欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當前位置:好文網(wǎng)>實用文>教案>因式分解教案

      因式分解教案

      時間:2024-07-14 07:21:55 教案 我要投稿

      因式分解教案模板匯編6篇

        作為一位杰出的教職工,編寫教案是必不可少的,教案是實施教學的主要依據(jù),有著至關重要的作用。來參考自己需要的教案吧!以下是小編為大家收集的因式分解教案6篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

      因式分解教案模板匯編6篇

      因式分解教案 篇1

        教學設計思想:

        本小節(jié)依次介紹了平方差公式和完全平方公式,并結合公式講授如何運用公式進行多項式的因式分解。第一課時的內(nèi)容是用平方差公式對多項式進行因式分解,首先提出新問題:x2-4與y2-25怎樣進行因式分解,讓學生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學生的逆向思維和推理能力,然后讓學生獨立去做例題、練習中的題目,并對結果通過展示、解釋、相互點評,達到能較好的.運用平方差公式進行因式分解的目的。第二課時利用完全平方公式進行多項式的因式分解是在學生已經(jīng)學習了提取公因式法及利用平方差公式分解因式的基礎上進行的,因此在教學設計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學方法,引導學生積極思考問題,從中培養(yǎng)學生的思維品質(zhì)。

        教學目標

        知識與技能:

        會用平方差公式對多項式進行因式分解;

        會用完全平方公式對多項式進行因式分解;

        能夠綜合運用提公因式法、平方差公式、完全平方公式對多項式進行因式分解;

        提高全面地觀察問題、分析問題和逆向思維的能力。

        過程與方法:

        經(jīng)歷用公式法分解因式的探索過程,進一步體會這兩個公式在因式分解和整式乘法中的不同方向,加深對整式乘法和因式分解這兩個相反變形的認識,體會從正逆兩方面認識和研究事物的方法。

        情感態(tài)度價值觀:

        通過學習進一步理解數(shù)學知識間有著密切的聯(lián)系。

        教學重點和難點

        重點:①運用平方差公式分解因式;②運用完全平方式分解因式。

        難點:①靈活運用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運用完全平方公式分解因式

        關鍵:把握住因式分解的基本思路,觀察多項式的特征,靈活地運用換元和劃歸思想。

      因式分解教案 篇2

        第1課時

        1.使學生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.

        2.讓學生會確定多項式中各項的公因式,會用提公因式法進行因式分解.

        自主探索,合作交流.

        1.通過與因數(shù)分解的類比,讓學生感悟數(shù)學中數(shù)與式的共同點,體驗數(shù)學的類比思想.

        2.通過對因式分解的教學,培養(yǎng)學生“換元”的意識.

        【重點】 因式分解的概念及提公因式法的應用.

        【難點】 正確找出多項式中各項的公因式.

        【教師準備】 多媒體.

        【學生準備】 復習有關乘法分配律的知識.

        導入一:

        【問題】 一塊場地由三個長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.

        解法1:這塊場地的面積=×+×+×=++==2.

        解法2:這塊場地的面積=×+×+×=×=×4=2.

        從上面的解答過程看,解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是將多項式化為幾個整式的積的形式的一種方法.

        [設計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.

        導入二:

        【問題】 計算×15-×9+×2采用什么方法?依據(jù)是什么?

        解法1:原式=-+==5.

        解法2:原式=×(15-9+2)=×8=5.

        解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是把多項式化為幾個整式的積的形式的一種方法.

        [設計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.

        一、提公因式法分解因式的概念

        思路一

        [過渡語] 上一節(jié)我們學習了什么是因式分解,那么怎樣進行因式分解呢?我們來看下面的問題.

        如果一塊場地由三個長方形組成,這三個長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號來連接,即:a+b+c=(a+b+c).

        大家注意觀察這個等式,等式左邊的每一項有什么特點?各項之間有什么聯(lián)系?等式右邊的項有什么特點?

        分析:等式左邊的每一項都含有因式,等式右邊是與多項式a+b+c的乘積,從左邊到右邊的過程是因式分解.

        由于是左邊多項式a+b+c中的各項a,b,c都含有的一個相同因式,因此叫做這個多項式各項的公因式.

        由上式可知,把多項式a+b+c寫成與多項式a+b+c的乘積的形式,相當于把公因式從各項中提出來,作為多項式a+b+c的一個因式,把從多項式a+b+c的各項中提出后形成的多項式a+b+c,作為多項式a+b+c的另一個因式.

        總結:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

        [設計意圖] 通過實例的教學,使學生明白什么是公因式和用提公因式法分解因式.

        思路二

        [過渡語] 同學們,我們來看下面的問題,看看同學們誰先做出來.

        多項式 ab+ac中,各項都含有相同的因式嗎?多項式 3x2+x呢?多項式b2+nb-b呢?

        結論:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式.

        多項式2x2+6x3中各項的公因式是什么?你能嘗試將多項式2x2+6x3因式分解嗎?

        結論:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

        [設計意圖] 從讓學生找出幾個簡單多項式的公因式,再到讓學生嘗試將多項式分解因式,使學生理解公因式以及提公因式法分解因式的概念.

        二、例題講解

        [過渡語] 剛剛我們學習了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進行因式分解吧.

        (教材例1)把下列各式因式分解:

        (1)3x+x3;

        (2)7x3-21x2;

        (3)8a3b2-12ab3c+ab;

        (4)-24x3+12x2-28x.

        〔解析〕 首先要找出各項的公因式,然后再提取出來.要避免提取公因式后,各項中還有公因式,即“沒提徹底”的現(xiàn)象.

        解:(1)3x+x3=x3+xx2=x(3+x2).

        (2)7x3-21x2=7x2x-7x23=7x2(x-3).

        (3)8a3b2-12ab3c+ab

        =ab8a2b-ab12b2c+ab1

        =ab(8a2b-12b2c+1).

        (4)-24x3+12x2-28x

        =-(24x3-12x2+28x)

        =-(4x6x2-4x3x+4x7)

        =-4x(6x2-3x+7).

        【學生活動】 通過剛才的練習,大家互相交流,總結出提取公因式的一般步驟和容易出現(xiàn)的問題.

        總結:提取公因式的步驟:(1)找公因式;(2)提公因式.

        容易出現(xiàn)的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號時,沒有把后面的因式中的每一項都變號.

        教師提醒:

        (1)各項都含有的字母的最低次冪的積是公因式的字母部分;

        (2)因式分解后括號內(nèi)的多項式的項數(shù)與原多項式的項數(shù)相同;

        (3)若多項式的首項為“-”,則先提取“-”號,然后再提取其他公因式;

        (4)將分解因式后的.式子再進行整式的乘法運算,其積應與原式相等.

        [設計意圖] 經(jīng)歷用提公因式法進行因式分解的過程,在教師的啟發(fā)與指導下,學生自己歸納出提公因式的步驟及提取公因式時容易出現(xiàn)的類似問題,為提取公因式積累經(jīng)驗.

        1.提公因式法分解因式的一般形式,如:

        a+b+c=(a+b+c).

        這里的字母a,b,c,可以是一個系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項式.

        2.提公因式法分解因式的關鍵在于發(fā)現(xiàn)多項式的公因式.

        3.找公因式的一般步驟:

        (1)若各項系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);

        (2)取各項中相同的字母,字母的指數(shù)取最低的;

        (3)所有這些因式的乘積即為公因式.

        1.多項式-6ab2+18a2b2-12a3b2c的公因式是( )

        A.-6ab2cB.-ab2

        C.-6ab2D.-6a3b2c

        解析:根據(jù)確定多項式各項的公因式的方法,可知公因式為-6ab2.故選C.

        2.下列用提公因式法分解因式正確的是( )

        A.12abc-9a2b2=3abc(4-3ab)

        B.3x2-3x+6=3(x2-x+2)

        C.-a2+ab-ac=-a(a-b+c)

        D.x2+5x-=(x2+5x)

        解析:A.12abc-9a2b2=3ab(4c-3ab),錯誤;B.3x2-3x+6=3(x2-x+2),錯誤;D.x2+5x-=(x2+5x-1),錯誤.故選C.

        3.下列多項式中應提取的公因式為5a2b的是( )

        A.15a2b-20a2b2

        B.30a2b3-15ab4-10a3b2

        C.10a2b-20a2b3+50a4b

        D.5a2b4-10a3b3+15a4b2

        解析:B.應提取公因式5ab2,錯誤;C.應提取公因式10a2b,錯誤;D.應提取公因式5a2b2,錯誤.故選A.

        4.填空.

        (1)5a3+4a2b-12abc=a( );

        (2)多項式32p2q3-8pq4的公因式是 ;

        (3)3a2-6ab+a= (3a-6b+1);

        (4)因式分解:+n= ;

        (5)-15a2+5a= (3a-1);

        (6)計算:21×3.14-31×3.14= .

        答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

        5.用提公因式法分解因式.

        (1)8ab2-16a3b3;

        (2)-15x-5x2;

        (3)a3b3+a2b2-ab;

        (4)-3a3-6a2+12a.

        解:(1)8ab2(1-2a2b).

        (2)-5x(3+x).

        (3)ab(a2b2+ab-1).

        (4)-3a(a2+2a-4).

        第1課時

        一、教材作業(yè)

        【必做題】

        教材第96頁隨堂練習.

        【選做題】

        教材第96頁習題4.2.

        二、課后作業(yè)

        【基礎鞏固】

        1.把多項式4a2b+10ab2分解因式時,應提取的公因式是 .

        2.(20xx淮安中考)因式分解:x2-3x= .

        3.分解因式:12x3-18x22+24x3=6x .

        【能力提升】

        4.把下列各式因式分解.

        (1)3x2-6x;

        (2)5x23-25x32;

        (3)-43+162-26;

        (4)15x32+5x2-20x23.

        【拓展探究】

        5.分解因式:an+an+2+a2n.

        6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來.

        【答案與解析】

        1.2ab

        2.x(x-3)

        3.(2x2-3x+42)

        4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

        5.解:原式=an1+ana2+anan=an(1+a2+an).

        6.解:由題中給出的幾個式子可得出規(guī)律:n2+n=n(n+1).

        本節(jié)運用類比的思想方法,在新概念的提出、新知識點的講授過程中,使學生易于理解和掌握.如學生在接受提公因式法時,由提公因數(shù)到提公因式,由整式乘法的逆運算到提公因式法的概念,都是利用了類比的數(shù)學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解.

        在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問.

        由于因式分解的主要目的是對多項式進行恒等變形,它的作用更多的是應用于多項式的計算和化簡,比如在以后將要學習的分式運算、解分式方程等中都要用到因式分解的知識,因此應該注重因式分解的概念和方法的教學.

        隨堂練習(教材第96頁)

        解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

        習題4.2(教材第96頁)

        1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

        2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

        3.解:(1)不正確,因為提取的公因式不對,應為n(2n--1). (2)不正確,因為提取公因式-b后,第三項沒有變號,應為-b(ab-2a+3). (3)正確. (4)不正確,因為最后的結果不是乘積的形式,應為(a-2)(a+1).

        提公因式法是本章的第2小節(jié),占兩個課時,這是第一課時,它主要讓學生經(jīng)歷從乘法分配律的逆運算到提公因式的過程,讓學生體會數(shù)學中的一種主要思想——類比思想.運用類比的思想方法,在新概念的提出、新知識點的講授過程中,可以使學生易于理解和掌握.如學生在接受提公因式法時,由整式乘法的逆運算到提公因式法的概念,就利用了類比的數(shù)學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解,進而使學生進一步理解因式分解與整式乘法運算之間的互逆關系.

        已知方程組求7(x-3)2-2(3-x)3的值.

        〔解析〕 將代數(shù)式分解因式,產(chǎn)生x-3與2x+兩個因式,再根據(jù)方程組整體代入,使計算簡便.

        解:7(x-3)2-2(3-x)3

        =(x-3)2[7+2(x-3)]

        =(x-3)2(7+2x-6)

        =(x-3)2(2x+).

        由方程組可得原式=12×6=6.

      因式分解教案 篇3

        因式分解

        教材分析

        因式分解是進行代數(shù)式恒等變形的重要手段之一,因式分解是在學習整式四則運算的基礎上進行的,它不僅僅在多項式的除法、簡便運算中等有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎,因此學好因式分解對于代數(shù)知識的后續(xù)學習,具有相當重要的好處。由于本節(jié)課后學習提取公因式法,運用公式法,分組分解法來進行因式分解,務必以理解因式分解的概念為前提,所以本節(jié)資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法是教學中的難點。

        教學目標

        認知目標:(1)理解因式分解的概念和好處

        (2)認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。

        潛力目標:由學生自行探求解題途徑,培養(yǎng)學生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學生智能,深化學生逆向思維潛力和綜合運用潛力。

        情感目標:培養(yǎng)學生理解矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學態(tài)度。

        目標制定的思想

        1.目標具體化、明確化,從學生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。

        2.課堂教學體現(xiàn)潛力立意。

        3.寓德育教育于教學之中。

        教學方法

        1.采用以設疑探究的引課方式,激發(fā)學生的求知欲望,提高學生的學習興趣和學習用心性。

        2.把因式分解概念及其與整式乘法的關系作為主線,訓練學生思維,以設疑——感知——概括——運用為教學程序,充分遵循學生的認知規(guī)律,使學生能順利地掌握重點,突破難點,提高潛力。

        3.在課堂教學中,引導學生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學生充分地動腦、動口、動手,用心參與到教學中來,充分體現(xiàn)了學生的主動性原則。

        4.在充分尊重教材的前提下,融教材練習、想一想于教學過程中,增設了由淺入深、各不相同卻又緊密相關的訓練題目,為學生順利掌握因式分解概念及其與整式乘法關系創(chuàng)造了有利條件。

        5.改變傳統(tǒng)言傳身教的方式,利用計算機輔助教學手段進行教學,增大教學的容量和直觀性,提高教學效率和教學質(zhì)量。

        教學過程安排

        一、提出問題,創(chuàng)設情境

        問題:看誰算得快?(計算機出示問題)

       。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

        (2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000

       。3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

        二、觀察分析,探究新知

        (1)請每題想得最快的同學談思路,得出最佳解題方法(同時計算機出示答案)

        (2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個什么式子?右邊又是什么形式?

        a2—2ab+b2=(a—b)2②

        20x2+60x=20x(x+3)③

        (3)類比小學學過的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。

        板書課題:§7。1因式分解

        1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

        三、獨立練習,鞏固新知

        練習

        1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)

       、伲▁+2)(x—2)=x2—4

       、趚2—4=(x+2)(x—2)

       、踑2—2ab+b2=(a—b)2

       、3a(a+2)=3a2+6a

       、3a2+6a=3a(a+2)

        ⑥x2—4+3x=(x—2)(x+2)+3x

       、遦2++2=(k+)2

        ⑧x—2—1=(x—1+1)(x—1—1)

       、18a3bc=3a2b·6ac

        2.因式分解與整式乘法的關系:

        因式分解

        結合:a2—b2=========(a+b)(a—b)

        整式乘法

        說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的'形式轉化成和差形式(多項式)。

        結論:因式分解與整式乘法正好相反。

        問題:你能利用因式分解與整式乘法正好相反這一關系,舉出幾個因式分解的例子嗎?

       。ㄈ纾河桑▁+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

        由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

        四、例題教學,運用新知:

        例:把下列各式分解因式:(計算機演示)

       。1)am+bm(2)a2—9(3)a2+2ab+b2

       。4)2ab—a2—b2(5)8a3+b6

        練習2:填空:(計算機演示)

       。1)∵2xy=2x2y—6xy2

        ∴2x2y—6xy2=2xy

       。2)∵xy=2x2y—6xy2

        ∴2x2y—6xy2=xy

       。3)∵2x=2x2y—6xy2

        ∴2x2y—6xy2=2x

        五、強化訓練,掌握新知:

        練習3:把下列各式分解因式:(計算機演示)

        (1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

       。4)x2+—x(5)x2—0。01(6)a3—1

       。ㄗ寣W生上來板演)

        六、變式訓練,擴展新知(計算機演示)

        1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=

        2.機動題:(填空)x2—8x+m=(x—4),且m=

        七、整理知識,構成結構(即課堂小結)

        1.因式分解的概念因式分解是整式中的一種恒等變形

        2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。

        3.利用2中關系,能夠從整式乘法探求因式分解的結果。

        4.教學中滲透對立統(tǒng)一,以不變應萬變的辯證唯物主義的思想方法。

        八、布置作業(yè)

        1.作業(yè)本(一)中§7。1節(jié)

        2.選做題:①x2+x—m=(x+3),且m=。

       、趚2—3x+k=(x—5),且k=。

        評價與反饋

        1.透過由學生自己得出因式分解概念及其與整式乘法的關系的結論,了解學生觀察、分析問題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問題,及時反饋。

        2.透過例題及練習,了解學生對概念的理解程度和實際運用潛力,最大限度地讓學生暴露問題和認知誤差,及時發(fā)現(xiàn)和彌補教與學中的遺漏和不足,從而及時調(diào)控教與學。

        3.透過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時評價,及時矯正。

        4.透過課后作業(yè),了解學生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學生面批作業(yè),能夠更及時、更準確地了解學生思維發(fā)展的狀況,矯正的針對性更強。

        5.透過課堂小結,了解學生對概念的熟悉程度和歸納概括潛力、語言表達潛力、知識運用潛力,教師恰當?shù)亟o予引導和啟迪。

        6.課堂上反饋信息除了語言和練習外,學生神情也是信息來源,而且這些信息更真實。學生神態(tài)、表情、坐姿都反映出學生對教師教學資料的理解和理解程度。教師應用心捕捉學生在知識掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調(diào)節(jié)教學。

      因式分解教案 篇4

        知識點:

        因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

        教學目標:

        理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

        考查重難點與常見題型:

        考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

        教學過程:

        因式分解知識點

        多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

        (1)提公因式法

        如多項式

        其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

        (2)運用公式法,即用

        寫出結果。

        (3)十字相乘法

        對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的'a,b,如有,則對于一般的二次三項式尋找滿足

        a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

       。4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

        分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

       。5)求根公式法:如果有兩個根X1,X2,那么

        2、教學實例:學案示例

        3、課堂練習:學案作業(yè)

        4、課堂:

        5、板書:

        6、課堂作業(yè):學案作業(yè)

        7、教學反思:

      因式分解教案 篇5

        一、教材分析

        1、教材的地位與作用

        “整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎,或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結構,提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結果的形式,選擇正確的分解方法。

        因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

        2、教學目標

        (1)會推導乘法公式

       。2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。

        (3)會用提公因式法、公式法進行因式分解。

        (4)了解因式分解的一般步驟。

       。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

        3、重點、難點和關鍵

        重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。

        難點:正確運用乘法公式;正確分解因式。

        關鍵:正確理解乘法公式和因式分解的意義。

        二、本單元教學的方法和策略:

        1.注重知識形成的探索過程,讓學生在探索過程中領悟知識,在領悟過程中建構體系,從而更好地實現(xiàn)知識體系的更新和知識的`正向遷移.

        2.知識內(nèi)容的呈現(xiàn)方式力求與學生已有的知識結構相聯(lián)系,同時兼顧學生的思維水平和心理特征.

        3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.

        4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數(shù)學的應用價值,逐步養(yǎng)成談數(shù)學、想數(shù)學、做數(shù)學的良好習慣.

        三、課時安排:

        2.1平方差公式 1課時

        2.2完全平方公式 2課時

        2.3用提公因式法進行因式分解 1課時

        2.4用公式法進行因式分解 2課時

      因式分解教案 篇6

        第6.4因式分解的簡單應用

        背景材料:

        因式分解是初中數(shù)學中的一個重點內(nèi)容,也是一項重要的基本技能和基礎知識,更是一種數(shù)學的變形方法,在今后的學習中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學問題中有著廣泛的作用,因式分解在三角形中的應用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應用題解決有關復雜數(shù)值的計算,本節(jié)課的例題因式分解在數(shù)學題中的簡單應用。

        教材分析:

        本節(jié)課是本章的最后一節(jié),是學生學習因式分解初步應用,首先要使學生體會到因式分解在數(shù)學中應用,其次給學生提供更多機會體驗主動學習和探索的“過程”與“經(jīng)歷”,使多數(shù)學里擁有一定問題解決的經(jīng)驗。

        教學目標:

        1、在整除的情況下,會應用因式分解,進行多項式相除。

        2、會應用因式分解解簡單的一元二次方程。

        3、體驗數(shù)學問題中的矛盾轉化思想。

        4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。

        教學重點:

        學會應用因式分解進行多項式除法和解簡單一元二次方程。

        教學難點:

        應用因式分解解簡單的一元二次方程。

        設計理念:

        根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作控討式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經(jīng)辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

        教學過程:

        一、創(chuàng)設情境,復習提問

        1、將正式各式因式分解

        (1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

       。3)2 a2b-8a2b (4)4x2-9

        [四位同學到黑板上演板,本課時用復習“練習引入”也不失為一種好方法,既先復習因式分解的提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]

        教師訂正

        提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)

        二、導入新課,探索新知

       。ㄏ茸寣W生思考上面所提出的問題,教師從旁啟發(fā))

        師:如果出現(xiàn)豎式計算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學生怎么得來的,運算的依據(jù)是什么?這樣暴露學生的思維,讓學生自己發(fā)現(xiàn)錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉化為單項式除以單項式。

       。2 a2b-8a2b)÷(4a-b)

        =-2ab(4a-b)÷(4a-b)

        =-2ab

       。ㄗ寣W生自己比較哪種方法好)

        利用上面的數(shù)學解題思路,同學們嘗試計算

       。4x2-9)÷(3-2x)

        學生總結解題步驟:1、因式分解;2、約去公因式)

       。ㄈw學生動手動腦,然后叫學生回答,及時表揚,講練結合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉化為單項式的除法]

        練習計算

       。1)(a2-4)÷(a+2)

        (2)(x2+2xy+y2)÷(x+y)

       。3)[(a-b)2+2(b-a)] ÷(a-b)

        三、合作學習

        1、以四人為一組討論下列問題

        若A?B=0,下面兩個結論對嗎?

       。1)A和B同時都為零,即A=0且B=0

       。2)A和B至少有一個為零即A=0或B=0

        [合作學習,四個小組討論,教師逐步引導,讓學生講自己的想法,及解題步驟,培養(yǎng)語言表達能力,體會運用因式分解的實際運用作用,增加學習興趣]

        2、你能用上面的.結論解方程

       。1)(2x+3)(2x-3)=0 (2)2x2+x=0

        解:

        ∵(2x+3)(2x-3)=0

        ∴2x+3=0或2x-3=0

        ∴方程的解為x=-3/2或x=3/2

        解:x(2x+1)=0

        則x=0或2x+1=0

        ∴原方程的解是x1=0,x2=-1/2

        [讓學生先獨立完成,再組織交流,最后教師針對性地講解,讓學生總結步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉化為解一元一次方程]

        3、練習,解下列方程

       。1)x2-2x=0 4x2=(x-1)2

        四、小結

       。1)應用因式分解和換元思想可以把某些多項式除法轉化為單項式除法。

       。2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項式可以分解成若干個x的一次式的積,那么就可以應用因式分解把原方程轉化成幾個一元一次方程來解。

        設計理念:

        根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作討論式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經(jīng)辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

      【因式分解教案】相關文章:

      因式分解教案03-19

      因式分解優(yōu)秀教案02-20

      因式分解復習教案02-21

      因式分解教案最新12-12

      初中數(shù)學因式分解教案03-01

      因式分解教案15篇04-02

      因式分解教案模板(精選10篇)03-05

      關于因式分解教案4篇06-11

      關于因式分解教案合集7篇05-13

      因式分解教案范文合集6篇04-08