欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教學(xué)反思>《解方程》教學(xué)反思

      《解方程》教學(xué)反思

      時(shí)間:2024-08-06 21:17:53 教學(xué)反思 我要投稿

      《解方程》教學(xué)反思15篇

        作為一名人民老師,我們要有一流的教學(xué)能力,借助教學(xué)反思我們可以快速提升自己的教學(xué)能力,寫(xiě)教學(xué)反思需要注意哪些格式呢?以下是小編整理的《解方程》教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。

      《解方程》教學(xué)反思15篇

      《解方程》教學(xué)反思1

        最近課堂上學(xué)習(xí)了《解方程》,是以等式的基本性質(zhì)為基礎(chǔ)來(lái)解決的。過(guò)去在小學(xué)教學(xué)簡(jiǎn)易方程,方程變形的依據(jù)是加減運(yùn)算的關(guān)系或乘除運(yùn)算的關(guān)系。這實(shí)際上是用算數(shù)的思路求未知數(shù),但學(xué)生到了中學(xué)又要另起爐灶,引入等式的基本形式或方程的同解原理來(lái)學(xué)習(xí)解方程,F(xiàn)在,根據(jù)《標(biāo)準(zhǔn)(20xx)》的要求,從小學(xué)起就引起等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。新課程數(shù)學(xué)教學(xué)這樣安排體現(xiàn)了“瞻前顧后”的道理,更加注重知識(shí)的`遷移和聯(lián)系,使得小學(xué)的知識(shí)要與初中的知識(shí)更加的接軌。

        教材中分為5個(gè)例題,分別是不同類(lèi)型:x±a=b;

        ax=b;

        a-x=b;

        ax+b=c;

        a(x±b)=c,這幾個(gè)類(lèi)型層次依次遞進(jìn),難度由簡(jiǎn)到難。其中例1不僅是教授x±a=b類(lèi)型的解方程,還要讓學(xué)生理解“方程的解”、“解方程”兩個(gè)概念。剛開(kāi)始時(shí)學(xué)生不易區(qū)分,但隨著后面例題的講解,并且在解方程的過(guò)程中,學(xué)生慢慢理解并內(nèi)化能區(qū)分開(kāi)這兩個(gè)概念。

        通過(guò)幾天對(duì)解方程的練習(xí),大部分學(xué)生對(duì)解方程的目的以及檢驗(yàn)的方法和步驟都有了較好的掌握,也能分清該利用哪個(gè)等式性質(zhì)來(lái)解方程。但是在課堂練習(xí)和改作業(yè)時(shí),發(fā)現(xiàn)部分學(xué)生還有一些問(wèn)題存在:

        一、用方程來(lái)表示較復(fù)雜的數(shù)量關(guān)系學(xué)生出現(xiàn)困難,是通過(guò)我的幫助列出方程,應(yīng)及時(shí)讓學(xué)生鞏固方法。

        二、對(duì)于例3形式的解方程,學(xué)生還容易出錯(cuò),如32-x=45,6÷x=3這樣的方程,x前面是“-和÷”,學(xué)生不好理解為什么方程兩邊同時(shí)“+x”或同時(shí)“×x”,我又借助天平講解:如果兩邊同時(shí)減32或同時(shí)除以6,依然算不出x,如果同時(shí)加x或同時(shí)×x,然后就能變成x+a=b或ax=b的形式,再利用所學(xué)方法進(jìn)行解方程就可以了。這個(gè)類(lèi)型還需要加強(qiáng)訓(xùn)練,讓學(xué)生能快速區(qū)分開(kāi)來(lái)是加數(shù)還是要加一個(gè)含有未知數(shù)的式子。

        三、解方程時(shí)學(xué)生丟步驟,如:2x+6=18這樣的方程,學(xué)生都知道第一步要等式兩邊同時(shí)減去6,得到“2x=12”,但這一步有部分學(xué)生會(huì)直接寫(xiě)成“x=12”,說(shuō)明還需強(qiáng)調(diào)2x是一個(gè)整體,第一步解完后并不是最后的解,還需讓等式兩邊同時(shí)除以2才能得出。

        四、檢驗(yàn)時(shí)學(xué)生的步驟丟三落四較多,或丟掉“=方程右邊”;

        或丟掉最后一句話“x=2是方程的解”。

        《簡(jiǎn)易方程》這單元是本冊(cè)的重點(diǎn),解方程又是本單元的一大難點(diǎn),所以后面的教學(xué)時(shí),我除了讓學(xué)生觀察方程中未知數(shù)的位置和前面符號(hào)來(lái)解方程外,還應(yīng)要求學(xué)生說(shuō)得清,能講清楚理由,從而在理解變形依據(jù)、過(guò)程的基礎(chǔ)上掌握所學(xué)方程的解法。

      《解方程》教學(xué)反思2

        本節(jié)課的內(nèi)容包括兩個(gè)方面:

        一是理解“等式兩邊同時(shí)加上或減去同一個(gè)數(shù),所得結(jié)果仍然是等式”

        二是應(yīng)用等式的性質(zhì)解只含有加法和減法運(yùn)算的簡(jiǎn)單方程。解方程是學(xué)生剛接觸的新知識(shí),學(xué)生原有的知識(shí)儲(chǔ)備與生活經(jīng)驗(yàn)不足,因此教學(xué)中老師要時(shí)刻關(guān)注學(xué)生的學(xué)習(xí)的情況,引導(dǎo)學(xué)生經(jīng)歷將現(xiàn)實(shí)生活問(wèn)題加以數(shù)學(xué)化,引導(dǎo)學(xué)生通過(guò)操作、觀察、分析和比較,由具體的知識(shí)滲透到抽象的去理解等式的性質(zhì),并應(yīng)用等式的性質(zhì)來(lái)解方程。在這節(jié)課的教學(xué)中,應(yīng)讓學(xué)生理解并掌握等式的性質(zhì),這是為學(xué)生后續(xù)學(xué)習(xí)方程打下較扎實(shí)的基矗

        一、讓學(xué)生通過(guò)動(dòng)手、操作、觀察中去發(fā)現(xiàn)等式的性質(zhì)

        老師先出示天平,并在天平兩邊各放一個(gè)20克的砝碼,“你能用式子表示出兩邊的關(guān)系?”生寫(xiě)出20=20;教師在天平的一邊增加一個(gè)10克砝碼,“這時(shí)的關(guān)系怎么表示?”生寫(xiě)出20+10>20,“這時(shí)天平的兩邊不相等,怎樣才能讓天平兩邊相等?”生交流得出在天平的另一邊增加同樣重量的砝碼;然后依次出現(xiàn)后續(xù)的三幅天平圖,學(xué)生觀察,教師板書(shū),并組織學(xué)生小組討論交流:“你有什么發(fā)現(xiàn)嗎?”通過(guò)全班交流,在交流中教師應(yīng)逐步提示,因?yàn)檫@是一個(gè)全新的知識(shí),得出等式的性質(zhì)。最后,讓學(xué)生自己寫(xiě)幾個(gè)等式看一看。通過(guò)具體的操作為學(xué)生探究問(wèn)題,尋找結(jié)論提供了真實(shí)的情境,富有啟發(fā)性、引領(lǐng)性,讓學(xué)生經(jīng)歷了解決問(wèn)題的過(guò)程,并在問(wèn)題的解決中發(fā)現(xiàn)并掌握了知識(shí)。

        二、讓學(xué)生運(yùn)用等式的性質(zhì)解方程

        引入了等式的.性質(zhì),其目的就是讓學(xué)生應(yīng)用這一性質(zhì)去解方程,第一次學(xué)習(xí)解方程,學(xué)生心理上難免會(huì)有些準(zhǔn)備不足,為了幫助學(xué)生應(yīng)用等式的性質(zhì)解方程,課前布置了學(xué)生預(yù)習(xí),課中我先讓學(xué)生嘗試練習(xí),但巡視中發(fā)現(xiàn)學(xué)生沒(méi)有根本理解,我就利用天平所顯示的數(shù)量關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)“在方程的兩邊都減去10,使方程的左邊只剩下x”,并詳細(xì)講解解方程的書(shū)寫(xiě)格式,包括檢驗(yàn)。通過(guò)這樣有步驟的練習(xí),幫助學(xué)生逐漸掌握解方程的方法。然后讓學(xué)再次通過(guò)修正,試一試,鞏固解方程的知識(shí)。本節(jié)課達(dá)到了預(yù)期的效果。

        三、遺憾的是,由于星期一集體活動(dòng)的沖突,導(dǎo)致今天的上課時(shí)間30分鐘都不到,因此學(xué)生的交流顯得不充分,教師的重點(diǎn)講解顯得不到位

      《解方程》教學(xué)反思3

        本節(jié)課的學(xué)生學(xué)習(xí)的重難點(diǎn)是掌握較復(fù)雜方程的解法,會(huì)正確分析題目中的數(shù)量關(guān)系;學(xué)習(xí)目標(biāo)是進(jìn)一步掌握列方程解決問(wèn)題的方法。這一小節(jié)內(nèi)容是在前面初步學(xué)會(huì)列方程解比較容易的應(yīng)用題的基礎(chǔ)上,教學(xué)解答稍復(fù)雜的兩步計(jì)算應(yīng)用題。例1若用算術(shù)方法解,需逆思考,思維難度大,學(xué)生容易出現(xiàn)先除后減的錯(cuò)誤,用方程解,思路比較順,體現(xiàn)了列方程解應(yīng)用題的優(yōu)越性。

        一、從學(xué)生喜聞樂(lè)見(jiàn)的事物入手,降低問(wèn)題的難度。

        解稍復(fù)雜的方程這部分內(nèi)容煩瑣乏味,解答例1這類(lèi)應(yīng)用題的關(guān)鍵是找題里數(shù)量間的相等關(guān)系。為了幫助學(xué)生找準(zhǔn)題量的等量關(guān)系。我從學(xué)生喜歡的事物入手,引出數(shù)學(xué)問(wèn)題,激發(fā)學(xué)生的.學(xué)習(xí)數(shù)學(xué)的興趣,又為學(xué)習(xí)新知識(shí)做了很多的鋪墊。

        二、放手讓學(xué)生思考、解答,選擇解題最佳方案。

        讓學(xué)生當(dāng)小老師,從問(wèn)題中找出數(shù)量之間的關(guān)系,弄清解決問(wèn)題的思路,展示講解自己的思考過(guò)程和結(jié)果,這樣既增加學(xué)生學(xué)習(xí)的信心,又培養(yǎng)學(xué)生分析問(wèn)題的能力,發(fā)展學(xué)生的思維空間;然后,我大膽放手,讓學(xué)生用自己學(xué)過(guò)的方法來(lái)解答例1,最后老師讓學(xué)生把各種不同的解法板演在黑板上,讓學(xué)生分析哪種解法合理,再?gòu)闹羞x擇最佳解題方案。這樣既突出了最佳解題思路,又強(qiáng)化了列方程解題的優(yōu)越性和解題的關(guān)鍵,促進(jìn)了學(xué)生邏輯思維的發(fā)展。

        三、教會(huì)學(xué)生學(xué)習(xí)方法,比教會(huì)知識(shí)更重要。

        應(yīng)用題的教學(xué),關(guān)鍵是理清思路,教給方法,啟迪思維,提高解題能力。這節(jié)課的教學(xué)中,教師敢于大膽放手,讓學(xué)生觀察圖畫(huà),了解畫(huà)面信息,白色多少塊,黑色多少塊,白色比黑色少多少等信息,組織學(xué)生小組討論交流,再在練習(xí)本上畫(huà)線段圖,然后指導(dǎo)學(xué)生根據(jù)線段圖,分析數(shù)量之間的關(guān)系,討論交流解決問(wèn)題的方法。

        讓學(xué)生成為學(xué)習(xí)的主人,參與到教學(xué)的全過(guò)程中去。所以在應(yīng)用題的教學(xué)中,教師要指導(dǎo)學(xué)生學(xué)會(huì)分析應(yīng)用題的解題方法,一句話,教會(huì)學(xué)生學(xué)習(xí)方法比教會(huì)知識(shí)更重要,讓學(xué)生真正成為學(xué)習(xí)的主體。教師是教學(xué)過(guò)程的組織者、引導(dǎo)者。

      《解方程》教學(xué)反思4

        解方程這部分教學(xué)內(nèi)容與老教材相比有很大的差異,尤其是在方程的解法上,利用天平平衡的道理解方程,學(xué)生在理解和運(yùn)用上都有一定的困難,而且本部分教學(xué)很是枯燥無(wú)味,于是我加入了探秘的情節(jié),和本節(jié)課完全吻合。下面就我講授的這節(jié)課做一下反思:

        一、本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),它能使方程的左右兩邊相等,不信咱們?cè)囈辉!庇纱艘鹆藢W(xué)生的好奇心,通過(guò)練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個(gè)數(shù),“解方程”是一個(gè)過(guò)程,同時(shí)又為最后的檢驗(yàn)做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰(shuí)找的是寶石,誰(shuí)找的是石頭,用你自己的方法就可以驗(yàn)證。孩子們做的是津津有味,尋得異常開(kāi)心。在不知不覺(jué)中學(xué)會(huì)了本節(jié)課的`知識(shí)。對(duì)于概念的理解也很扎實(shí)。

        二、在練習(xí)題的安排上也做了精心的安排,當(dāng)講授完利用天平平衡的道理解方程后,馬上進(jìn)行了“填空練習(xí)”,這四個(gè)練習(xí)題的安排也是經(jīng)過(guò)精心考慮的:第一個(gè)方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個(gè)方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個(gè)方程,又有所變化,但解方程的方法是沒(méi)有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對(duì)解方程掌握的還不錯(cuò)。

        本節(jié)課不足之處在于最后留的時(shí)間過(guò)少,檢驗(yàn)的格式?jīng)]有完整的交給孩子們?蓛(nèi)心矛盾:檢驗(yàn)的目的已經(jīng)達(dá)到了,必須要重視其格式嗎?

        總體來(lái)說(shuō),喜歡讓孩子們?cè)诳鞓?lè)中學(xué)到知識(shí),喜歡聽(tīng)孩子們說(shuō):“我還想再寫(xiě)!

      《解方程》教學(xué)反思5

        縱觀整節(jié)課教學(xué),我認(rèn)為已經(jīng)基本把握教材的重難點(diǎn)。在講解“方程的解”定義時(shí),能從驗(yàn)算例子答案出發(fā),讓學(xué)生體會(huì)到“方程左右兩邊相等”的特征,從而能更好地理解“方程的解”的定義。

        在講授“解方程”定義概念時(shí),我主要從教材思想出發(fā),通過(guò)讓學(xué)生說(shuō)出采用各自不同的方法求解方程的解,讓學(xué)生明白“解方程的各種方法,目的只有一個(gè),那就是求出解,但不同的方法有自身不同的求解過(guò)程”著重讓學(xué)生理解“求解過(guò)程”。

        在這基礎(chǔ)上,讓學(xué)生討論發(fā)現(xiàn)兩個(gè)概念定義之間的區(qū)別。

        在講授“解方程:X+7=13”例題時(shí),我安排一個(gè)成績(jī)中等的學(xué)生上來(lái)解答(因?yàn)槭切抡n,學(xué)生還沒(méi)有接觸過(guò)正確規(guī)范的書(shū)寫(xiě)格式,學(xué)生的求解方法和過(guò)程步驟,能代表整個(gè)班級(jí)的情況。況且學(xué)生的求解過(guò)程能起到反例的作用,為下面比較教學(xué)——從對(duì)比中認(rèn)識(shí)正確的求解過(guò)程做好鋪墊)

        板書(shū)正確書(shū)寫(xiě)格式后,讓學(xué)生通過(guò)比較發(fā)現(xiàn)該如何正確規(guī)范地求解方程的解。

        整節(jié)課教學(xué)存在幾點(diǎn)不足:

        1、學(xué)生課堂練習(xí)量少。這與定義的教學(xué)花費(fèi)太多時(shí)間有關(guān)。

        2、對(duì)學(xué)生新課之前的求解方程的解的方法缺少關(guān)注。解方程是可以有很多方法的,需要鼓勵(lì)學(xué)生的多向發(fā)散思維。

        3、教師課堂上雖然提到“對(duì)于一個(gè)X的值,它究竟是不是方程的解呢?為什么?”,但還是缺乏相關(guān)練習(xí),因?yàn)檫@一內(nèi)容對(duì)理解“方程的解”有極強(qiáng)的意義。

        《方程的意義》這節(jié)課與學(xué)生的生活有密切聯(lián)系,通過(guò)本節(jié)課的學(xué)習(xí),要使學(xué)生經(jīng)歷從實(shí)際問(wèn)題中總結(jié)概括出數(shù)學(xué)概念的過(guò)程。讓學(xué)生初步了解方程的意義,理解方程的概念,感受方程思想。使學(xué)生經(jīng)歷從生活情境到方程概念的建立過(guò)程,培養(yǎng)學(xué)生觀察、猜想、驗(yàn)證、分類(lèi)、抽象、概括、應(yīng)用等能力。通過(guò)自主探究,合作交流等數(shù)學(xué)活動(dòng),激發(fā)學(xué)生的興趣,所以我在教學(xué)設(shè)計(jì)的過(guò)程中十分重視學(xué)生原有的知識(shí)基礎(chǔ),用直觀手法向抽象過(guò)渡,用遞進(jìn)形式層層推進(jìn),讓學(xué)生經(jīng)歷一個(gè)知識(shí)形成的過(guò)程,并盡可能讓他們用語(yǔ)言表達(dá)描述出自己對(duì)學(xué)習(xí)過(guò)程中的理解,最后形成新的知識(shí)脈絡(luò)。下面就結(jié)合這節(jié)課,談?wù)勎以诮虒W(xué)中的做法和看法。

        一、復(fù)習(xí)導(dǎo)入,激趣揭題

        該環(huán)節(jié)主要復(fù)習(xí)與新知識(shí)有間接聯(lián)系的舊知識(shí),為學(xué)習(xí)新知識(shí)鋪墊搭橋,以舊引新,方程是表達(dá)實(shí)際問(wèn)題數(shù)量關(guān)系的一種數(shù)學(xué)模型,是在學(xué)生熟悉了常見(jiàn)的數(shù)量關(guān)系,能夠用字母表示數(shù)的基礎(chǔ)上教學(xué)的,因此開(kāi)課伊始我結(jié)合與學(xué)生有關(guān)的`一些生活現(xiàn)象出示了一組題,要求學(xué)生用含有字母的式子表示出來(lái)。這些題的出現(xiàn)即能讓學(xué)生復(fù)習(xí)鞏固以前所學(xué)的知識(shí)也能讓學(xué)生體會(huì)到我們生活中有很多現(xiàn)象都能用式子表示出來(lái),激起學(xué)生的學(xué)習(xí)興趣,引出這節(jié)課的學(xué)習(xí)內(nèi)容,這樣的開(kāi)課很實(shí)際,很干脆,也很有用。

        二、實(shí)踐操作,建立方程模型

        1.用天平創(chuàng)設(shè)情境直觀形象,有助學(xué)生理解式子的意思

        等式是一個(gè)數(shù)學(xué)概念。如果離開(kāi)現(xiàn)實(shí)背景出現(xiàn)都是已知數(shù)組成的等式,雖然可以通過(guò)計(jì)算體會(huì)相等,但枯躁乏味,學(xué)生不會(huì)感興趣。如果離開(kāi)現(xiàn)實(shí)情境出現(xiàn)含有未知數(shù)的等式,學(xué)生很難體會(huì)等式的具體含義。天平是計(jì)量物體質(zhì)量的工具,但它也可以通過(guò)平衡或者不平衡判斷出兩個(gè)物體的質(zhì)量是否相等,天平圖創(chuàng)設(shè)情境,利用鮮明的直觀形象寫(xiě)出表示相等的式子和表示不相等的式子,可以幫助學(xué)生理解式子的意思,也充分利用了教材的主題圖。

        2、自主操作,提高能力,激發(fā)興趣

        在探究方程的意義時(shí)我特意給學(xué)生提供操作天平平衡的不同材料,讓學(xué)生分組實(shí)踐,通過(guò)操作、觀察天平的狀態(tài)得到許多不同的式子,由于材料不同,每個(gè)組所得的式子也不同,有的全是已知數(shù)的式子,有的是含有未知數(shù)的式子,多種多樣的式子激起學(xué)生的探究欲望激發(fā)學(xué)生觀察興趣。

        三、實(shí)際運(yùn)用,升華提高

        在練習(xí)設(shè)計(jì)中由易到難,由淺入深,使學(xué)生的思維不斷發(fā)展,使學(xué)生對(duì)于方程意義的理解更為深刻,特別使讓學(xué)生自由創(chuàng)作方程這一練習(xí)題,既讓學(xué)生應(yīng)用了知識(shí)又培養(yǎng)了學(xué)生的創(chuàng)新思維。

        本課時(shí)教學(xué)設(shè)計(jì),改變了傳統(tǒng)學(xué)習(xí)方式,利用課本的靜態(tài)資源通過(guò)現(xiàn)代化教學(xué)手段,把數(shù)學(xué)情景動(dòng)態(tài)化,大大激發(fā)了學(xué)生的學(xué)習(xí)興趣,充分體現(xiàn)了以學(xué)生為主,讓學(xué)生獨(dú)立思考,不斷歸納,把學(xué)生從被動(dòng)地接受知識(shí)轉(zhuǎn)為自己探究,為學(xué)生提供了自主探究,合作交流的空間。在學(xué)習(xí)中體會(huì)到了學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,在獲取知識(shí)的同時(shí),情感態(tài)度,能力等方面都得到發(fā)展。當(dāng)然這節(jié)課還存在一些問(wèn)題,比如對(duì)等式與方程的關(guān)系突出得不夠,讀學(xué)生“說(shuō)”的訓(xùn)練不夠,應(yīng)該給學(xué)生更多的表述的機(jī)會(huì)。

      《解方程》教學(xué)反思6

        五年級(jí)第四單元教材的設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法。在以前人教版教材中,學(xué)著解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個(gè)加數(shù)=和-另一個(gè)加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來(lái)求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個(gè)數(shù),等式仍然成立”這個(gè)規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會(huì)解方程,還能使之與中學(xué)的移項(xiàng)解方程建立起聯(lián)系。

        在教學(xué)前,由于我個(gè)人比較偏好于傳統(tǒng)的教學(xué)方法,總覺(jué)得用等式的性質(zhì)解方程比較麻煩。為了轉(zhuǎn)變自己的教學(xué)思想,更新教學(xué)觀念,我深入了解新教材的涵意——方程是一個(gè)一個(gè)等式,是一個(gè)數(shù)學(xué)模型,是抽象的,而天平是一個(gè)具體的東西,利用天平這樣的事物原形來(lái)揭示等式的性質(zhì),把抽象的解方程的過(guò)程用形象化的方式表現(xiàn)出來(lái),使學(xué)生更好的理解解方程的過(guò)程是一個(gè)等式的恒等變形。并能站在“學(xué)生是學(xué)著的主人”和“教師是學(xué)著的組織者、引導(dǎo)者與合作者”的.這一角度上,()為學(xué)生創(chuàng)設(shè)學(xué)著此課的情境,通過(guò)直觀演示,充分給學(xué)生提供小組交流的機(jī)會(huì)。在教學(xué)的整個(gè)過(guò)程中,重點(diǎn)突出了“等式”與“等式兩邊都加上或減去同一個(gè)數(shù),等式仍然成立”這個(gè)規(guī)律,不斷對(duì)孩子們進(jìn)行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運(yùn)用此規(guī)律來(lái)解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學(xué)著活動(dòng)是那么的有滋有味,進(jìn)而使我很順利地就完成了本課的教學(xué)任務(wù)。

      《解方程》教學(xué)反思7

        本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)是:理解“方程的解”、“解方程”兩個(gè)概念;會(huì)運(yùn)用天平平衡的道理解簡(jiǎn)單的方程。在教學(xué)環(huán)節(jié)的設(shè)計(jì)和安排上,盡量為突破教學(xué)重點(diǎn)和難點(diǎn)服務(wù),因此我進(jìn)行了大膽的嘗試,在講解方程的解時(shí),給學(xué)生一個(gè)明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個(gè)神奇的數(shù),由此引起了學(xué)生的好奇心,通過(guò)練習(xí)讓學(xué)生充分感知“方程的解”的`神奇之處。

        1.本課主要對(duì)解方程進(jìn)行了解題練習(xí)。通過(guò)搶奪小紅花等游戲的形式大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的樂(lè)趣和興趣!

        2、通過(guò)本課的作業(yè)檢測(cè),有少量學(xué)生還是對(duì)本課的內(nèi)容練習(xí)不是很到位。需要教師在課下不斷的指導(dǎo)。

        3、學(xué)生對(duì)于方程的書(shū)寫(xiě)格式掌握的很好,這一點(diǎn)很讓人欣喜.

      《解方程》教學(xué)反思8

        一、引入了天平,理解等式的性質(zhì)。

        新教材的突出之處從直觀的天平入手,天平的兩邊同時(shí)加上或減去相同的重量,仍然保持平衡,這樣就引入了等式的性質(zhì)1,利用這個(gè)性質(zhì),可以解決a+x=b,或a-x=b的方程,接著又從天平的兩邊同時(shí)乘或除以相同的非零的數(shù),天平仍然平衡,可以解決ax=b或x÷a=b的方程。從長(zhǎng)遠(yuǎn)角度看,學(xué)生經(jīng)過(guò)這樣的學(xué)習(xí),對(duì)于七年級(jí)以后的后續(xù)學(xué)習(xí)減少了障礙,很好地做好了銜接。

        二、兩條腳走路,解決不便的問(wèn)題。

        教材中有意避免了形如-x或÷x的方程的出現(xiàn),可是在實(shí)際中,出現(xiàn)這種方程是不可避免的,如果出現(xiàn)了,我們教者如何解釋呢?學(xué)生又應(yīng)如何解答呢?當(dāng)然還可以根據(jù)等式的性質(zhì)來(lái)進(jìn)行左右兩邊的化解,使得左邊或右邊變?yōu)樾稳鐇的情況,學(xué)生對(duì)于其中的減數(shù)與除數(shù)為未知數(shù)還可以啟發(fā)他運(yùn)用四則運(yùn)算的內(nèi)部的關(guān)系來(lái)解決。不要怕給了學(xué)生又一種選擇的機(jī)會(huì),這樣在用等式的性質(zhì)解決問(wèn)題不方便時(shí),未嘗不是一種好的方法。

        三、抓住其本質(zhì),簡(jiǎn)化方程的過(guò)程。

        兩邊同時(shí)加上或減去同一個(gè)數(shù)的過(guò)程,其本質(zhì)是為什么要這么做,當(dāng)學(xué)生經(jīng)過(guò)思考發(fā)現(xiàn)這樣的過(guò)程就是把方程的一邊變?yōu)橹皇O挛粗獢?shù)的過(guò)程,因而可以簡(jiǎn)化一些不必要的多余過(guò)程,典型的如x+5=20,x+5-5=20+5,讓學(xué)生通過(guò)計(jì)算體驗(yàn)這樣的第二步過(guò)程實(shí)際即為x=20+5,因而可以使方程的解答變得簡(jiǎn)便。學(xué)生覺(jué)得當(dāng)然還是簡(jiǎn)便的過(guò)程值得效仿,積極性顯得非常之高。

        四、確保正確率,及時(shí)進(jìn)行檢驗(yàn)。

        原來(lái)的檢驗(yàn)過(guò)程需要完整地寫(xiě)出左邊與右邊相等的過(guò)程,小學(xué)生在這個(gè)方面就會(huì)顯得不耐煩,在經(jīng)歷了一個(gè)詳細(xì)的檢驗(yàn)過(guò)程之后,然后教給學(xué)生一個(gè)簡(jiǎn)便的檢驗(yàn)方法,學(xué)生都很興奮,積極性也很高漲,而且主動(dòng)性也很好,這樣解決問(wèn)題的.正確率也提高了。

        同時(shí),在這部分的教學(xué)期間,也有一些問(wèn)題引發(fā)了個(gè)人的一些思考。

        首先是學(xué)習(xí)中如何提高學(xué)生的學(xué)習(xí)規(guī)范性,方程的解答是一種規(guī)范的過(guò)程,它有一些固定的格式,例如必須寫(xiě)“解:”,必須“=”上下對(duì)齊,要正確必須進(jìn)行檢驗(yàn)等,而這些都必須讓學(xué)生多進(jìn)行訓(xùn)練,多強(qiáng)化練習(xí),理解各種題型的結(jié)構(gòu)。

        其次是對(duì)于特殊方程的解答,如減數(shù)與除數(shù)為未知數(shù)的方程,用兩種方法解決的問(wèn)題,可能會(huì)引起部分的的不理解,會(huì)不會(huì)與教材主倡導(dǎo)的用等式的性質(zhì)解決問(wèn)題有矛盾呢

      《解方程》教學(xué)反思9

        本節(jié)課的內(nèi)容是在學(xué)生學(xué)了等式的性質(zhì)和解形如a+x=b x — a =b ax=bx÷a =b這樣的一般方程基礎(chǔ)上進(jìn)行教學(xué)的。成功之處:如何解決形如a — x =b a÷x =b這樣的特殊方程,關(guān)鍵是啟發(fā)學(xué)生思考,根據(jù)哪一條等式性質(zhì),怎樣將新的問(wèn)題轉(zhuǎn)化為已經(jīng)解決的舊的問(wèn)題。在教學(xué)中,我首先讓學(xué)生試做看看遇到了什么樣的'難題,部分學(xué)生發(fā)現(xiàn)20—x=9解:20—x—20=9—20在解決問(wèn)題的過(guò)程中遇到了方程右邊不夠減的情況,方程左邊是“—x”。正當(dāng)學(xué)生無(wú)從下手,不知所措的情形下,啟發(fā)學(xué)生當(dāng)我們遇到新問(wèn)題時(shí)怎么解決呢?學(xué)生會(huì)想到聯(lián)系前面學(xué)習(xí)的舊知識(shí)來(lái)解決,那你認(rèn)為應(yīng)該把這樣的減法方程轉(zhuǎn)化為什么運(yùn)算的方程呢?學(xué)生很容易想到把這樣的減法方程轉(zhuǎn)化為加法方程就可以解決新問(wèn)題,接著教師再緊跟著啟發(fā)學(xué)生,如何根據(jù)我們學(xué)過(guò)的知識(shí)進(jìn)行轉(zhuǎn)化呢?

        通過(guò)學(xué)生思考、討論和交流,可以根據(jù)等式的性質(zhì)進(jìn)行轉(zhuǎn)化,從而得出:20—x=9在解決特殊方程的過(guò)程中,學(xué)生有的解:20—x+x=9+x還想到利用加減法之間的關(guān)系來(lái)解決,直20=9+x接得出9+x=20也是可以的,肯定學(xué)生的9+x =20思考方法的合理性,但是也要告訴學(xué)生,9+x—9 =20—9這樣的思考方法到了中學(xué)解決更加復(fù)雜X=11的方程就無(wú)能為力了,為了使小學(xué)和中學(xué)的知識(shí)能更好的銜接,我們重點(diǎn)應(yīng)用等式的性質(zhì)把特殊方程轉(zhuǎn)化為一般方程,然后依據(jù)一般方程的方法解決問(wèn)題。不足之處:在練習(xí)中出現(xiàn)個(gè)別學(xué)生不注意觀察方程是一般方程還是特殊方程,導(dǎo)致出錯(cuò)。再教設(shè)計(jì):重點(diǎn)強(qiáng)化特殊方程的特點(diǎn),讓學(xué)生在解方程的過(guò)程中首先要觀察方程的特點(diǎn),然后采取相應(yīng)的解決問(wèn)題的方法。

      《解方程》教學(xué)反思10

        有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說(shuō)是順?biāo)浦,毫不費(fèi)力。學(xué)生完全能夠通過(guò)遷移自主探索出解法。但令我頭痛的是如何引導(dǎo)學(xué)生會(huì)解形如a-x=b及a÷x=b方程。

        本以為按新課標(biāo)教材這兩類(lèi)方程小學(xué)階段不用掌握,但在學(xué)期初教材分析會(huì)上教研員明確指明:這兩類(lèi)方程教師必須作為例題向?qū)W生補(bǔ)充講解,且屬于學(xué)生必會(huì)、考試必考內(nèi)容。原因如下:1、在列方程解決實(shí)際問(wèn)題時(shí),學(xué)生中往往會(huì)出現(xiàn)以上兩種類(lèi)型方程,教師難以回避。2、如果教師有意回避,會(huì)使學(xué)生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯(cuò)誤理解。

        基于上述原因,我今天在教學(xué)完例2后為學(xué)生補(bǔ)充了相應(yīng)內(nèi)容,但教學(xué)效果較差。雖然許多學(xué)生能根據(jù)加減乘除各部分之間的關(guān)系推導(dǎo)出X的值,但當(dāng)要求他們根據(jù)等式的性質(zhì)來(lái)解答時(shí),嘗試成功。通過(guò)指導(dǎo),全班也只有50%左右的學(xué)生基本掌握解答的方法。分析此次教學(xué)失敗的原因可能是安排的時(shí)機(jī)還不夠成熟。因?yàn)閷W(xué)生剛接觸解方程沒(méi)多久,還須一段時(shí)間鞏固教材中最基本的常見(jiàn)方程類(lèi)型,而今天補(bǔ)充的'兩種類(lèi)型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時(shí)不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問(wèn)題了。學(xué)困生聽(tīng)完拓展練習(xí)后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應(yīng)根據(jù)等式的性質(zhì)直接將等號(hào)兩邊同時(shí)除以5求解的,可卻有學(xué)生先將等式兩邊同時(shí)除以X,變成了“1.5÷X=5”, 這可真是越變?cè)綇?fù)雜。

        值得思考的是,如果必須兩教a-x=b及a÷x=b兩類(lèi)方程,你們覺(jué)得是按加減乘除法各部分之間的關(guān)系教好呢,還是按等式的性質(zhì)教學(xué)好呢?

      《解方程》教學(xué)反思11

        解方程是數(shù)學(xué)領(lǐng)域里一個(gè)關(guān)鍵的知識(shí),在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見(jiàn)得方程可以做到一些算式無(wú)法超越的能力。而如今五年級(jí)的學(xué)生開(kāi)始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。

      在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)”解題,還是運(yùn)用書(shū)本的“等式性質(zhì)”解題,還有老教材中提到的運(yùn)用關(guān)系式各部分之間的關(guān)系來(lái)解決?面對(duì)困惑,向老教師請(qǐng)教,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)”解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)”解題時(shí),在碰到a-x=b和a÷x=b此類(lèi)的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書(shū)):新教材編寫(xiě)者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無(wú)錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來(lái)的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類(lèi)的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的.運(yùn)用等式基本性質(zhì)教學(xué)孩子會(huì)解簡(jiǎn)單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項(xiàng)”也會(huì)順利的接收,但是面對(duì)現(xiàn)在五年級(jí)的思維和解題的方便性,我再教學(xué)老教材的“四則運(yùn)算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會(huì)解各種題型的方程。在我看來(lái),這樣的教學(xué)書(shū)本的知識(shí)不丟,方法又可以多種變通。

        通過(guò)這塊知識(shí)的整理,我感覺(jué)到教材需要教師好好的研究,才能用最合適的方式去教導(dǎo)學(xué)生,數(shù)學(xué)經(jīng)常存在一種一題多解情況,老師就是引導(dǎo)學(xué)生走最好最合適的路。

      《解方程》教學(xué)反思12

        五年級(jí)上冊(cè)利用等式的性質(zhì)解方程一直困擾著老師們,因?yàn)轭?lèi)似a-x=b的方程,則比較麻煩,因此許多老師就避開(kāi)等式的性質(zhì),轉(zhuǎn)而用四則運(yùn)算各部分之間的關(guān)系進(jìn)行教學(xué),這樣以來(lái)勢(shì)必會(huì)削弱學(xué)生對(duì)等式的性質(zhì)的理解和掌握。我教學(xué)中是這樣做的:第一節(jié)課時(shí)教學(xué)學(xué)習(xí)等式的性質(zhì)和用等式的性質(zhì)解方程,在書(shū)寫(xiě)上要求學(xué)生按這樣的格式書(shū)寫(xiě)如:

        x+100=250

        解:x-100+100-100=250-100

        X=150

        強(qiáng)調(diào)我們解方程的根據(jù)是等式的性質(zhì),即把等式的兩邊同時(shí)減去100,等式左右兩邊仍然相等,通過(guò)練習(xí)使學(xué)生達(dá)到熟練程度。

        第二課時(shí)教學(xué)時(shí),引入類(lèi)似a-x=b的方程,例如10.5-x=7.5這樣的方程,讓學(xué)生討論,這樣的方程我們?nèi)绾谓饽兀坑械膶W(xué)生想到了運(yùn)用減法各部分之間的關(guān)系來(lái)解方程,即除數(shù)等于被除數(shù)除以商,也有一部分同學(xué)運(yùn)用等式的'性質(zhì)來(lái)解方程,先將方程的左右兩邊同時(shí)加上x(chóng),,即10.5-x+x=7.5+x:方程變成了x+7.5=10.5,再把方程左右兩邊同時(shí)減去7.5,求出x的值;然后引導(dǎo)學(xué)生觀察在運(yùn)用等式的基本性質(zhì)解方程時(shí),方程左邊加一個(gè)數(shù)又減一這個(gè)數(shù),可以相互抵消,因此在書(shū)寫(xiě)時(shí),可以省略不寫(xiě),如:15+x=85,15+x-15=85-15,左邊可以將加15和減15省略不寫(xiě),學(xué)生很快學(xué)會(huì)了這種方法。最后引導(dǎo)學(xué)生把我們所學(xué)習(xí)的加減法方程的樣式及解法可以歸納如下:

        x+a=b

        x=b-a(根據(jù):把方程的左右兩邊同時(shí)減去a,等式仍然成立;

        或者是想:一個(gè)加數(shù)=和-另一個(gè)加數(shù))

        x-a=b

        x=b+a(根據(jù):把方程的左右兩邊同時(shí)加a,等式仍然成立;

        或者想:被減數(shù)=減數(shù)+差)

        a-x=b

        x=a-b(根據(jù):把方程的左右兩邊同時(shí)加x,再把方程左右兩邊同時(shí)減去b等式仍然成立;或者想:減數(shù)=被減數(shù)-差)

        通過(guò)以上幾個(gè)步驟的教學(xué),我班學(xué)生對(duì)于用等式的基本性質(zhì)解方程,或是運(yùn)用加減法各部分間的關(guān)系解方程,都能運(yùn)用自如,并能在后面學(xué)習(xí)了乘除法的方程后能夠自覺(jué)進(jìn)行整理,概括方程的樣式和解方程的根據(jù),收到了較好的教學(xué)效果。

      《解方程》教學(xué)反思13

        解方程的內(nèi)容主要是在五年級(jí)就學(xué)過(guò)的,但六年級(jí)上期仍然出現(xiàn)了解方程的內(nèi)容,說(shuō)明了這個(gè)知識(shí)點(diǎn)的重要性,既是重點(diǎn),又是難點(diǎn)。在具體的解方程過(guò)程中,通過(guò)學(xué)生的課堂活動(dòng)和課后作業(yè)反饋,總的說(shuō)來(lái),還是存在很大的問(wèn)題。我出了12個(gè)題,全對(duì)的占少數(shù),一般要錯(cuò)四個(gè)左右。下來(lái)后我進(jìn)行了深刻的反思。發(fā)現(xiàn)了幾個(gè)主要錯(cuò)誤:

        1 馬虎。體現(xiàn)在抄題抄錯(cuò),全班64人有6個(gè)抄錯(cuò)了題。

        2 較復(fù)雜點(diǎn)的解方程,思路混亂,不知道把哪一部分看作“整體”。 3 過(guò)于依賴(lài)計(jì)算器,對(duì)于除不盡的筆算出錯(cuò)。

        4錯(cuò)得最多的是減數(shù)和除數(shù)中含有未知數(shù)的情況。

        針對(duì)以上幾個(gè)錯(cuò)誤,我認(rèn)真做了分析,主要的原因有下面幾個(gè): 1 課前過(guò)于高估學(xué)生,沒(méi)有系統(tǒng)的復(fù)習(xí)相關(guān)內(nèi)容。

        2 現(xiàn)在這個(gè)班是上個(gè)五年級(jí)兩個(gè)班重新分的班,下來(lái)我問(wèn)了前面教過(guò)的數(shù)學(xué)老師,兩個(gè)老師教的方法不一樣。

        3 作業(yè)量不夠。

        所以,在后期的教學(xué)中做了一些調(diào)整:

        1 系統(tǒng)復(fù)習(xí)了相關(guān)知識(shí)。

        2 多作例題講解,由易入難。

        3 有針對(duì)性的出題,容易出錯(cuò)的`地方進(jìn)行大量的練習(xí)。

        4 搞了一個(gè)“我是一個(gè)小老師”的活動(dòng),全對(duì)的同學(xué)給其他同學(xué)當(dāng)老師,一個(gè)對(duì)一個(gè)的教。

        5 要求每個(gè)同學(xué)都獨(dú)立的出一個(gè)解方程的題,然后請(qǐng)一個(gè)同學(xué)完成并作評(píng)價(jià)。

        經(jīng)過(guò)鍛煉,現(xiàn)在對(duì)解方程這個(gè)這知識(shí)點(diǎn),同學(xué)們興趣和完成率大有提高。

      《解方程》教學(xué)反思14

        解方程是是數(shù)學(xué)知識(shí)里面很關(guān)鍵很重要的一個(gè)知識(shí)點(diǎn)。,在實(shí)際中,擁有方程的解法之后,很多人不會(huì)算式解題,但是能用方程解題,足以見(jiàn)得方程可以做到一些算式無(wú)法超越的能力。而如今五年級(jí)的學(xué)生開(kāi)始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點(diǎn)。

        在教這單元之前,我一直困惑解方程要采用初中的“移項(xiàng)”解題,還是運(yùn)用書(shū)本的“等式性質(zhì)”解題,面對(duì)困惑,向老教師請(qǐng)教,原來(lái)還有第三種老教材的“四則運(yùn)算之間的關(guān)系”解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運(yùn)用“移項(xiàng)”解題,學(xué)生對(duì)于這個(gè)概念或許不會(huì)系統(tǒng)清晰,但是“等式性質(zhì)”解題時(shí),在碰到a-x=b和a÷x=b此類(lèi)的方程,學(xué)生能如何下手,“四則運(yùn)算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書(shū)):新教材編寫(xiě)者如此說(shuō)明:長(zhǎng)期以來(lái),小學(xué)教學(xué)簡(jiǎn)易方程時(shí),方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來(lái)教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對(duì)中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。

        因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的'主要原因。但是從另一方面看出老教材的方法并無(wú)錯(cuò)誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實(shí)際解題,面對(duì)題目不會(huì)盲目,而采用等式基本性質(zhì)給學(xué)生帶來(lái)的是局部的銜接,而存在局部對(duì)學(xué)生會(huì)更困難,如a-x=b和a÷x=b此類(lèi)的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運(yùn)用等式基本性質(zhì)教學(xué)孩子會(huì)解簡(jiǎn)單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項(xiàng)”也會(huì)順利的接收,但是面對(duì)現(xiàn)在五年級(jí)的思維和解題的方便性,我再教學(xué)老教材的“四則運(yùn)算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會(huì)解各種題型的方程。在我看來(lái),這樣的教學(xué)書(shū)本的知識(shí)不丟,方法又可以多種變通。所以我在教學(xué)解方程的時(shí)候,給他們灌輸了兩種方法,第一種方法就是課本上的根據(jù)等式的性質(zhì)去解方程,另一種方式就是初中階段的“移項(xiàng)”,在這里的時(shí)候,我給初中的“移項(xiàng)”起了一個(gè)新的名字:移——變號(hào)。引入了這一個(gè)方法,學(xué)生解方程的興致有了很大的提高,解方程也變得容易了許多。

        但是在移-變號(hào)這種情況下,有出現(xiàn)了21÷x=7,和20-x=3的這樣的特殊情況,而我則讓他們記住,只要x在后面,就要運(yùn)用到四則運(yùn)算“除數(shù)=被除數(shù)÷商”和“減數(shù)=被減數(shù)-差”這兩種情況。通過(guò)練習(xí),學(xué)生解方程正確率有了很大的提高,但是與之而來(lái)的是,學(xué)生忘了等式的興致,忘了移—變號(hào)是怎么來(lái)的,而我,則在移-變號(hào)的基礎(chǔ)上,再一次的回顧,讓他們明白移-變號(hào)的立腳點(diǎn)就是等式的性質(zhì),如此反復(fù),學(xué)生加強(qiáng)了對(duì)解方程的認(rèn)識(shí),也更牢固的記住了等式的興致。而通過(guò)這一次的上課,我意識(shí)到,老師在上課之前,一定要更好的預(yù)設(shè),只有在這樣的情況下,生成的結(jié)果,才不會(huì)顧此失彼。而身為老師,一定要好好的研究教材,鉆研透知識(shí)點(diǎn),只有這樣,才能夠給學(xué)生清晰的思路。

      《解方程》教學(xué)反思15

        前兩天講解了簡(jiǎn)單的方程的解法,加法、減法乘法除法的,覺(jué)得孩子們接受的不錯(cuò),一節(jié)課下來(lái)練習(xí)了好多題,每個(gè)孩子都能得心應(yīng)手,自己還有點(diǎn)竊喜。可是今天卻讓我大跌眼鏡。

        昨天上課講解了例4和例5,孩子們對(duì)了復(fù)雜的.方程有了初步認(rèn)識(shí),但在每一步的分析之下孩子們也覺(jué)得很熟悉,原來(lái)是簡(jiǎn)單的方程結(jié)合在一起變成復(fù)雜的,只要掌握運(yùn)算順序就不難,結(jié)合例題的圖示,分彩筆的例子,先分什么再分什么,讓學(xué)生明白在具體算式中也是結(jié)合著實(shí)物圖來(lái)做,先把3x看做一個(gè)整體,把剩下的4根彩筆減掉,要想得到一整盒x根的彩筆,就得把3整盒再平均分配,這樣下來(lái)孩子們能夠明白每一步的意思,他們能夠知道先處理多余的彩筆,再考慮整盒的彩筆。這樣下來(lái)理解也不是問(wèn)題,又練了幾道同類(lèi)的題,也很順手。例5的講解上有些難度,孩子始終不太理解把括號(hào)看做一個(gè)整體,但在講解和練習(xí)下也能做上了。

        今天我想驗(yàn)收一下昨天學(xué)的怎么樣,結(jié)果讓我很頭疼,為什么過(guò)了一宿好多同學(xué)又沒(méi)了思緒,留了6道題,少數(shù)幾個(gè)好同學(xué)能夠順利的做上,大部分同學(xué)還在思索著,課下輔導(dǎo)了幾個(gè)差生,原來(lái)他們又把前面學(xué)的簡(jiǎn)單的方程解法又忘了,自己思考了一下,得給孩子們消化時(shí)間,課上會(huì)了不代表他們一直不忘,還得多加練習(xí)啊

      【《解方程》教學(xué)反思】相關(guān)文章:

      《解方程》的教學(xué)反思04-07

      《解方程》教學(xué)反思06-25

      《解方程》教學(xué)反思03-28

      解方程教學(xué)反思02-05

      《解方程二》教學(xué)反思04-07

      數(shù)學(xué)解方程教學(xué)反思04-05

      數(shù)學(xué)解方程教學(xué)反思01-13

      解方程3教學(xué)反思優(yōu)秀08-10

      《解方程》教學(xué)反思(15篇)04-07