《倍數(shù)和因數(shù)》教學(xué)反思(精選15篇)
作為一位剛到崗的教師,我們的任務(wù)之一就是課堂教學(xué),寫教學(xué)反思可以快速提升我們的教學(xué)能力,那么你有了解過教學(xué)反思嗎?下面是小編收集整理的《倍數(shù)和因數(shù)》教學(xué)反思,僅供參考,歡迎大家閱讀。
《倍數(shù)和因數(shù)》教學(xué)反思1
今天和孩子們一起學(xué)習(xí)了新的一節(jié)課《因數(shù)》,對于《因數(shù)》來說是孩子們第一冊接觸的知識,但是對于因數(shù)這個詞來說,孩子們也并不陌生,因?yàn)樵诔朔ㄋ闶街幸呀?jīng)有了因數(shù)的一個初步的了解。所以對于本節(jié)課來說自己有如下的感受:
一、初步感知,數(shù)形結(jié)合讓學(xué)生形成表象
在教學(xué)的時候,我首先通過課本上飛機(jī)圖的情景圖讓學(xué)生看圖列算式,并且用現(xiàn)在自己五年級的思維來用不同的乘法算式來表示,這一環(huán)節(jié)對于學(xué)生列式來說是比較簡單的,基本上所有的學(xué)生都能夠很好的列出算是,然后根據(jù)學(xué)生列出的算式,引出因數(shù)和倍數(shù)的意義。在此環(huán)節(jié)的設(shè)計(jì)上由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激發(fā)了學(xué)生的形象思維,而又借助 “形”與“數(shù)”的關(guān)系,為接下來研究“因數(shù)與倍數(shù)”概念打下了良好基礎(chǔ),有效地實(shí)現(xiàn)了已有知識與新知識之間的聯(lián)系。更好的分化了難點(diǎn),讓學(xué)生很輕松的接受了知識的形成。
二、自主探究以鄰為師
在學(xué)生知道了因數(shù)和倍數(shù)的意義上,接下來出示了讓學(xué)生自己動手找18的所有的因數(shù)。為了能夠更好的、全面的找到18的所有因數(shù),讓同桌兩人互相合作來完成。通過教學(xué)發(fā)現(xiàn)學(xué)生的合作能力很強(qiáng),能夠用數(shù)學(xué)語言來準(zhǔn)確的.表述,而且大多數(shù)學(xué)生在合作的.過程中也能很好的找到、找全18的所有的因數(shù)。
三、在練習(xí)中體驗(yàn)學(xué)習(xí)的快樂
在 最后的環(huán)節(jié)中我設(shè)計(jì)了不同層次的練習(xí),先讓學(xué)生說說有關(guān)因數(shù)和倍數(shù)的意義的一些練習(xí)題,加深對知識點(diǎn)的理解,主要是讓學(xué)生明白因數(shù)和倍數(shù)不是單獨(dú)存在的, 是相互已存的,必須要說清楚是誰是誰的因數(shù)、誰是誰的倍數(shù)。通過教學(xué)來看學(xué)生掌握的還算可以。接著出示了讓學(xué)生找不同數(shù)的因數(shù),在這個環(huán)節(jié)的設(shè)計(jì)用了不同 的形式,比如:找朋友,你來說我來做,比一比說最快等形式來幫助學(xué)生理解知識,在此過程中學(xué)生很感興趣,激情很好課堂氣氛熱烈,也讓學(xué)生在輕松的氛圍中體 驗(yàn)到學(xué)習(xí)的快樂。
不足之處:
在本節(jié)課的教學(xué)上還是存在很多不足之處,雖然自己也知道新課標(biāo)提出要以學(xué)生為主體,老師只是引導(dǎo)著和合作者,可是在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。
如在教學(xué)找18的因數(shù)這一環(huán)節(jié)時,由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導(dǎo)的過多講解的過細(xì),因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。
《倍數(shù)和因數(shù)》教學(xué)反思2
新教材在引入倍數(shù)和因數(shù)概念時與以往的老教材有所不同,比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我從以下三個方面談一點(diǎn)教學(xué)體會。
一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花
良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進(jìn)入正題,不僅可以調(diào)動學(xué)生的學(xué)習(xí)興趣,一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。
教學(xué)找一個數(shù)的倍數(shù)時,我依據(jù)學(xué)情,設(shè)計(jì)讓學(xué)生獨(dú)立探究尋找3的倍數(shù)。我設(shè)計(jì)了嘗試練——引出沖突——討論探究這么一個學(xué)習(xí)環(huán)節(jié)。學(xué)生帶著“又對又好”的要求開始自主練習(xí),學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學(xué)生充分討論的基礎(chǔ)上,我組織學(xué)生圍繞“好”展開評價,有的學(xué)生認(rèn)為:從小到大依次寫,因?yàn)橛行,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,學(xué)生發(fā)現(xiàn)3的倍數(shù)寫不完時都面面相覷,左顧右盼。學(xué)生通過討論,認(rèn)為用省略號表示比較恰當(dāng)。用語文中的一個標(biāo)點(diǎn)符號解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗(yàn)到解決問題的愉快感和掌握新知的成就感。
二、操作實(shí)踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
三、注重細(xì)節(jié),注重學(xué)生的習(xí)慣培養(yǎng)
學(xué)生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。
這樣的'板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地接受。教學(xué)之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時間安排的可以少一些,所以我在總結(jié)倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時間,直接以3個小問題出示,,實(shí)際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應(yīng)該及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。
《倍數(shù)和因數(shù)》教學(xué)反思3
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實(shí)物圖引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。
在教學(xué)中我注重體現(xiàn)以學(xué)生為主體的新理念,努力為學(xué)生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進(jìn)行教學(xué):
(1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。
在教學(xué)時,我設(shè)計(jì)了這樣一個母女間的關(guān)系:小華的媽媽是李英,李英的女兒是小華。
通過生活中人與人之間的關(guān)系,遷移到數(shù)學(xué)中的`數(shù)和數(shù)之間的關(guān)系,這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)了對數(shù)學(xué)的興趣,又潛移默化地幫助學(xué)生理解了因數(shù)倍數(shù)之間的相互依存關(guān)系。在教學(xué)中,也達(dá)到了預(yù)期的效果,學(xué)生對因數(shù)和倍數(shù)相互依存的關(guān)系理解的比較深刻。
(2)角色轉(zhuǎn)換,讓學(xué)生親身體驗(yàn)數(shù)和數(shù)之間的聯(lián)系。
因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學(xué)手段,每人一張數(shù)字卡片,學(xué)生和老師都變成了數(shù)學(xué)王國里的一名成員。當(dāng)學(xué)生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學(xué)生都沉浸在自己的角色體驗(yàn)中,學(xué)生都把自己當(dāng)成了一個數(shù)。通過對自己一個數(shù)的認(rèn)識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關(guān)系,既充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,又十分有效地突破了教學(xué)難點(diǎn)。
《倍數(shù)和因數(shù)》教學(xué)反思4
《數(shù)學(xué)課程標(biāo)準(zhǔn)》倡導(dǎo)“自主——合作——探究”的學(xué)習(xí)方式,強(qiáng)調(diào)學(xué)習(xí)是一個主動建構(gòu)的過程。因此,應(yīng)注重培養(yǎng)學(xué)生學(xué)習(xí)的獨(dú)立性和自主性,讓學(xué)生在教師的指導(dǎo)下主動地參與學(xué)習(xí),親歷學(xué)習(xí)過程,從而學(xué)會學(xué)習(xí)。
1、以“理”為基點(diǎn),將學(xué)生帶入新知的學(xué)習(xí)。
概念教學(xué)重在“理”。學(xué)生理解“因數(shù)”、“倍數(shù)”概念有個逐步形成的過程,為了促進(jìn)這一意識建構(gòu),我先讓學(xué)生通過自己已有的認(rèn)知結(jié)構(gòu),經(jīng)過“排列整齊的隊(duì)形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學(xué)生在輕松、簡約并充滿自信中學(xué)習(xí)新知,在數(shù)與形的結(jié)合中,深刻體驗(yàn)因數(shù)倍數(shù)的概念。
2、以“序”為站點(diǎn),培養(yǎng)學(xué)生的思維方式。
概念形成得在“序”。學(xué)生對于概念的形成是一個由表及里、由形象到抽象的過程。當(dāng)學(xué)生對概念有了初步認(rèn)識后,讓學(xué)生探索如何找一個數(shù)的倍數(shù)的因數(shù),這既是對概念內(nèi)涵的深化,也是對概念外延的探索。這時思維和排列上的有序性是教學(xué)的關(guān)鍵,也是本節(jié)課的深度之一。在教學(xué)時,分為兩個層次:第一個層次是讓學(xué)生在已有的知識基礎(chǔ)上找12的因數(shù),并在交流中,經(jīng)歷了一個從無序到有序、從把握個別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學(xué)的難點(diǎn)“如何找全,并且不重復(fù)不遺漏”,讓學(xué)生自由地說,再引導(dǎo)學(xué)生說出想的過程,并加以調(diào)整。表面看來僅僅是組合的變換,實(shí)質(zhì)上是思維的提高和方法的優(yōu)化,并讓學(xué)生在對比中感受“一對一對”找因數(shù)的方法,經(jīng)歷了互相討論、相互補(bǔ)充、對比優(yōu)化的過程。第二個層次是在學(xué)生已經(jīng)有了探索一個數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學(xué)生“能像找因數(shù)那樣有序的找一個數(shù)的倍數(shù)”,提高了學(xué)生的思維能力。
3、以“思”為落腳點(diǎn),培養(yǎng)學(xué)生發(fā)現(xiàn)思考的能力。
概念的'生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導(dǎo)”,一定會讓學(xué)生收獲更多,感悟更多。因此設(shè)計(jì)時,我借助了“找自己學(xué)號的因數(shù)和倍數(shù)”這個活動,在大量的有代表性的例子面前,在學(xué)生親自的嘗試中,在有目的的對比觀察中,學(xué)生的思維被逐步引導(dǎo)到了最深處,知道了一個數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學(xué)生對所學(xué)的概念進(jìn)行了有意義的建構(gòu),促進(jìn)和發(fā)展了他們的思維。
《倍數(shù)和因數(shù)》教學(xué)反思5
本課程的教材涉及許多概念,這些概念抽象且容易混淆。如何使學(xué)生更容易理解這些概念,理清概念之間的關(guān)系,構(gòu)建知識之間的網(wǎng)絡(luò)體系,是本課程教學(xué)的重點(diǎn)和難點(diǎn)。同時,學(xué)習(xí)整理知識是這門課教學(xué)的靈魂。
成功:
1。構(gòu)建知識網(wǎng)絡(luò)體系,理清知識之間的關(guān)系。在教學(xué)中,我首先通過一個聯(lián)想紙牌游戲激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生用因子和復(fù)數(shù)的知識來描述數(shù)字2。學(xué)生很容易認(rèn)為2是最小的素?cái)?shù),2是偶數(shù),2的因子是1和2的倍數(shù),2。有2,4,6和hellip,2。2的倍數(shù)特征是一個位為0、2、4、6、8的數(shù)字,學(xué)生回答后,教師及時掌握關(guān)鍵詞,引出本單元的所有概念:因子、倍數(shù)、素?cái)?shù)、復(fù)合數(shù)、奇數(shù)、偶數(shù)、公因子、最大公因子、公倍數(shù)、最小公倍數(shù)、,多重特征2、多重特征3和多重特征5。如何使這些雜亂的概念更簡潔、更有序、更能反映知識之間的關(guān)系?通過課前的安排,發(fā)揮了小組合作與交流的作用。在相互交流中,學(xué)生相互學(xué)習(xí),相互學(xué)習(xí),逐漸對這些概念之間的關(guān)系有了進(jìn)一步的理解。然后,在選擇了幾個學(xué)生的作品進(jìn)行展示和評價后,最后,教師和學(xué)生一起組織和調(diào)整,最后完善知識之間的網(wǎng)絡(luò)體系。
2.教學(xué)生如何組織知識。在教學(xué)中,教人釣魚比教人釣魚更好。作為一名教師,最好教給學(xué)生必要的'學(xué)習(xí)方法。在本課的整理和復(fù)習(xí)中,我要求學(xué)生在課前總結(jié)第二單元中因子和倍數(shù)的概念。涉及的概念有:因子、倍數(shù)、公因子、公倍數(shù)、最大公因子、最小公倍數(shù)、素?cái)?shù)、合數(shù)、奇數(shù)、偶數(shù)、2的多重特征、3的多重特征、5的多重特征,并提出了具體要求:第一,觀察和分析這些概念,哪些概念是密切相關(guān)的;第二,根據(jù)這些概念之間的密切關(guān)系,它們可以分為幾個類別;第三,它們可以用你喜歡的方式表達(dá),也可以用數(shù)學(xué)手寫報紙的形式呈現(xiàn)。課前設(shè)計(jì)完成后,我提前收集了一些有代表性的作品,放在課件中,供學(xué)生欣賞,互相學(xué)習(xí),互相學(xué)習(xí),共同提高。通過小組討論和課堂交流,教師和學(xué)生一起整理和總結(jié)本單元的概念,并繪制知識網(wǎng)絡(luò)圖。
在本課程的整個設(shè)計(jì)過程中,通過學(xué)生的聯(lián)想,回憶以前學(xué)到的知識,并在他們的頭腦中建立知識之間的關(guān)系,從而揭示出這個知識網(wǎng)絡(luò)圖就是思維導(dǎo)圖。掌握這一方法后,我們可以系統(tǒng)地梳理數(shù)學(xué)中的每一個單元、每一卷知識、小學(xué)數(shù)學(xué)知識,讓學(xué)生體會思維導(dǎo)圖法的威力。學(xué)生在感嘆這種方法的魅力的同時,也可以將這種方法推廣到其他學(xué)科,讓學(xué)生真正掌握知識整理的方法,并將其應(yīng)用到以后的單元知識整理中。
3.進(jìn)一步回顧實(shí)踐中的概念。在實(shí)踐環(huán)節(jié),我根據(jù)這些概念設(shè)計(jì)了一些相應(yīng)的練習(xí)。目的是通過實(shí)踐促進(jìn)復(fù)習(xí),在實(shí)踐中更好地理解這些概念的具體含義,加深學(xué)生對概念的理解和掌握。在實(shí)踐過程中,學(xué)生不僅掌握了知識排序的方法,而且對知識的語境有了深刻的理解,對每個知識點(diǎn)的概念有了更清晰的理解,起到了復(fù)習(xí)和復(fù)習(xí)舊知識的作用。
缺點(diǎn):
1。個別學(xué)生不會在展覽評價中進(jìn)行評價,而只是思考設(shè)計(jì)的美,而不是解釋知識之間的關(guān)系。老師應(yīng)該在這一點(diǎn)上給他們指導(dǎo)。
2.有些學(xué)生甚至連最小的偶數(shù)都不懂,因?yàn)榈诙䥺卧闹R是在開學(xué)時學(xué)的,有些知識點(diǎn)已經(jīng)忘記了。因此,他們在學(xué)習(xí)每一單元后,會繼續(xù)鞏固和實(shí)踐自己的知識。
3.由于知識點(diǎn)太多,實(shí)踐時間不足,基本實(shí)踐時間可以保證,但需要擴(kuò)展的知識沒有得到更好的呈現(xiàn)。
再教育設(shè)計(jì):
1。掌握數(shù)學(xué)知識的本質(zhì)。漂亮的排序表單只是外部的,而不是關(guān)鍵的。注重引導(dǎo)學(xué)生從數(shù)學(xué)本質(zhì)出發(fā)思考問題,排除數(shù)學(xué)本質(zhì)以外的東西,激發(fā)思維,從而形成良好的數(shù)學(xué)思維品質(zhì)。
2.我們應(yīng)該繼續(xù)深入探索數(shù)學(xué)的思想、靈魂和方法來指導(dǎo)課堂教學(xué),讓學(xué)生掌握未來學(xué)習(xí)知識的鑰匙,學(xué)會打開知識的大門。
《倍數(shù)和因數(shù)》教學(xué)反思6
教學(xué)《倍數(shù)與因數(shù)》,這是一個非?菰锏恼n題,但我巧妙地運(yùn)用課文中的情景圖與學(xué)生的生活實(shí)際聯(lián)系,通過水果店各種水果的.單價所顯示的數(shù)進(jìn)行分類,得出自然數(shù)、整數(shù)、小數(shù)、分?jǐn)?shù)和負(fù)數(shù),使學(xué)生體會生活中各種不同的數(shù)。為了讓學(xué)生理解倍數(shù)與因數(shù)的含意,教學(xué)過程中,我立足體現(xiàn)一個“實(shí)”字,讓學(xué)生從算式中找出能整除的算式,揭示整除、倍數(shù)、因數(shù)之間的關(guān)系,再通過舉例去驗(yàn)證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識的規(guī)律。學(xué)生在學(xué)習(xí)中實(shí)實(shí)在在經(jīng)歷了一個探究的過程。“動腦筋出教室”這一游戲的設(shè)計(jì),學(xué)生在積極參與探討、質(zhì)疑、創(chuàng)造的教學(xué)活動,既鞏固了知識,又享受了數(shù)學(xué)思維的快樂。
在授課時,我體驗(yàn)到了學(xué)生的快樂。當(dāng)學(xué)生用自己的學(xué)號說整除、因數(shù)、倍數(shù)之間的關(guān)系時,由于像順口溜,很有趣。每個學(xué)生都很感興趣,說得很努力。原來,數(shù)學(xué)也很有趣……
《倍數(shù)和因數(shù)》教學(xué)反思7
一、單元主題圖體驗(yàn)數(shù)學(xué)化過程。單元主題圖是教材中的一個重要內(nèi)容,它是選擇某一個主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨(dú)立觀察主題圖,通過獨(dú)立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗(yàn)獲取知識的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗(yàn)“數(shù)學(xué)化”的`過程。
二、數(shù)形結(jié)合實(shí)現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認(rèn)識,設(shè)計(jì)了“用小正方形拼長方形”的操作活動,引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認(rèn)識,而且能與操作活動與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。
三、探索活動關(guān)注解決問題的策略。學(xué)生在探索活動中,運(yùn)用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗(yàn)證等過程,孩子們學(xué)會了思考,初步形成了解決問題的一些基本策略。
四、困惑:
1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時給學(xué)生進(jìn)行課后輔導(dǎo)的時間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個一個單元只有一個練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。
2、不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯了,那不是因數(shù),是約數(shù)……”,讓人哭笑
《倍數(shù)和因數(shù)》教學(xué)反思8
教學(xué)片斷:
1、出示12個小正方形。
師:數(shù)一數(shù),一共有幾個小正方形?如果老師請你把這12個同樣的小正方形拼成一個長方形,會拼嗎?能不能用一條簡單的乘法算式表達(dá)出來?
2、指名學(xué)生列式,提問其他學(xué)生:“你知道他是怎么擺的嗎?”要求學(xué)生說出每排擺幾個,擺了幾排。
3、根據(jù)學(xué)生的回答,適時貼出各種不同擺法:
12×1=12
6×2=12
4×3=12
4、12個同樣大小的正方形拼成長方形,能列出三道不同的乘法算式,千萬別小看這些乘法算式,咱們今天研究的內(nèi)容就在這里。以4×3=12為例,12是4的倍數(shù),那12也是(3的倍數(shù)),4是12的因數(shù),那3也是(12的因數(shù))。同學(xué)們很有遷移的能力,這就是我們今天要研究的倍數(shù)和因數(shù)。(板書課題)
5、根據(jù)另外兩道乘法算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)。
6、剛才在聽的時候發(fā)現(xiàn)12×1=12說因數(shù)和倍數(shù)時有兩句特別拗口,是哪兩句?
說明:雖然是拗口了點(diǎn),不過數(shù)學(xué)上還真是這么回事。12的確是12的因數(shù),12也確實(shí)是12的倍數(shù)。為了方便,我們在研究倍數(shù)和因數(shù)時所說的數(shù)一般指不是0的自然數(shù)。
7、說一說
。1)根據(jù)72÷8=9,說一說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的`因數(shù)。
。2)從下面的數(shù)中任選兩個數(shù),說一說哪一個數(shù)是哪一個數(shù)的倍數(shù),哪一個數(shù)是哪一個數(shù)的因數(shù)。
3、5、18、20、36
反思:
陶老師從擺小正方形入手,提出“每排擺了幾個?”“擺了幾排?”這兩個問題,引導(dǎo)學(xué)生用乘法算式把擺法表示出來,再讓學(xué)生猜一猜“可能是怎么擺的”,學(xué)生充分經(jīng)歷了“由形到數(shù)、再由數(shù)到形”的過程,既為倍數(shù)和因數(shù)概念的提出積累了素材,又初步感知倍數(shù)和因數(shù)的關(guān)系,為正確理解概念提供了幫助。接著結(jié)合具體的乘法算式介紹倍數(shù)和因數(shù),并讓學(xué)生根據(jù)另外兩道乘法算式說說誰是誰的倍數(shù),誰是誰的因數(shù)。再通過除法算式讓學(xué)生說說誰是誰的倍數(shù),誰是誰的因數(shù)。最后讓學(xué)生從五個數(shù)中任選兩個數(shù)說說誰是誰的倍數(shù),誰是誰的因數(shù),這樣層層深入,學(xué)生對倍數(shù)和因數(shù)的感受更加深刻。<
《倍數(shù)和因數(shù)》教學(xué)反思9
本單元涉及到的因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內(nèi)容。是學(xué)生通過四年多數(shù)學(xué)學(xué)習(xí),已經(jīng)掌握了大量的整數(shù)知識,包括整數(shù)的認(rèn)識、整數(shù)四則運(yùn)算的基礎(chǔ)上進(jìn)一步探索整數(shù)的性質(zhì)。
在教學(xué)中,通過教授學(xué)生認(rèn)識“因數(shù)和倍數(shù)”,并掌握他們的特征:因數(shù)和倍數(shù)不能單獨(dú)存在,并通過觀察比較幾個數(shù)的因數(shù)(或倍數(shù)),知道幾個數(shù)公有的因數(shù)(或倍數(shù))叫做他們的公因數(shù)(或公倍數(shù)),且能夠在幾個數(shù)的因數(shù)(或倍數(shù)還)中找出他們的公因數(shù)(或公倍數(shù))。
接下來學(xué)習(xí)“2、3、5的倍數(shù)的特征”。發(fā)現(xiàn)2、5、3倍數(shù)的規(guī)律和特點(diǎn)。在此之前還要向?qū)W生教學(xué)什么是“奇數(shù)”什么是“偶數(shù)”,只有掌握了奇數(shù)與偶數(shù),學(xué)習(xí)“2、5的倍數(shù)”的特征就會簡單容易得多。而“3的倍數(shù)”的特征就是引導(dǎo)學(xué)生把各個數(shù)位上的數(shù)相加,的到的數(shù)如果是3的倍數(shù)的話,說明這個數(shù)就是3的倍數(shù)。
那么,又如何讓學(xué)生學(xué)習(xí)掌握質(zhì)數(shù)與合數(shù)呢?在教學(xué)中,我主要是讓學(xué)生把1~
20的因數(shù)分別寫出來,并按照奇數(shù)為一列偶數(shù)為一列來讓學(xué)生進(jìn)行觀察比較,然后歸類整理:只有1個因數(shù)的有哪些數(shù)?有兩個因數(shù)的有哪些數(shù)?有3個以上因數(shù)的有哪些數(shù)?學(xué)生分好之后,教師明確:向這樣只有2個因數(shù)的'數(shù)叫做質(zhì)數(shù),有2個以上因數(shù)個數(shù)的數(shù)叫合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。那么自然數(shù)按因數(shù)的個數(shù)來分就可以分為“1、質(zhì)數(shù)、合數(shù)”三大類。
為了讓學(xué)生鞏固質(zhì)數(shù)與合數(shù),再讓學(xué)生找出1~100以內(nèi)的所有質(zhì)數(shù):先劃掉除了2以外所有2的倍數(shù),再劃掉3的倍數(shù)、劃掉5的倍數(shù)、最后劃掉7的倍數(shù),所剩下的數(shù)就是質(zhì)數(shù),并且讓學(xué)生數(shù)出、記住100以內(nèi)有25個質(zhì)數(shù)。也可以用同樣的方法去判定100以外的數(shù)是質(zhì)數(shù)還是合數(shù)。
最后,再學(xué)生講解介紹“分解質(zhì)因數(shù)”,知道用短除法來分解質(zhì)因數(shù)。然后對整個單元所學(xué)的知識進(jìn)行梳理、歸類,讓學(xué)生熟記一些特殊的規(guī)律與數(shù)字,多做一些練習(xí),加強(qiáng)的后進(jìn)生的關(guān)注和輔導(dǎo)。
《倍數(shù)和因數(shù)》教學(xué)反思10
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,a能整除b。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實(shí)物圖引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣編排對于學(xué)生來說更容易理解和掌握。但是若老師對整除的概念不做講解的話,今后的知識學(xué)習(xí)可能會造成一些缺陷,因此我在這課時中,結(jié)合老教材的知識給學(xué)生進(jìn)行了滲透,學(xué)生學(xué)習(xí)起來掌握的很好。利用除法、乘法都能很快的找到一個數(shù)的因數(shù)與倍數(shù)。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用生活與數(shù)學(xué)之間的聯(lián)系,來幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。比如,我上課前利用班級中學(xué)生的父子關(guān)系和朋友關(guān)系來說明“朋友、父子”詞語的含義,它是指兩個人之間的'一種關(guān)系,只能造句為“某人是某人的朋友”。這樣的話局把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)較自然貼切,讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)和因數(shù)之間的相互依存關(guān)系。
教育家第斯多惠曾說過:“一個壞的教師奉送真理,一個好的教師則教人發(fā)現(xiàn)真理!币虼私虒W(xué)中,教師要重視學(xué)生的主體地位,給學(xué)生提供充分思考和自我表現(xiàn)的空間,引導(dǎo)他們利用已有的知識去探索發(fā)現(xiàn)新的知識。如何找一個數(shù)的因數(shù)是這節(jié)課的重點(diǎn)也是難點(diǎn)。根據(jù)學(xué)生的實(shí)際情況,我進(jìn)行了重組教材,先讓學(xué)生根據(jù)乘法(除法)算式“一對對”地找出18、15、24的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實(shí)效性。學(xué)生在自己找因數(shù)和倍數(shù)練習(xí)后又總結(jié)了最大的因數(shù)和最小的倍數(shù)都是它本身。我想這應(yīng)該比教師的傳授要好百倍。
一節(jié)課下來,學(xué)生學(xué)習(xí)起來十分輕松,教學(xué)設(shè)計(jì)盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,學(xué)生樂學(xué),思路清晰。以上是自己教學(xué)后的一點(diǎn)感悟。
《倍數(shù)和因數(shù)》教學(xué)反思11
一、“倍數(shù)和因數(shù)與“倍數(shù)和約數(shù)”這兩種說法一定要分清。
“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實(shí)都是表示同一類數(shù)。(即因數(shù)也是約數(shù))
二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時候不提整除。
也許我的頭腦還受舊版教材的影響,我認(rèn)為說到“倍數(shù)與因數(shù)”必須要談到整除,因?yàn)檎茄芯俊耙驍?shù)和倍數(shù)”的條件,學(xué)生在沒有這條件學(xué)習(xí)整除,只要教師的教學(xué)方法稍有不慎,學(xué)生會很快誤入小數(shù)也有因數(shù);但是我在實(shí)際的教學(xué)過程中,也體會到了教材中不提整除的好處。而我的心里卻又產(chǎn)生了一個新的疑問,S版教材到底在什么時候于什么數(shù)學(xué)環(huán)境下才提出“整除”這個概念呢?會不會在六年級課改才出現(xiàn)呢?我期待著。
三、教學(xué)2、5和3的倍數(shù)教師應(yīng)注重“靈活”。
1、在教學(xué)2和5的倍數(shù)時,是用同一種方法找出它們倍數(shù)的,學(xué)生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準(zhǔn)確找出各自的倍數(shù),此時,教師應(yīng)把學(xué)生的思維轉(zhuǎn)到同時是2和5的倍數(shù)怎樣找?接著引導(dǎo)學(xué)生歸納出同時是2和5的倍數(shù)的特征,因此,讓學(xué)生的知識面進(jìn)一步加大。
2、教學(xué)3的倍數(shù)的特征時,教師首先讓學(xué)生用2和5的倍數(shù)的方法去找3的倍數(shù)的特征,讓學(xué)生嘗試這種方法是找不到3的倍數(shù)的特征,這時,教師應(yīng)該引導(dǎo)學(xué)生對寫出的3的倍數(shù),要用另一種方法去歸納、總結(jié)3的倍數(shù)的特征,運(yùn)用這一特點(diǎn),教師可以有意識地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學(xué)生進(jìn)行判斷,這樣可使學(xué)生對3的倍數(shù)的特征進(jìn)一步得到鞏固;當(dāng)學(xué)生熟練掌握3的.倍數(shù)的特征時,教師話峰一轉(zhuǎn),你們能歸納出9的倍數(shù)的特征嗎?學(xué)生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學(xué)生運(yùn)用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學(xué)生會輕而易舉地歸納、總結(jié)出9的倍數(shù)的特征。通過找9的倍數(shù)的特征,既鞏固了學(xué)生學(xué)習(xí)3的倍數(shù)的特征,還使學(xué)生的知識面擴(kuò)大,達(dá)到知識的鞏固和遷移的目的。
3、當(dāng)學(xué)生掌握了2、5和3的倍數(shù)的特征時,教師這時應(yīng)引導(dǎo)學(xué)生進(jìn)一步歸納、總結(jié),把這三個特征綜合,從而得出同時是2、3和5的倍數(shù)的特征。
通過這樣的教學(xué),讓學(xué)生真正感受到“靈活”兩字,并且能把知識面向縱橫方向發(fā)展。
《倍數(shù)和因數(shù)》教學(xué)反思12
1、立足于學(xué)生的思維特點(diǎn)。中年級學(xué)生的思維特點(diǎn)是由具體形象思維到抽象概括思維過渡的重要年齡段。因此,我放棄了用12個小正方形擺長方形的動手實(shí)踐活動,而選用了看12個小正方形在腦中想象擺法。在留有短暫時間讓學(xué)生思考,腦中逐漸有了長方形的圖象紛紛舉手之后,我又不急于提問,而是追問:你能不能用一道乘法算式來表示?當(dāng)學(xué)生說出乘法算式時,也不急于就此,還讓其余同學(xué)想想他是如何擺的,做到全員參與。這種由形象到抽象,再由抽象到形象的過程,是符合學(xué)生的思維特點(diǎn)的,對于發(fā)展學(xué)生的抽象概括思維是有利的。
2、層層輔墊,為學(xué)生自主探索打下了堅(jiān)實(shí)的基礎(chǔ)。探索36的所有因數(shù)是本節(jié)課的重難點(diǎn),我在這之前做了層層的輔墊。
。1)3個乘法算式的呈現(xiàn)我作了調(diào)整:1×12=12,2×6=12,3×4=12。潛移默化的影響學(xué)生的有序思考。
(2)在學(xué)生根據(jù)其余兩算式說因數(shù)和倍數(shù)的關(guān)系之后,我對12的所有因數(shù)進(jìn)行了小結(jié):12的因數(shù)有1,12,2,6,3,4。讓學(xué)生感受到一道乘法算式中蘊(yùn)藏著兩個因數(shù)。
(3)36這個數(shù)比較大,學(xué)生找起36的所有因數(shù)時有點(diǎn)困難,我設(shè)計(jì)了從3,5,18,20,36五個數(shù)中選擇兩個數(shù)來說說誰是誰的.因數(shù),誰是誰的倍數(shù)?這一教學(xué)環(huán)節(jié),減輕了學(xué)生的困難,同時也能檢驗(yàn)學(xué)生對因數(shù)和倍數(shù)概念是否已正確認(rèn)識。當(dāng)學(xué)生會說3是36的因數(shù),36是3的倍數(shù)時,說明他們腦中已經(jīng)有了判斷的依據(jù):3×12=36。
(4)在學(xué)生獨(dú)立探索前,我又提醒學(xué)生,在找36的所有因數(shù)時,如果遇到困難,不要忘了我們已經(jīng)尋找過12這個數(shù)的所有因數(shù),可以作為參考。
這四個方面的準(zhǔn)備,學(xué)生的獨(dú)立思考才有了思維的依托,遇到困難,他們就會自我想辦法,自我解決問題,這樣的探索就會有效,不會浮于表面,流于形勢。
3、有層次的呈現(xiàn)作業(yè),給學(xué)生以正面引導(dǎo)為主。在概括總結(jié)找36所有因數(shù)的方法時,我找了三份的作業(yè),第一份是有序,成對思考的1,36,2,18,3,12,4,9,6。在交流中讓學(xué)生明確只有有序的,成對的思考才會做到既不遺漏,又能快捷方便,第二份作業(yè)是所有的因數(shù)按順序排列的1,2,3,4,6,9,12,18,36。結(jié)果作業(yè)中漏了一個4,這是個時機(jī),在表揚(yáng)了這個學(xué)生能按順序的排列,做到美觀這個優(yōu)點(diǎn)之后,提出問題:美中不足的是什么?學(xué)生:一個一個找麻煩,還容易丟。我接著追問;我們能給他提些建議嗎?第三份是無序的有遺漏的,也讓學(xué)生給他提建議,讓他也能做到一個不漏。這三份作業(yè)對比下來,先教給學(xué)生正確的思考方法,再以正確的方法判斷其他同學(xué)思考不當(dāng)?shù)牡胤剑⑻岢鼋ㄗh。尋找一個數(shù)所有因數(shù)的方法也能深刻地印在學(xué)生腦里。
4、大膽放手,產(chǎn)生矛盾沖突,發(fā)現(xiàn)問題,想辦法解決問題。在找3的倍數(shù)時,我想學(xué)生有了前面的學(xué)習(xí)基礎(chǔ),我直接拋出問題:你能像上面這樣有序的從小到大的找出3的倍數(shù)嗎?學(xué)生在找中發(fā)現(xiàn):3的倍數(shù)有很多,寫不完。我追問;那怎么辦,有辦法嗎?通過一會兒的沉默思考后,紛紛有學(xué)生提出省略號。
5、趣味練習(xí),聯(lián)想,探索。練習(xí)中我設(shè)計(jì)了兩道題,一是猜我的電話號碼,激發(fā)起學(xué)生的興趣,二是探索計(jì)數(shù)器的奧秘,多位老師問起我的設(shè)計(jì)意圖,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉,牛頓看到蘋果落地,通過聯(lián)想,最終發(fā)現(xiàn)了萬有引力定律,瓦特看到茶壺里冒出蒸氣,通過聯(lián)想,最終發(fā)明了蒸氣機(jī)…這與一個人的認(rèn)真觀察,善于聯(lián)想,勇于探索是分不開的。
《倍數(shù)和因數(shù)》教學(xué)反思13
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和孩子們玩了一個小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學(xué)生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明.二是要學(xué)生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,不會模糊了。
《倍數(shù)和因數(shù)》教學(xué)反思2
本單元的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時,我注意做到以下幾點(diǎn):
一、加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。
因數(shù)和倍數(shù)是最基本的兩個概念,理解了因數(shù)和倍數(shù)的含義對于一個數(shù)的因數(shù)的個數(shù)是有限的'、倍數(shù)的個數(shù)是無限的等結(jié)論自然也就掌握了。因此,教學(xué)時,我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說中體會、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時引出12的所有因數(shù),讓孩子感受到用乘法算式找一個數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個數(shù)的因數(shù)做好鋪墊。
二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知
在學(xué)習(xí)找一個數(shù)的因數(shù)時,讓孩子們動腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們在體驗(yàn)中逐步掌握了方法,學(xué)得深刻,方法熟練。
三、注意培養(yǎng)學(xué)生的抽象思維能力
教學(xué)中,注重學(xué)生的動腦思考、觀察,讓學(xué)生在自主的探究學(xué)習(xí)中表達(dá)自己的想法,通過一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。
《倍數(shù)和因數(shù)》教學(xué)反思14
教學(xué)目標(biāo):
1、使學(xué)生結(jié)合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關(guān)系。
2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有的乘法和除法知識,通過嘗試和交流等活動,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,能在1-100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。
3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中,進(jìn)一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
教學(xué)重點(diǎn):
理解倍數(shù)和因數(shù)的含義。
教學(xué)難點(diǎn):
探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。
教學(xué)過程:
一、理解倍數(shù)和因數(shù)
。、用12個同樣大的正方形拼成一個長方形,可以怎樣擺?
先獨(dú)立思考,在同桌交流自己的看法,再集體交流。根據(jù)學(xué)生的回答,教師出示相應(yīng)的拼法,并列式。
2、在4×3=12中,12是4的倍數(shù),12也是3的倍數(shù),3和4都是12的因數(shù)。你能照老師的樣子試著說一說嗎?如果有學(xué)生只說倍數(shù)和因數(shù),讓學(xué)生通過爭論明白倍數(shù)和因數(shù)表示的是兩個數(shù)之間的關(guān)系,因此一定要說誰是誰的倍數(shù),誰是誰的因數(shù)。
3、下面這些算式也能用倍數(shù)和因數(shù)表示嗎?
16÷2=85+6=1118-6=12
學(xué)生如果有爭論,讓學(xué)生說說自己的理由。由16÷2=8可以得到2×8=16,實(shí)際上16是2和8的乘積,所以也可以用倍數(shù)和因數(shù)來表示。
4、你能自己寫出一條算式,用倍數(shù)和因數(shù)來說一說嗎?學(xué)生自己思考,寫一寫,然后集體交流。
二、探索找一個數(shù)的倍數(shù)的方法
1、談話:3的倍數(shù)有哪些呢?我們來找找看。一分鐘內(nèi)完成。
1分鐘內(nèi)你們寫完了嗎?如果再給半分鐘呢?為什么?
2、3的倍數(shù)有很多,我們不能都寫出來,就用省略號來代替。下面,誰來說說看,3的倍數(shù)是怎么找的?小結(jié):找一個數(shù)的倍數(shù),只要用這個數(shù)去乘以1、2、3、。就能得到它的倍數(shù)。
3、填一填:2的倍數(shù)有________________________
5的倍數(shù)有________________________
4、觀察上面的幾個例子,你有什么發(fā)現(xiàn)?
先小組交流,再指名回答。
指出:一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
三、探索找一個數(shù)因數(shù)的.方法
1、嘗試:用自己的方法找出36的所有因數(shù)。
(1)先思考再嘗試。
(2)交流和評價
2、用這樣的方法,找找16的因數(shù)和7的因數(shù)。
3、討論:一個數(shù)的因數(shù)有哪些特征?
指出:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。
四、練習(xí)
練習(xí)一、二、三。
五、總結(jié)
這節(jié)課你有什么收獲?
反思:
讓學(xué)生借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。
在教學(xué)找一個數(shù)的倍數(shù)時,讓學(xué)生在1分鐘內(nèi)寫3的倍數(shù),再組織交流:3的倍數(shù)有哪些呢?同學(xué)互評,交流形成自己的學(xué)習(xí)成果,提高形成了知識的整體性教學(xué),加大了探索的力度,提高了思維的難度,“1分鐘內(nèi)你們寫完了嗎?如果再給半分鐘呢?為什么?”設(shè)疑,置疑,激發(fā)學(xué)生的反思力度,有效地激發(fā)了學(xué)生的求知欲望,從而積極主動地獲得知識。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時老師再給予有效的指導(dǎo)和總結(jié)。
《倍數(shù)和因數(shù)》教學(xué)反思15
因區(qū)領(lǐng)導(dǎo)要來調(diào)研,我們四年級幾位數(shù)學(xué)老師經(jīng)商量決定,都上《倍數(shù)和因數(shù)》,都覺得這個內(nèi)容挺簡單的。今天上午第一節(jié)課,領(lǐng)導(dǎo)進(jìn)了我的教室聽了我上這一課。上完這課,之前的那個想法就煙消云散了,根本沒有想象的那么容易上。下面對自己的課堂做一些反思。
新授的第一個教學(xué)環(huán)節(jié)是認(rèn)識倍數(shù)和因數(shù)的意義,原本我想讓每位學(xué)生準(zhǔn)備12個同樣大小的小正方形擺長方形的,再一想,都四年級的學(xué)生了,不需要操作了,而且,操作這一過程可以節(jié)省不少時間,本來這節(jié)課就時間很緊。沒想到,學(xué)生在心中拼一個長方形后,說乘法算式時疙里疙瘩的,語言表述不流暢,看來是學(xué)生缺乏操作體驗(yàn)的緣故吧。至于,認(rèn)識因數(shù)和倍數(shù)的意義,并熟練地說,這些學(xué)生都掌握很好,只是,不知怎么搞的,我竟然把“能說5是因數(shù),12是因數(shù),60是倍數(shù)嗎?”這個問題給忘記了,這樣,無形中淡化了需強(qiáng)調(diào)的“倍數(shù)和因數(shù)之間的關(guān)系”,不出我所料,在下午的反饋中,專家真指出了這一點(diǎn)。
第二環(huán)節(jié)是探求找一個數(shù)的因數(shù)的方法,找一個數(shù)的因數(shù)的方法是本節(jié)課的重點(diǎn),也是難點(diǎn)。根據(jù)教材編排的話,應(yīng)該先找倍數(shù)的'。我考慮到突出重點(diǎn)、突破難點(diǎn),我就做了調(diào)整,再說,之前,我查閱了好多資料,也有不少老師認(rèn)為先因數(shù)比較合理,因此,我的決定就更加堅(jiān)定了。在認(rèn)識了因數(shù)和倍數(shù)的意義的基礎(chǔ)上,我放手讓學(xué)生自己找36的因數(shù),然后讓學(xué)生發(fā)言交流找的方法,學(xué)生真的很努力很拎的清,見有領(lǐng)導(dǎo)聽課,竟然發(fā)揮出色,表現(xiàn)的相當(dāng)?shù)恼鎸?shí),也相當(dāng)?shù)某錾,大膽地說出自己的所思所想,學(xué)生的回答給人的感覺是那么自然,那么真實(shí),沒有一點(diǎn)矯揉造作。在下午的反饋中,專家夸我的課真實(shí)、樸實(shí)、實(shí)在,我想這應(yīng)歸功于我的學(xué)生們,是他們的樸實(shí)、實(shí)在感染了我。然而,我在這個環(huán)節(jié)設(shè)計(jì)的問題有點(diǎn)籠統(tǒng),不到位,導(dǎo)致有幾處的問話重復(fù),最終導(dǎo)致本課時間不夠,這是我本節(jié)課最大的遺憾。第三環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的方法,這里,我又一次偷懶,我完全放手讓學(xué)生來完成,結(jié)果學(xué)生們真的無師自通,很快就找到了方法,并有了很多發(fā)現(xiàn),相當(dāng)有價值,學(xué)生學(xué)習(xí)的主動性在這堂課中得到了很好的體現(xiàn)。
由此,讓我明白,學(xué)生真的不可以小看,他們真的很厲害。但有一點(diǎn),歸功于我,他們的大膽是我在近一年的時間中不斷訓(xùn)練的成果。
【《倍數(shù)和因數(shù)》教學(xué)反思】相關(guān)文章:
因數(shù)和倍數(shù)的教學(xué)反思02-14
倍數(shù)和因數(shù)的教學(xué)反思03-06
《倍數(shù)和因數(shù)》教學(xué)反思02-18
倍數(shù)和因數(shù)的教學(xué)反思通用10-09
《因數(shù)和倍數(shù)的認(rèn)識》教學(xué)反思06-24