二、小組討論
三、指名講解
四、評價
1、同學互評
2、老師點評
五、小結
師:通過今天的學習,你有哪些收獲呢?
初中數學教案9
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;
3.使學生初步理解數形結合的思想方法.
教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.
難點:正確理解有理數與上點的對應關系.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容——.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的'直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數的點:
例2 指出上A,B,C,D,E各點分別表示什么數.
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數?
最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.
本節(jié)課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)A,H,D,E,O各點分別表示什么數?
2.在下面上,A,B,C,D各點分別表示什么數?
3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數學教案10
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數能使兩邊的值相等,這個數就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學們動手試一試,大家發(fā)現了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的`值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習
1、教科書第3頁練習1、2。
2、補充練習:檢驗下列各括號內的數是不是它前面方程的解。
。1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結。本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業(yè)。教科書第3頁,習題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學目的
通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節(jié)課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。
測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質量相等。
如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯想到方程的變形嗎?
讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。
初中數學教案11
復習目標:
(1)了解方程、一元一次方程以及方程的解等基本概念。
。2)會解一元一次方程。
。3)會根據具體問題中的數量關系列出一元一次方程并求解。
重點、難點:
1.重點:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
會用一元一次方程解決實際問題。
2.難點:
一元一次方程的解法的靈活應用。
尋找實際問題中的等量關系。
【典型例題】
例1.
分析: 明確一元一次方程的概念。方程中含有一個未知數,未知數的次數是1,且含有未知數的式子為整式,未知數的系數不為0。
在這里特別注意:未知數的次數及系數。
這三個方程中含有兩個未知數x、y,要想成為一元一次方程就要使其中一個未知數的系數為0。
解:
例2.
分析: 此題要明確兩點:(1)當方程中含有多個字母時,指出關于哪個字母的'方程,這個字母就是方程的未知數,而其它的字母是代替已知數的字母系數,這類方程也叫字母系數方程。(2)方程的解,即使方程左右兩邊相等的未知數的值。
此題從問題出發(fā),求解關于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是關于y的方程的解,即關于y的方程中字母y=1,因此可將y=1代入方程,從而求出m的值。
解:
將m=1代入關于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步驟為以上五步,但在解方程時,要注意靈活運用。
例4.
分析: 此題的括號較多,如果按照一般的做法先去小括號,再去中括號,最后去大括號的方法比較麻煩,所以要觀察分析方程找一種比較簡單的方法。
解:
例5.
分析: 此題中分母出現小數,如果用一般的方法先去分母,則比較麻煩,公分母就不好找,所以采取一個巧妙的方法,先利用“分數的基本性質”將方程中分母中的小數化為整數,再用去分母……解之。
解:
注:用分數的基本性質化簡用的是分子、分母擴大相同倍數分數值不變,與去分母不同。
解:
例6.已知某鐵路橋長1000米,現有列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鐘,整個火車完全在橋上的時間為40秒,求火車的速度。
分析: 列方程解應用題的關鍵要找出題目中的等量關系,而由題意可知,此題有兩個不變的量,即車的速度和車身的長度。在題目中不變的量,即可為等量,從而列出方程。例如以車身長度為等量,可列方程,設車的速度為xm/s,60x-1000=1000-40x,以車的速度為等量,可列方程,設車身長為xm
解一: 設車的速度為xm/s
經檢驗,符合題意。
答: 車的速度為20m/s。
解二: 設車身的長度為xm
經檢驗,符合題意。
答: 車的速度為(1000+200)/60=20m/s
例7.某音樂廳五月初決定在暑假期間舉辦學生專場音樂會,入場券分為團體票和零售票
售票的一半。如果在六月份內,團體票按每張16元出售,并計劃在六月份售完全部余票,那么零售票應按每張多少元出售才能使兩個月的票款收入持平?
分析: 此題的等量關系比較好找,即五六月份的票款相等,但團體票及零售票的張數不知道,可用字母表示出來,設而不求。
解: 設團體票共2a張,零售票共a張,零售票價x元
經檢驗,符合題意。
答: 零售票價為19.2元。
初中數學教案12
教學目標:
1、經歷收集數據、分析數據的活動,體會統計在實際生活中的應用。
2、收集統計在生活中應用的例子,整理收集數據的方法。
3、在解決問題的過程中,整理所學習的統計圖,和統計量,能用自己的語言描述過各種統計圖的特點,掌握整理收集數據的方法。
教學過程:
一、課前預習,出示預習提綱:
1、我們學習了哪幾種統計圖?
2、這幾種統計圖各有什么特點?
3、概率的知識有哪些?
二、展示與交流
(一)提出問題
1、(出示問題情境)我們班要和希望小學的六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)
2、師:先獨立列出幾個你想調查的.問題。(寫在練習本上)
3、四人小組交流,整理出你們小組都比較感興趣的,又能實施的3個問題。(小組匯報、交流、整理)
4、接著全班匯報交流(師羅列在黑板上)
師:大家想調查這么多的問題,現在我們班選擇其中有價值又能實施的問題進行調查。(師根據生的回答進行歸納、整理)
(二)收集數據和整理數據
1、師:調查這幾個問題,你需要收集哪些數據?怎么樣收集這些數據?與同伴交流收集數據的方法。
2、師:開展實際調查的話,如何進行調查比較有效?在調查的時候,大家需要注意什么?
(三)開展調查
1、針對學生提出的某個問題,先組織小組有效的開展收集和整理數據的活動,然后把數據記錄下來,并進行整理。
2、師:誰來說一說你們小組是怎么樣分工,怎么樣調查和記錄數據的?(指名匯報)
3、全班匯總、整理、歸納各小組數據。(板書)
4、師:分析上面的數據,你能得到哪些信息?
5、師:根據整理的數據,想一想繪制什么統計圖比較好呢?
6、師:根據這些信息,你還能提出什么數學問題?
(四)回顧統計活動
1、師:在剛才的統計活動,我們都做了些什么?你能按順序說一說嗎?
師板書:提出問題——收集數據——整理數據——分析數據——作出決策。
2、收集在生活中應用統計的例子,并說說這些例子中的數據告訴人們哪些信息。(全班交流)
指名同學匯報,其他同學注意聽,并指出這個同學舉的例子中你可以獲得什么信息?
3、結合生活中的例子說說收集數據有哪些方法?
(1)先讓學生在小組內交流,引導學生結合例子(充分利用第2題中收集來
的實例)來說說自己的方法。
(2)師歸納:常用的收集數據的方法有:查閱資料、詢問他人、調查實驗等。
4、師:同學們,我們已經對統計表和統計圖進行了系統的學習,回憶一下我們已經學過了哪些統計圖,對這些統計圖,你已經知道了哪些知識?
初中數學教案13
(一)教材分析
1、知識結構
2、重點、難點分析
重點:
找出命題的題設和結論.因為找出一個命題的題設和結論,是對該命題深刻理解的前提,而對命題理解能力是我們今后研究數學必備的能力,也是研究其它學科能力的基礎.
難點:
找出一個命題的題設和結論.因為理解和掌握一個命題,一定要分清它的題設和結論,所以找出一個命題的題設和結論是十分重要的問題.但有些命題的題設和結論不明顯.例如,“對頂角相等”,“等角的余角相等”等.一些沒有寫成“如果那么”形式的命題,學生往往搞不清哪是題設,哪是結論,又沒有一個通用的方法可以套用,所以分清題設和結論是教學的一個難點.
(二)教學建議
1、教師在教學過程中,組織或引導學生從具體到抽象,結合學生熟悉的事例,來理解命題的概念、找出一個命題的題設和結論,并能判斷一些簡單命題的真假.
2、命題是數學中一個非常重要的概念,雖然高中階段我們還要學習,但對于程度好的A層學生還要理解:
。1)假命題可分為兩類情況:
、兕}設只有一種情形,并且結論是錯誤的,例如,“1+3=7”就是一個錯誤的命題.
、陬}設有多種情形,其中至少有一種情形的結論是錯誤的.
例如,“內錯角互補,兩直線平行”這個命題的題設可分為兩種情形:
第一種情形是兩個內錯角都等于90°,這時兩直線平行;
第二種情形是兩個內錯角不都等于90°,這時兩直線不平行.
整體說來,這是錯誤的命題.
。2)是否是命題:
命題的定義包括兩層涵義:
、倜}必須是一個完整的句子;
②這個句子必須對某件事情做出肯定或者否定的判斷.即命題是判斷某一件事情的句子.在語法上,這樣的句子叫做陳述句,它由“題設+結論”構成.
另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過直線AB外一點作該直線的`平行線.”疑問句“∠A是否等于∠B?”感嘆句“竟然得到5>9的結果!”以上三個句子都不是命題.
。3)命題的組成
每個命題都是由題設、結論兩部分組成.題設是已知事項;結論是由已知事項推出的事項.命題常寫成“如果,那么”的形式.具有這種形式的命題中,用“如果”開始的部分是題設,用“那么”開始的部分是結論.
有些命題,沒有寫成“如果,那么”的形式,題設和結論不明顯.對于這樣的命題,要經過分折才能找出題設和結論,也可以將它們改寫成“如果那么”的形式.
另外命題的題設(條件)部分,有時也可用“已知”或者“若”等形式表述;命題的結論部分,有時也可用“求證”或“則”等形式表述.
初中數學教案14
一、指導思想
教育教學工作是一個頭緒眾多的系統工程,在紛繁的頭緒中需要各項工作有序進展,尤為重要的是強化常規(guī),做好細節(jié),教學常規(guī)是對學校教學工作的基本要求,落實教學常規(guī)是學校教學工作得以正常有序開展的根本保證。只有搞好教學常規(guī)才有可能獲得成功的教育。教師教學水平的高低體現于教學各個步驟的細節(jié)中,空洞地談教學能力是蒼白的,只有用教師的備課情況、講課細節(jié)、作業(yè)批改情況。教學常規(guī)培養(yǎng)著教師的基本功,決定著教師的教學能力,可以說教師的教學水平就是在這些常規(guī)細節(jié)中培養(yǎng)起來。
二、檢查反饋
本次檢查大多數教師都比較重視,檢查內容完整、全面,F將檢查情況總結如下教案方面的特點與不足。
特點:
1、絕大多數教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文等能突出對學科素養(yǎng)的高度關注。教師撰寫的課后反思能體現教師對教材處理的新方法,能側重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現課堂教學的反思意識,反思深刻、務實、有針對性。
2、教學環(huán)節(jié)齊全,注重引語與小結,使教學設計前后呼應,環(huán)節(jié)完整。
3、注重選擇恰當的教學方法,注重在靈活多樣的教學方法中培養(yǎng)學生的合作意識和創(chuàng)新精神。
4、教案能體現多媒體教學手段,注重培養(yǎng)學生的'探究精神和創(chuàng)新能力。
不足:
1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業(yè)方面的特點與不足
特點:
1、能按進度布置作業(yè),作業(yè)設置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的錯誤做法及糾正措施。
不足:
1、對于學生書寫的工整性,還需加強教育。
2、教師在批閱作業(yè)時,要稍細心些,發(fā)現問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。
初中數學教案15
一、教學目標
1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
2.培養(yǎng)學生觀察能力,提高他們分析問題和解決問題的能力;
3.使學生初步養(yǎng)成正確思考問題的良好習慣。
二、教學重點和難點
一元一次方程解簡單的應用題的方法和步驟。
三、課堂教學過程設計
。ㄒ唬⿵膶W生原有的認知結構提出問題
在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個問題,我們來看下面這個例題。
例1 某數的3倍減2等于某數與4的和,求某數。
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3。
答:某數為3。
(其次,用代數方法來解,教師引導,學生口述完成)
解法2:設某數為x,則有3x-2=x+4。
解之,得x=3。
答:某數為3。
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一。
我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系。因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程。
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟。
。ǘ⿴熒餐治、研究一元一次方程解簡單應用題的方法和步驟
例2 某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42 500,
所以x=50 000。
答:原來有50 000千克面粉。
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:
。1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;
。2)例2的解方程過程較為簡捷,同學應注意模仿。
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:
。1)仔細審題,透徹理解題意。即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;
。2)根據題意找出能夠表示應用題全部含義的一個相等關系。(這是關鍵一步);
。3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;
。4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義。
例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?
。ǚ抡绽2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤。并嚴格規(guī)范書寫格式。)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5。
其蘋果數為3× 5+9=24。
答:第一小組有5名同學,共摘蘋果24個。
學生板演后,引導學生探討此題是否可有其他解法,并列出方程。
。ㄔO第一小組共摘了x個蘋果,則依題意,得)
(三)課堂練習
1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?
2.我國城鄉(xiāng)居民1988年末的儲蓄存款達到3 802億元,比1978年末的'儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。
3.某工廠女工人占全廠總人數的35%,男工比女工多252人,求全廠總人數。
。ㄋ模⿴熒餐〗Y
首先,讓學生回答如下問題:
1.本節(jié)課學習了哪些內容?
2.列一元一次方程解應用題的方法和步驟是什么?
3.在運用上述方法和步驟時應注意什么?
依據學生的回答情況,教師總結如下:
(1)代數方法的基本步驟是:全面掌握題意;恰當選擇變數;找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;
。2)以上步驟同學應在理解的基礎上記憶。
。ㄎ澹┳鳂I(yè)
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產電視機20xx臺,這比前年10月產量的2倍還多150臺。這家工廠前年10月生產電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元。求得到一等獎與二等獎的人數。
【初中數學教案】相關文章:
初中數學教案02-21
初中數學教案11-04
初中數學教案【精品】07-13
[推薦]初中數學教案05-16
初中數學教案范文12-16
初中數學教案:公式12-29
初中數學教案優(yōu)秀03-21
初中數學教案精選15篇03-31
初中數學教案(精選20篇)10-11
初中數學教案設計11-28