- 圓柱體積的教學反思 推薦度:
- 圓柱的體積教學反思 推薦度:
- 圓柱的體積教學反思 推薦度:
- 相關(guān)推薦
圓柱的體積教學反思(合集15篇)
作為一名優(yōu)秀的人民教師,課堂教學是重要的任務(wù)之一,通過教學反思可以有效提升自己的教學能力,怎樣寫教學反思才更能起到其作用呢?以下是小編幫大家整理的圓柱的體積教學反思,歡迎閱讀,希望大家能夠喜歡。
圓柱的體積教學反思1
《圓柱的體積》一課是在學生已經(jīng)學習了《圓的面積》計算和《長方體的體積》及《圓柱的表面積》等相關(guān)的知識的基礎(chǔ)上教學的。同時又為學生今后進一步學習其他立體圖形的有關(guān)知識做好充分準備的一堂課。結(jié)合本課的教學實際情況,談幾點反思:
一、利用多媒體創(chuàng)設(shè)情境,促進了學生思維發(fā)展。
傳統(tǒng)教學只關(guān)注教給學生多少知識,教師把學生當成知識的“容器”。在這種被迫無奈的條件下,學生的學習只是被動的接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里我利用多媒體創(chuàng)設(shè)了豐富的教學情境,上課開始提出“如果我們要想知道這塊橡皮泥的體積或這個圓柱體里水的體積,該怎么辦?”學生提出“把橡皮泥捏成長方體的形狀,把圓柱里的水再倒入一個長方體的盒子里,就可以求出來水的體積了”。這樣不斷地引導學生運用已有的生活經(jīng)驗和舊知,探索和解決實際問題,引導學生經(jīng)歷圓柱體積的推導過程,并適時用多媒體進行動態(tài)演示,學生在興趣盎然中經(jīng)歷了自主探索、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了數(shù)學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了一定的數(shù)學思想和方法,獲得了數(shù)學活動經(jīng)驗,掌握了數(shù)學基本知識。在練習的環(huán)節(jié)我用多媒體提出計算雞蛋體積的思維練習,調(diào)動的學生的興趣,從而促進了學生的思維發(fā)展
二、學生通過探究活動,經(jīng)歷了基本科學方法和過程。
“強調(diào)讓學生通過實踐增強探究和創(chuàng)新意識,學習科學研究的'方法,培養(yǎng)科學態(tài)度和科學精神!边@是課改的明確要求。這里學生親身經(jīng)歷提出問題、分析判斷、動手實踐、觀察記錄、收集整理、得出結(jié)論的過程,就是科學研究的過程,在這其中學生獲得了直接的實踐經(jīng)驗,嘗試、經(jīng)歷了基本科學方法和過程。數(shù)學課堂教學中應(yīng)將教師的驗證性操作變成學生的探究性上活動,使學生在探究性活動中掌握知識,發(fā)展能力。
三、體驗了豐富的學習人生。
創(chuàng)設(shè)了豐富的情境和氛圍讓學生去經(jīng)歷、體驗、領(lǐng)悟,在知識發(fā)生、發(fā)展的過程中,學生的學習興趣、熱情、動機、學習態(tài)度和責任,搜集信息和處理信息的能力,合作交流能力以及對個人價值、人類價值、科學價值等的認識都得到了發(fā)展。同時學生精神世界的發(fā)展從數(shù)學學習中獲得了多方面的滋養(yǎng),在對數(shù)學知識的認識、感受、體驗、改變、創(chuàng)造的過程中,不斷豐富和完善了自己的生命世界,體驗了豐富的學習人生,滿足了生命的成長需要。
此外,本課也存在不足之處:如有的后進生參與活動的意識不強,還有待在以后教學中改進和提高。
圓柱的體積教學反思2
本節(jié)課我注重知識的形成過程,使學生能主動學習新知,突破難點、疑點,能解決實際問題。
1、在教學過程中,讓學生自主合作、探究,經(jīng)歷猜想、操作、驗證、討論、歸納等數(shù)學活動。比如,我從圓柱模型拼成長方體入手,強調(diào)它們是等底等高長方體。由長方體體積公式V=Sh,猜想圓柱的體積公式。再通過學生的具體實際操作、小組合作探究,從而探索出圓柱體積公式,并掌握圓柱體積的`計算方法,能解決與圓柱體積計算相關(guān)的一些簡單的實際問題。
2、在活動中進一步使學生體會“轉(zhuǎn)化”方法的價值,比如,回顧上學期所學的圓的面積推導公式,從而理解圓柱的底面積與長方體底面積相等。這樣有利于培養(yǎng)學生應(yīng)用已有知識解決新問題的能力,發(fā)展空間觀念和初步的推理能力。
3、本節(jié)課中,我最大的遺憾就是沒有采用多媒體課件。但我認為一節(jié)好課就非要使用多媒體課件嗎?其實不然。當然,今天我在教學中,確實有許多的不足。比如,將圓柱體切割成若干等份,等份越多,分得越細,就越接近于長方體。倘若使用了多媒體課件演示,或許效果更明顯。
總之,今天教學中的不足,我會不斷改進。既面向全體學生,又注重不同學生的不同發(fā)展,設(shè)計更精、更符合學生發(fā)展的梯度問題,讓他們在有限的時空內(nèi)愉快學習、成長!
圓柱的體積教學反思3
今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細細品味上課的過程,頗有幾分感受:
在本課中,當學生面對新的問題情境—“圓柱的體積該怎么求?”時,能從圓的面積公式的推導,根據(jù)已有的知識作出 “轉(zhuǎn)化”的判斷。當然,由于知識經(jīng)驗的不足,表達得不是很清晰。但學生的這些都是有價值的。這些“猜想”閃爍著學生智慧的火花,折射出學生的創(chuàng)造精神。在此基礎(chǔ)上,讓學生以小組合作方式,利用已切開的圓柱體教具進行驗證,在討論聲中,學生獲得了真知?梢,教師要保護學生的創(chuàng)造熱情并給以科學探究方法的引導,以發(fā)展學生的創(chuàng)造性。在這點上,我對學生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學生的創(chuàng)造力是我們設(shè)計教法的前提。
在引導學生解決“粉筆的體積”等這個問題時,課堂上有學生把它當作圓柱體積來求,提出:“誤差這么小,是可行的.!倍夷俏粚W生要求的僅是一個大約的數(shù)值,所以用這種方法可以。但這種計算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會給學生造成“圓臺的體積可以用這兩種方法來計算”的錯誤認識,對學生的后續(xù)學習會造成一些不利的影響。我就這個問題引導學生進一步探索,使學生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時會行不通,懂得知識并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進一步學習積累經(jīng)驗。學生在探索過程中,雖不能很快獲得結(jié)論性的知識,但卻嘗試了科學探究的方法,形成良好的思維品質(zhì),增進了情感體驗。這樣,既保護了學生的創(chuàng)造性,又保證了教學內(nèi)容的科學性,就學生的發(fā)展而言,誰能說讓學生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?
圓柱的體積教學反思4
一、導入時,要突破教材,有所創(chuàng)新圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。
二、新課時,要實現(xiàn)人人參與,主動學習學生進行數(shù)學探究時,教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,由于學校教學條件差,沒有更多的學具提供給學生,只是由教師示范演示推導過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的`道理,從而推導出圓柱體積的計算公式。學生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學階段立體圖形的教學難點,學生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學生思考如何利用已知圖形體積和教學思想去解決這一問題。學生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、練習時,要形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習時要多動腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。
圓柱的體積教學反思5
案例背景:
《數(shù)學課程標準》指出:數(shù)學是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括形成方法和理論并進行廣泛應(yīng)用的過程。這一描述,明確了小學數(shù)學的內(nèi)涵,即數(shù)學學習是一個過程。近日,在市小學數(shù)學名師課堂教學展示中,天福小學的劉愛芳校長執(zhí)教的《圓柱的體積》一課,使我對個人的專業(yè)素養(yǎng)和課堂的設(shè)計內(nèi)涵,都有了很深的觸動。
案例描述:
片段一:
師:同學們,往這里看,今天老師帶來了三件物體:玻璃杯、橡皮泥、金屬零件。這三件物體有什么共同點?
生:都是圓柱。
師:圓柱形的物體生活中很多,以這三樣為例,你能提出哪些數(shù)學問題?
生1:水杯的容積是多少?
生2:水杯的表面積是多少?
生3:水杯的體積是多少?
師:這三個問題很好,我們記下一個。
師板書,水杯容積
生繼續(xù)提出關(guān)于橡皮泥和金屬容器的體積的問題,師板書:橡皮泥體積,金屬零件體積。
師:關(guān)于表面積的問題前面我們已經(jīng)研究過,這節(jié)課我們來研究圓柱體積的問題。
師板書:圓柱體積
師:以你現(xiàn)在的知識儲備,你能解決哪個問題?
生:水杯的容積
師:怎樣求?
生:可以把水杯的裝滿水,倒進一個長方體的容器中,計算出長方體容器中水的體積,也就求出了水杯的容積。
師:瞧,“裝滿水”,“滿”這個字用的多好,把水杯中的水倒進長方體容器中,從而求出水的體積。在這個過程中,運用了一種重要的數(shù)學思想方法----轉(zhuǎn)化。
師板書:倒---長方體,轉(zhuǎn)化。
師:在轉(zhuǎn)化過程中,水的什么變了?什么沒變?
生:水的形狀變了,體積沒變。
師:水杯的容積解決了,橡皮泥的體積呢?金屬零件的體積呢?
師:根據(jù)學生回答分別板書:捏---正方體,浸----長方體。
師:剛才我們根據(jù)這三個物體的共同特點,通過轉(zhuǎn)化,把它們轉(zhuǎn)化成我們以前學過的長方體或正方體的體積。是不是通過這三個方法,就可以解決所有的圓柱的體積的問題?
生:不能。
師:為什么?
生交流,得知物體很大時,沒法進行轉(zhuǎn)化。
師:因此,我們需要尋找一種通用的方法,你想到了什么方法?
生:計算。
師:圓柱體體積與什么有關(guān)?猜想一下怎樣計算?
……
片段二:
師:回顧這節(jié)課的學習過程,你認為你最有收獲的是什么?
師:前面大家根據(jù)長方體和正方體的體積公式猜測出圓柱的體積公式也是底面積×高,通過驗證得知大家的猜測是正確的。
師:這三個立體圖形有什么共同點?
師:像這樣的形體在數(shù)學上叫做直柱體。
課件出示:長方體、正方體、圓柱及它們的體積公式都是底面積×高。
師:生活中的直柱體還有哪些?
師:它們的形體是否也是底面積×高?有興趣的同學可以課后研究。
案例反思:
片段一的教學中,教師出示了三樣精心準備的物體----玻璃杯、橡皮泥、金屬零件(都是圓柱體),在學生圍繞這三種物體提出數(shù)學問題后,教師并沒有直接引導學生去探求如何計算圓柱體的體積,而是通過“以你現(xiàn)在的知識儲備,你能解決哪個問題?”“在轉(zhuǎn)化過程中,水的什么變了?什么沒變?”“瞧,‘裝滿水’,‘滿’這個字用的多好,把水杯中的水倒進長方體容器中,從而求出水的體積。在這個過程中,運用了一種重要的數(shù)學思想方法----轉(zhuǎn)化!薄八娜莘e解決了,橡皮泥的體積呢?金屬零件的體積呢?”這些引導性語言,使學生明白有些物體的體積可以分別通過倒、捏、浸轉(zhuǎn)化成長方體或正方體的體積來解決,“轉(zhuǎn)化”的提出為學生后面構(gòu)建數(shù)學模型,探究圓柱體積公式奠定了基礎(chǔ)。緊接著“是不是通過這三個方法,就可以解決所有的圓柱的.體積的問題?”這個問題,點燃了學生的探究欲望,這是這節(jié)課成功的起點,通過極限思想的滲透,使學生體會到了探究圓柱體積的計算方法的必要性。
片段二的教學中,教師在引導學生進行學習反思的基礎(chǔ)上,進行了拓展延伸。通過對長方體、正方體、圓柱體積公式的歸納匯總,引出直柱體的概念,學生進行了對直柱體表象的交流。此時,學生的探究欲望、學習激情,并沒有隨著課的尾聲而有所減弱,而是探究熱情再一次被點燃,孩子們帶著強烈的研究熱情結(jié)束了本節(jié)課的學習。
教材是一種重要的課程資源,對于學校和教師來說,課程實施更多地應(yīng)該是如何更好地“用教材”,而不是簡單地“教教材”。我們在用教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學生實際的“跳板”。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,研究學生學習起點,讓學生親歷完整的數(shù)學學習過程,觸摸數(shù)學鮮活生動的生命脈息,體會到知識產(chǎn)生過程中的前因和后果,從而進行有效的數(shù)學思考。
圓柱的體積教學反思6
[頭疼問題]
近期六年級的任課教師都會頭疼我們也不例外
年級組集體備課時會嘆氣
在走廊里碰頭時會感慨
嘆氣、感慨地主要原因就是:近期作業(yè)的錯誤率很高(特別是學困生)
這使我不免停下“匆匆的步伐”凝望著這些作業(yè)叉叉多的孩子
什么地方出問題了?
[細細掂量]
一輪本子改下來錯誤有以下幾類
1、優(yōu)等生:列出一個長長的算式,直接得出錯誤的結(jié)果(看不出是哪一步出錯,反正計算錯)
2、中等生:求表面積時,大概知道側(cè)面積+兩個底面積;但真正列式的時候底面積沒乘2;而到了只需要加一個底面積的時候(無蓋水桶等實際問題的時候)卻乘2;
3、學困生:列出的算式都有問題。一查,圓面積計算公式都不會(夠厲害),最基本的都不會,圓柱的表面積和體積又如何能正確求出;個別的20多分鐘頭都不抬,就在計算一個圖形題,仔細一看列式出錯,后面的脫式計算過程中的結(jié)果有的'有6、7位小數(shù);依然不知疲倦的算啊算,看著都累
4、不知靈活變通,一般來講3.14最好是最后再乘,這樣可以降低計算的復(fù)雜程度,減輕計算的強度;但部分學困生勇氣可嘉,不管那一套,列式中3.14在前面就先算;放在后頭就最后算,老實得可愛;當你在講計算技巧的時候可愛的孩子們還在埋頭苦算,結(jié)果錯誤百出。
[標本兼治]
1、學優(yōu)生:提出要求:不能一步得出結(jié)果,要脫式:關(guān)注做作業(yè)、打草稿的態(tài)度、習慣,養(yǎng)成草稿本清晰、數(shù)字清楚,可以避免匆忙之中抄錯數(shù)字導致整題出錯。
2、中等生、學困生:
。1)重視公式的熟練程度:通過演示、推導、同桌互說、單獨抽問、上黑板默寫等方法幫助夯實基礎(chǔ)。
。2)重點分析典型習題,幫助學生找到審題、列式、解題的方法和策略,并針對性練習,提高技能
。3)重點強記:3.14*1=…………………3.14*9= 常用計算結(jié)果,達到熟練程度,提高練習時的計算速度和正確率,也可以用于檢驗計算過程中的結(jié)果正確與否。
。4)抓聽講習慣:要求要嚴格,教師針對問題進行分析、講評的時候,應(yīng)要求所有學生抬頭關(guān)注,集中精力聽講(往往這樣的時候?qū)W困生是不睬你的,要適當?shù)暮八饋碚緜1分多鐘,點一點他。),有了這個保證,講評的效果就有了,出錯的幾率就就會降低了。再結(jié)合以上措施,效果就會更好。
[寫在結(jié)尾]
有了措施,就需要有行動——老師的行動、學生的行動都要跟上,希望一段日子后會有好效果。
也歡迎大家說說自己的好的做法,共同提高第二單元的質(zhì)量
圓柱的體積教學反思7
在本節(jié)課的教學中,教師根據(jù)教學的需要,充分利用現(xiàn)實生活中的素材,把教材中有關(guān)圓柱的提積的應(yīng)用所呈現(xiàn)的內(nèi)容變?yōu)楝F(xiàn)實生活中的問題,變書本知識為生活中的知識。
本節(jié)課中教師沒有過多地教學生,而讓學生回歸到生活原形中去,應(yīng)用所學的知識解決了生活中的實際問題,使本來很枯燥的圓柱的體積應(yīng)用的題材生活化,增加了學生的信息量,提高了學生體會數(shù)學奧秘的積極性。學生體會到了生活中處處有數(shù)學,數(shù)學就在我們身邊,知識才是我們解決實際問題的“金鑰匙”。通過尋找這些信息背后的信息,學生掌握了知識、形成了技能。同時也感受到了數(shù)學應(yīng)用的廣泛性以及數(shù)學與生活的.緊密聯(lián)系。
但在本節(jié)課中也有不足的地方,如①由于中心問題空間較大,具有挑戰(zhàn)性,中下等學生自主探索有一定的難度;②實踐中,學生獨立思考和小組討論花時間太多,影響了后面的教學,這都是以后在教學中應(yīng)注意的問題。
總之,隨著數(shù)學的發(fā)展,數(shù)學的應(yīng)用也越來越廣泛。作為教師的我們,應(yīng)該提供給學生充分的機會,讓學生運用已學過的數(shù)學知識解決問題,在問題的解決過程中,發(fā)展學生的思維能力,用數(shù)學的眼光去感知、去觀察、去應(yīng)用。
圓柱的體積教學反思8
《圓柱的體積》是在學生已經(jīng)學會計算長方體、正方體的體積,并且掌握圓柱基本特征的基礎(chǔ)上,引導學生探索并掌握圓柱的體積公式。通過教材教學學習后,下面我從教學過程、教學策略、教學技能等方面談?wù)勛约旱囊恍┓此肌?/p>
一、在教學過程的設(shè)計方面
1、導入時,力求突破教材,有所創(chuàng)新
圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。
2、新課時,要實現(xiàn)人人參與,主動學習
學生進行數(shù)學探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導圓柱體積公式過程時,我讓學生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。這樣學生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
3、練習時,形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,我在設(shè)計練習時動了一番腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型: a。已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。
b。已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。
c。已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。
d。已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。
e。已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。
因為是第一課時所以在鞏固練習中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學生能學以致用解決生活中的問題。
二、在教學策略方面
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導過程中指導學生充分利用手中的學具、教具,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。而在鞏固練習這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的`優(yōu)點。
三、在教學技能方面
學生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學生在自己艱苦的學習過程中發(fā)現(xiàn)并從學生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導的過程需要教師有認真準備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學只關(guān)注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學情景。
四、教學要達到三個目的
一是認識等底等高的含義,便于判斷圓柱可以轉(zhuǎn)化成與它等底等高的長方體。
二是從長方體與正方體等底等高,體積也相等的事實,引發(fā)等底等高的圓柱與長方體的體積也相等的猜想,形成把圓柱轉(zhuǎn)化成長方體的活動心向。
三是復(fù)習長方體、正方體的體積公式,圓柱的體積最終也要這樣計算。
圓柱的體積教學反思9
本課主要內(nèi)容是圓柱的體積公式的推導及其應(yīng)用。因為公式的推導過程是個難點,因此在教學設(shè)計時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學生理解公式的來源,從而獲得知識。下面我從教學過程、教學策略、教學技能等方面談?wù)勛约旱囊恍┓此肌?/p>
一、在教學過程的設(shè)計方面
1、導入時,力求突破教材,有所創(chuàng)新
圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、
流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。
2、新課時,要實現(xiàn)人人參與,主動學習
學生進行數(shù)學探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導圓柱體積公式過程時,我讓學生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。這樣學生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。
3、練習時,形式多樣,層層遞進
例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,我在設(shè)計練習時動了一番腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型。
a.已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。
b.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。
c.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2h。
d.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2h。
e.已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)2h。
因為是第一課時所以在鞏固練習中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學生真正掌握好計算圓柱體積的方法另外,還設(shè)計了解決生活中的問題,讓學生能學以致用解決生活中的問題。
二、在教學策略方面
我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導過程中指導學生充分利用手中的`學具、教具,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。而在鞏固練習這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。
三、在教學技能方面
學生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學生在自己艱苦的學習過程中發(fā)現(xiàn)并從學生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導的過程需要教師有認真準備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學只關(guān)注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學情景。
四、存在的問題
不足之處是:由于這節(jié)課的設(shè)計是以學生為主、發(fā)揮學生的主體作用,要充分展示學生的思維過程,所以在學生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握,不能時間較多,否則會導致練習的時間較少。
另外,在練習設(shè)計上,題形雖然全,但覺得題量偏多,因為這部分練習涉及的計算多、難,這樣練習題還需精心設(shè)計。
圓柱的體積教學反思10
“圓柱體積計算公式的推導”是在同學已經(jīng)學習了“圓的面積計算”、“長方體的體積”、“圓柱的認識”等相關(guān)的形體知識的基礎(chǔ)上教學的。同時又是為同學今后進一步學習其他形體知識做好充沛準備的一堂課。
課始,教師創(chuàng)設(shè)問題情境,不時地引導同學運用已有的生活經(jīng)驗和舊知,探索和解決實際問題,并制造認知抵觸,形成了“任務(wù)驅(qū)動”的探究氛圍。
展開局部,教師為同學提供了動手操作、觀察以和交流討論的.平臺,讓同學在體驗和探索空間與圖形的過程中不時積累幾何知識,以協(xié)助同學理解實際的三維世界,逐步發(fā)展其空間觀念。
練習布置注重密切聯(lián)系生活實際,讓同學運用自身剛推導的圓柱體積計算公式解決引入環(huán)節(jié)中的兩個問題,使其認識數(shù)學的價值,切實體驗到數(shù)學存在于自身的身邊,數(shù)學對于了解周圍世界和解決實際問題是非常有作用的。
教師無論是導入環(huán)節(jié),還是新課局部都恰當?shù)匾龑瑢W進行知識遷移,充沛地讓同學感受和體驗“轉(zhuǎn)化”這一解決數(shù)學問題重要的思想方法。同時,還合理地運用了多媒體技術(shù),形象生動地展示了“分成的扇形越多,拼成的立體圖形就越接近于長方體”,有機地滲透了極限的初步思想。
圓柱的體積教學反思11
本節(jié)課的教學內(nèi)容是九年義務(wù)教育六年制小學數(shù)學第十二冊﹙西師版﹚《圓柱的體積》,以前教學此內(nèi)容時,直接告訴學生:圓柱的體積=底面積高,用字母表示公式:V=Sh,讓學生套用公式練習;我教此內(nèi)容時,不按傳統(tǒng)的教學方法,而是采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學生學到了有價值的知識。
學生通過實踐、探索、發(fā)現(xiàn),得到的知識是活的,這樣的'知識對學生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案不是老師告訴的,而是學生在自己艱苦的學習中發(fā)現(xiàn)并從學生的口里說出來的。這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學生的科學精神和方法。
新課程改革明確提出要強調(diào)讓學生通過實踐增強探究和創(chuàng)新意識,學習科學研究的方法,培養(yǎng)科學態(tài)度和科學精神。學生動手實踐、觀察得出結(jié)論的過程,就是科學研究的過程。
三、促進了學生的思維發(fā)展。
傳統(tǒng)的教學只關(guān)注教給學生多少知識,把學生當成知識的容器。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學情景,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。
本節(jié)課采用新的教學方法,取得了較好的教學效果,不足之處是:由于學生自由討論、實踐和思考的時間較多,練習的時間較少。
圓柱的體積教學反思12
本節(jié)課為練習課,目的在于鞏固學生前面幾個課時的學習內(nèi)容和發(fā)現(xiàn)學生存在的一些問題,然后及時調(diào)整或補充教學方案。本節(jié)課在教學過程中,發(fā)現(xiàn)學生存在的`問題主要有:學生對圓柱的側(cè)面展開圖的相關(guān)知識理解不深入;在計算的過程中,單位名稱用錯,如體積單位寫成面積單位;對于某些實際問題不能正確分辨圓柱直徑、半徑以及圓柱的高,導致做題出錯。對于這些問題,我們可以通過以下方法來突破:
第一,我們在集中講解時可穿插一些單位換算的練習等,從而避免學生誤用單位名稱;
第二,在計算以長方形的一邊為軸旋轉(zhuǎn)得到的圓柱體積和計算直接將長方形卷成的圓柱體積之前,我們可先組織學生自己動手操作、觀察比較,讓學生們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關(guān)系。
總而言之,我們在引導學生參與到探索知識的發(fā)生、發(fā)展過程中,應(yīng)注重突破以往單一、被動的學習方式。
圓柱的體積教學反思13
本節(jié)課是在學習了圓柱的體積公式后進行的解決問題。這要求學生對圓柱的體積公式掌握的比較扎實,并要求理論與實際生活相結(jié)合。讓學生通過經(jīng)歷發(fā)現(xiàn)和提出問題、分析和解決問題的完整過程,掌握問題解決的策略。使學生在解決問題的過程中體會轉(zhuǎn)化、推理和變中有不變的數(shù)學思想。
在教學中教學我采用操作和演示、講解和嘗試練習相結(jié)合的方法,是新課與練習有機地融為一體,做到講與練相結(jié)合。整節(jié)課我采用啟發(fā)式教學。從導入新授到獨立解答問題,環(huán)節(jié)清晰,教學目的明確。通過提問引導學生自主研究問題找到重難點,突破重難點。通過2個瓶子的`倒置,把不規(guī)則的物體轉(zhuǎn)化成規(guī)則物體,再來求它們的體積。在進行轉(zhuǎn)化時,讓學生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實際是求什么?在課堂中學生積極參與,積極思考,小組合作學習。在學習中學習探究氛圍高,體現(xiàn)高年級學科特點,并且靈活運用生命化課堂的四自模式、新技術(shù),運用熟練,課堂中使用恰當有效。但在教學時提出的問題應(yīng)該更簡潔明了。在課堂上如何更好地關(guān)注中等偏下的學生,我時常為此感到糾結(jié)。
剛剛嘗試建構(gòu)高效的課堂教學范式,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學更高效、更優(yōu)質(zhì)。
圓柱的體積教學反思14
對《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過,3.19下午,又全程聆聽了三位教師的同課異構(gòu),領(lǐng)略了他們不同個性的教學風格。在我看來,盡管是同課異構(gòu),盡管是個性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持數(shù)學的邏輯嚴密性,等等。
對于這節(jié)教材的理解,最嚴重的分歧可能來自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個:一是要統(tǒng)一(柱體的)體積公式,減輕學生的記憶負擔。事實上,V=Sh也確實更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的不同公式,只是進一步描述了它們的不同的S罷了。另一個原因,是為方便學生對公式推導過程的理解。當圓柱被分割為有限個曲面三棱柱并拼為準長方體時,半徑r只是接近而并沒有等于長方體的寬,只有這個分割被無限化(取極限)時,圓柱的半徑才能與長方體的寬相等。因此,與其讓學生去費解地或不求甚解地觀察“長方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來,這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對新教材理解不到位的緣故。
對于這節(jié)課的異構(gòu),分歧最大的地方可能是對探索或計算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(驗證)展開,其第一課時的教學重點無疑應(yīng)當放在公式的探索上。至于探索的途徑或方法,我認為,主要有兩個:一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長方體,二是驗算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗。例如,可以將圓柱形固體放到較大的液體量具中,通過比較圓柱體積的猜想值與液體體積的增長量,證明體積計算的正確性。也可以將圓柱體形狀的橡皮泥捏成長方體形狀,如果能夠在變形的.過程中保持高的不變,則可以直接證明所猜想公式的正確性,否則,就要通過計算來作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗證猜想。之所以這樣認為,原因有二,一是教材的表述,它說的是:“從‘堆硬幣’來看,用‘底面積乘高’可以計算出圓柱的體積!倍皇钦f圓柱的體積就是底面積乘高’。二是如果作為驗證方法,在邏輯上就犯了循環(huán)論證的錯誤,因為硬幣本身實際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗證的。馮老師在教學中將其處理為“無數(shù)個圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過程”包含的極限思想要比“化圓為方”更難為小學生所理解。)。我認為,由于“堆硬幣”的目的在于換一個角度提出猜想,教學中當學生能夠提出猜想時,“疊圓成柱”的過程就顯得不那么非要不可了。而通過多媒體課件演示圓柱的“化圓為方”的過程卻是完全必要的。教師與學生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準長方體”之后,可以引導學生觀察這個長方體的“近似性”,并啟發(fā)他們想象當?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過程,大多數(shù)學生應(yīng)當是可以真正理解的。
圓柱的體積教學反思15
在教學圓柱的體積時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)
課的教學,我覺得有以下幾個方面值得探討:
一、聯(lián)系舊知,導入新知。
圓柱的體積的導入,在回憶了長方體、正方體體積計算方法,并強調(diào)長方體、正方體的體積都可以用底面積乘高,接著復(fù)習一下圓面積計算公式的推導過程,這樣有助于學生猜想:“圓柱體是否可以轉(zhuǎn)化成我們學過的圖形呢?”激發(fā)學生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導入新知,思維過度自然,易接受新知。
二、動手操作,探索新知。
學生在探究新知時,教師要給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,學生親身參與操作,先用小刀把一塊月餅切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體。找一找:這個長方體的長相當于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導出圓柱體積的計算公式。
三、課件展示,加深理解。
為了直觀、形象,讓學生觀看課件:圓轉(zhuǎn)化成近似長方形的過程,使學生很容易猜想出圓柱體也可以轉(zhuǎn)化成近似的長方體來得出體積公式。在推導圓柱體積公式的過程中,要求學生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學生雖然能說出“拼成的物體越來越接近長方體。” 但是,到底拼成的`圖形怎樣更接近長方體?演示動畫后,學生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉(zhuǎn)化成近似長方體的轉(zhuǎn)化方法。
四、分層練習,發(fā)散思維。
為了培養(yǎng)學生解題的靈活性,進行分層練習,拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
但是不成功的地方也有,如學生在操作時有些學生拼的不是長方體,而是其他的形狀,這里由于是上公開課的原因就沒有有針對性的講解,只做到了多數(shù)學生的指導而沒有做到面向全體學生,這點我覺得在課堂上很難做到。
總之,通過這次的國培學習,使我的思想認識和課堂技能都有了新的認識,感謝國培!
教材作為教學的憑借與依據(jù),只不過是編者對學科知識、國家要求與學生進行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學生實際的“跳板”。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創(chuàng)造性地利用教材。
【圓柱的體積教學反思】相關(guān)文章:
圓柱的體積教學反思02-18
圓柱的體積教學反思05-16
《圓柱的體積》教學反思01-04
圓柱的體積教學反思08-24
《圓柱的體積》教學反思06-13
《圓柱的體積》教學反思(精)07-09
(推薦)圓柱的體積教學反思01-16
《圓柱的體積》教學反思(優(yōu))07-09
《圓柱的體積》教學反思【精】06-09
圓柱的體積教學反思(15篇)03-08