欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教學(xué)反思>圓柱的體積教學(xué)反思

      圓柱的體積教學(xué)反思

      時(shí)間:2024-10-08 19:25:58 教學(xué)反思 我要投稿

      圓柱的體積教學(xué)反思集合15篇

        作為一名人民教師,課堂教學(xué)是重要的工作之一,對(duì)教學(xué)中的新發(fā)現(xiàn)可以寫在教學(xué)反思中,我們?cè)撛趺慈懡虒W(xué)反思呢?以下是小編整理的圓柱的體積教學(xué)反思,僅供參考,大家一起來看看吧。

      圓柱的體積教學(xué)反思集合15篇

      圓柱的體積教學(xué)反思1

        《圓柱的體積》不僅要讓學(xué)生掌握?qǐng)A柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長(zhǎng)方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長(zhǎng)方體、正方體、圓柱,學(xué)生通過觀察,作出猜測(cè):(1)圓柱的體積等于長(zhǎng)方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測(cè)是否準(zhǔn)確呢?點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗(yàn)證圓柱轉(zhuǎn)化成長(zhǎng)方體過程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的長(zhǎng)方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長(zhǎng)方體的長(zhǎng)是圓柱的底面周長(zhǎng)的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長(zhǎng)的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動(dòng)手實(shí)踐操作,讓學(xué)生發(fā)現(xiàn)長(zhǎng)方體與圓柱之間的聯(lián)系,利用圓的周長(zhǎng)和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長(zhǎng)方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

        為了培養(yǎng)學(xué)生解題的.靈活性,進(jìn)行分層練習(xí),拓展知識(shí),發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長(zhǎng)和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

        在本節(jié)課的教學(xué)過程中還存在諸多的問題。

        1、演示圓柱的體積的時(shí)候,因?yàn)閷W(xué)生手中沒有學(xué)具,教師教具的局限性,演示時(shí)后面的學(xué)生看不清楚。

        2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長(zhǎng)方體

        的時(shí)候,應(yīng)多給后進(jìn)生留有觀察、討論的時(shí)間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時(shí)間,讓后進(jìn)生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進(jìn)步。

        3、在解決實(shí)際問題的時(shí)候,不僅要注重公式的應(yīng)用,還要注意計(jì)算能力的培養(yǎng)。

      圓柱的體積教學(xué)反思2

        《圓柱的體積》不僅要讓學(xué)生掌握?qǐng)A柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長(zhǎng)方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長(zhǎng)方體、正方體、圓柱,學(xué)生通過觀察,作出猜測(cè):

       。1)圓柱的體積等于長(zhǎng)方體和正方體的體積。

       。2)圓柱的體積也等于底面積乘高。

        猜測(cè)是否準(zhǔn)確呢?點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗(yàn)證圓柱轉(zhuǎn)化成長(zhǎng)方體過程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的長(zhǎng)方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長(zhǎng)方體的長(zhǎng)是圓柱的底面周長(zhǎng)的`一半,寬是底面半徑,高不變。所以圓柱體積=底面周長(zhǎng)的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動(dòng)手實(shí)踐操作,讓學(xué)生發(fā)現(xiàn)長(zhǎng)方體與圓柱之間的聯(lián)系,利用圓的周長(zhǎng)和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長(zhǎng)方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

        在本節(jié)課的教學(xué)過程中還存在諸多的問題。

        1、演示圓柱的體積的時(shí)候,因?yàn)閷W(xué)生手中沒有學(xué)具,教師教具的局限性,演示時(shí)后面的學(xué)生看不清楚。

        2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長(zhǎng)方體的時(shí)候,應(yīng)多給后進(jìn)生留有觀察、討論的時(shí)間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時(shí)間,讓后進(jìn)生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進(jìn)步。

        3、在解決實(shí)際問題的時(shí)候,不僅要注重公式的應(yīng)用,還要注意計(jì)算能力的培養(yǎng)。

      圓柱的體積教學(xué)反思3

        本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因?yàn)楣降耐茖?dǎo)過程是個(gè)難點(diǎn),因此在教學(xué)設(shè)計(jì)時(shí),我讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),幫助學(xué)生理解公式的來源,從而獲得知識(shí)。下面我來談?wù)勛约旱囊恍┓此肌?/p>

        1、導(dǎo)入時(shí),力求突破教材,有所創(chuàng)新

        圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長(zhǎng)方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的`推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。于是我設(shè)計(jì)時(shí)在回憶了長(zhǎng)方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時(shí)間的控制,不能花費(fèi)太多的時(shí)間。

        2、新課時(shí),要實(shí)現(xiàn)人人參與,主動(dòng)學(xué)習(xí)

        學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時(shí),因?yàn)閷W(xué)校沒有提供學(xué)具,所以我只能先讓學(xué)生展開空間想象,結(jié)合圓面積的推導(dǎo)過程,借助課件一一展示推導(dǎo)過程。讓學(xué)生觀察發(fā)現(xiàn)把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,圓柱體就轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體;接著讓學(xué)生小組交流長(zhǎng)方體的長(zhǎng)和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),也有了充分的思考空間。

        3、練習(xí)時(shí),形式多樣,層層遞進(jìn)

        例題的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,我在設(shè)計(jì)練習(xí)時(shí)考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。

        (1)、已知圓柱底面積(s)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=sh。

       。2)、已知圓柱底面半徑(r)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=πr2h。

       。3)、已知圓柱底面直徑(d)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(d/2) 2h。

       。4)、已知圓柱底面周長(zhǎng)(c)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2) 2h。

       。5)、已知圓柱側(cè)面積(s側(cè))和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2) 2h。

        因?yàn)槭堑谝徽n時(shí)所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計(jì)算圓柱體積的方法。另外,還設(shè)計(jì)了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。不足之處

        本想給學(xué)生準(zhǔn)備學(xué)具,親自動(dòng)手操作圓柱體體積的推導(dǎo)過程,無奈學(xué)校沒有學(xué)具,所以只能讓孩子借助圓面積的推導(dǎo)過程展開想象,然后借助課件展示圓柱體積的推導(dǎo)過程,可能對(duì)一些學(xué)困生的理解還有困難。

      圓柱的體積教學(xué)反思4

        一、導(dǎo)入時(shí),要突破教材,有所創(chuàng)新圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長(zhǎng)方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。我認(rèn)為,不妨在回憶了長(zhǎng)方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時(shí)教師的引導(dǎo)才是行之有效的。

        二、新課時(shí),要實(shí)現(xiàn)人人參與,主動(dòng)學(xué)習(xí)學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個(gè)近似的長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗(yàn),而且這部分又是小學(xué)階段立體圖形的.教學(xué)難點(diǎn),學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。

        三、練習(xí)時(shí),要形式多樣,層層遞進(jìn)

        例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思去考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。

      圓柱的體積教學(xué)反思5

        圓柱的體積計(jì)算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握?qǐng)A柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長(zhǎng)方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的長(zhǎng)方體、正方體、圓柱,學(xué)生通過觀察,作出猜測(cè):

       。1)圓柱的體積等于長(zhǎng)方體和正方體的.體積。

        (2)圓柱的體積也等于底面積乘高。猜測(cè)是否準(zhǔn)確呢?

        點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗(yàn)證圓柱轉(zhuǎn)化成長(zhǎng)方體過程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的長(zhǎng)方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。還有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長(zhǎng)方體的長(zhǎng)是圓柱的底面周長(zhǎng)的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長(zhǎng)的一半×底面半徑×高。首先我對(duì)這種方法加以肯定,然后利用圓的周長(zhǎng)和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長(zhǎng)方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

      圓柱的體積教學(xué)反思6

        本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十二冊(cè)﹙西師版﹚《圓柱的體積》,以前教學(xué)此內(nèi)容時(shí),直接告訴學(xué)生:圓柱的體積=底面積高,用字母表示公式:V=Sh,讓學(xué)生套用公式練習(xí);我教此內(nèi)容時(shí),不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。對(duì)此,我作如下反思:

        一、學(xué)生學(xué)到了有價(jià)值的知識(shí)。

        學(xué)生通過實(shí)踐、探索、發(fā)現(xiàn),得到的知識(shí)是活的,這樣的知識(shí)對(duì)學(xué)生自身智力和創(chuàng)造力發(fā)展會(huì)起到積極的推動(dòng)作用。所有的答案不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的。這樣的知識(shí)具有個(gè)人意義,理解更深刻。

        二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。

        新課程改革明確提出要強(qiáng)調(diào)讓學(xué)生通過實(shí)踐增強(qiáng)探究和創(chuàng)新意識(shí),學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神。學(xué)生動(dòng)手實(shí)踐、觀察得出結(jié)論的.過程,就是科學(xué)研究的過程。

        三、促進(jìn)了學(xué)生的思維發(fā)展。

        傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識(shí),把學(xué)生當(dāng)成知識(shí)的容器。學(xué)生的學(xué)習(xí)只是被動(dòng)地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。

        本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實(shí)踐和思考的時(shí)間較多,練習(xí)的時(shí)間較少。

      圓柱的體積教學(xué)反思7

        我進(jìn)行了圓柱體積的教學(xué),圓柱的體積公式的推倒,需要學(xué)生的動(dòng)手操作或教師教具的操作演示,把圓柱體轉(zhuǎn)化成學(xué)過的立體圖形長(zhǎng)方體,再根據(jù)長(zhǎng)方體與圓柱體之間的關(guān)系推倒出圓柱體的體積。上課前我對(duì)學(xué)生的動(dòng)手操作環(huán)節(jié)進(jìn)行了思考,學(xué)生的學(xué)具就既小又直接拼成了長(zhǎng)方體,對(duì)于學(xué)生操作起不到效果,所以就直接用課件演示讓學(xué)生觀察.學(xué)生能很快的發(fā)現(xiàn)知識(shí),因此推導(dǎo)時(shí)間過短,總感覺沒有達(dá)到效果。學(xué)生缺少動(dòng)手實(shí)踐,就沒有了探究知識(shí)的過程,很多的.同學(xué)可能只是被動(dòng)的接受知識(shí)。這一次讓學(xué)具和教具成了教學(xué)的絆腳石。

        其次有一個(gè)學(xué)生大膽猜想圓柱體也有可能轉(zhuǎn)化成正方體,當(dāng)時(shí)講到轉(zhuǎn)化為長(zhǎng)方體時(shí),沒有及時(shí)處理好這個(gè)學(xué)生的問題,而是在下一個(gè)課時(shí)補(bǔ)處理的。對(duì)于課堂的靈活掌控也是不夠的。在今后的教學(xué)中要加強(qiáng)自身對(duì)課堂的掌控能力。靈活及時(shí)處理課堂中的問題。

      圓柱的體積教學(xué)反思8

        這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)和技能上,通過對(duì)圓柱體積的具體研究,理解圓柱體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積;在方法的選擇上,抓住新舊知識(shí)的聯(lián)系,通過想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)“ 從生活中來到生活中去” 的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探究。

        一、讓學(xué)生在現(xiàn)實(shí)情境中體驗(yàn)和理解數(shù)學(xué)

        在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會(huì)求嗎?圓柱形橡皮泥的體積你會(huì)求嗎?)學(xué)生聽到教師提的問題多在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的'方法。而且此環(huán)節(jié)還自然滲透了圓柱(新問題)和長(zhǎng)方體(已知)的知識(shí)聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實(shí)際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機(jī)滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的欲望。

        二、鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流

        在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨(dú)立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長(zhǎng)方體。那么怎樣來切割呢?此時(shí)采用小組討論交流的形式。同學(xué)們有了圓面積計(jì)算公式推導(dǎo)的經(jīng)驗(yàn),經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動(dòng)手操作,拼成了一個(gè)近似的長(zhǎng)方體。通過實(shí)驗(yàn)、操作、自主探究,實(shí)現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。的思想。

        三、練習(xí)時(shí),要形式多樣,層層遞進(jìn)

        例題“ 練一練” 中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思去考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。通過反思,我概括出五種類型:

        1 .已知圓柱底面積(s )和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=sh

        2 .已知圓柱底面半徑(r )和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=πr?h 。

        3 .已知圓柱底面直徑(d )和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(d/2)?h 。

        4 .已知圓柱底面周長(zhǎng)(c )和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)?h 。

        5 .已知圓柱側(cè)面積(s 側(cè))和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(s 側(cè)÷h÷π÷2)?h 。

        在鞏固練習(xí)中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計(jì)算圓柱體積的方法。

      圓柱的體積教學(xué)反思9

        今天第一節(jié)課荊校長(zhǎng)和建英聽了我講的《圓柱的體積》,提出了幾點(diǎn)我應(yīng)該注意和改進(jìn)的地方。

        一是,要注重課前的預(yù)習(xí),圓柱的體積一課復(fù)習(xí)舊知環(huán)節(jié),需要學(xué)生回顧什么是體積,長(zhǎng)方體正方體體積公式,回顧轉(zhuǎn)化的方法推導(dǎo)圓面積計(jì)算公式,需要回顧的舊知較多,所以可以課前設(shè)計(jì)成幾個(gè)問題讓學(xué)生預(yù)習(xí),就可以避免課上學(xué)生由于對(duì)知識(shí)的遺忘,而浪費(fèi)時(shí)間,影響課堂的高效。

        二是,猜想圓柱的體積可能與什么有關(guān)這個(gè)環(huán)節(jié),由于注重讓學(xué)生猜想,感受,體驗(yàn),并通過媒體演示驗(yàn)證猜想的正確性,有些浪費(fèi)時(shí)間。

        三是,推導(dǎo)體積公式環(huán)節(jié),我讓學(xué)生利用拆好的`圓柱學(xué)具,兩人合作,圍繞三個(gè)問題進(jìn)行探究“圓柱可以轉(zhuǎn)化為我們學(xué)過的哪個(gè)立體圖形,轉(zhuǎn)化后的圖形與圓柱之間有怎樣的關(guān)系,利用這樣的關(guān)系可以推導(dǎo)出怎樣的公式”,學(xué)生合作的成果需要通過語言表達(dá)出來,所以之后的展示匯報(bào)環(huán)節(jié),我叫了三個(gè)學(xué)生上臺(tái)按照提示的三個(gè)問題完整的表述,最后有全體齊說,沒有讓學(xué)生再互相說一說,在說中再去感受推導(dǎo)的過程,我覺得這也是我欠缺的地方。

        四是,練習(xí)反饋環(huán)節(jié),我依據(jù)學(xué)生推導(dǎo)出的四個(gè)公式,先讓學(xué)生看著這些公式說一說,求圓柱的體積需要知道什么條件,學(xué)生說出了四種情況:知道了半徑和高求體積;知道了周長(zhǎng)和高求體積;知道了底面積和高求體積;知道了直徑和高求體積。我順勢(shì)出了四道這樣的練習(xí)題讓學(xué)生在本上完成并集體訂正,感覺練習(xí)的量不夠。

        通過這節(jié)課,從荊校長(zhǎng)和建英的評(píng)課中,我體會(huì)到要想提高課堂效率,首先,抓好課前預(yù)習(xí),其次,注重用多種方式讓學(xué)生多說而且要說透,最后,注意各環(huán)節(jié)時(shí)間分配要合理,做到心中有數(shù)。還有就是要加大練習(xí)量,關(guān)注到每一個(gè)學(xué)生,對(duì)學(xué)生學(xué)習(xí)效果掌握程度做到了如指掌。

      圓柱的體積教學(xué)反思10

        對(duì)《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過,3.19下午,又全程聆聽了三位教師的同課異構(gòu),領(lǐng)略了他們不同個(gè)性的教學(xué)風(fēng)格。在我看來,盡管是同課異構(gòu),盡管是個(gè)性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持?jǐn)?shù)學(xué)的邏輯嚴(yán)密性,等等。

        對(duì)于這節(jié)教材的理解,最嚴(yán)重的分歧可能來自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個(gè):一是要統(tǒng)一(柱體的)體積公式,減輕學(xué)生的記憶負(fù)擔(dān)。事實(shí)上,V=Sh也確實(shí)更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的不同公式,只是進(jìn)一步描述了它們的不同的S罷了。另一個(gè)原因,是為方便學(xué)生對(duì)公式推導(dǎo)過程的理解。當(dāng)圓柱被分割為有限個(gè)曲面三棱柱并拼為準(zhǔn)長(zhǎng)方體時(shí),半徑r只是接近而并沒有等于長(zhǎng)方體的寬,只有這個(gè)分割被無限化(取極限)時(shí),圓柱的半徑才能與長(zhǎng)方體的寬相等。因此,與其讓學(xué)生去費(fèi)解地或不求甚解地觀察“長(zhǎng)方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來,這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對(duì)新教材理解不到位的緣故。

        對(duì)于這節(jié)課的異構(gòu),分歧最大的地方可能是對(duì)探索或計(jì)算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(dǎo)(驗(yàn)證)展開,其第一課時(shí)的教學(xué)重點(diǎn)無疑應(yīng)當(dāng)放在公式的探索上。至于探索的途徑或方法,我認(rèn)為,主要有兩個(gè):一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長(zhǎng)方體,二是驗(yàn)算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗(yàn)。例如,可以將圓柱形固體放到較大的液體量具中,通過比較圓柱體積的猜想值與液體體積的增長(zhǎng)量,證明體積計(jì)算的正確性。也可以將圓柱體形狀的橡皮泥捏成長(zhǎng)方體形狀,如果能夠在變形的過程中保持高的'不變,則可以直接證明所猜想公式的正確性,否則,就要通過計(jì)算來作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗(yàn)證猜想。之所以這樣認(rèn)為,原因有二,一是教材的表述,它說的是:“從‘堆硬幣’來看,用‘底面積乘高’可以計(jì)算出圓柱的體積。”而不是說圓柱的體積就是底面積乘高’。二是如果作為驗(yàn)證方法,在邏輯上就犯了循環(huán)論證的錯(cuò)誤,因?yàn)橛矌疟旧韺?shí)際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗(yàn)證的。馮老師在教學(xué)中將其處理為“無數(shù)個(gè)圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過程”包含的極限思想要比“化圓為方”更難為小學(xué)生所理解。)。我認(rèn)為,由于“堆硬幣”的目的在于換一個(gè)角度提出猜想,教學(xué)中當(dāng)學(xué)生能夠提出猜想時(shí),“疊圓成柱”的過程就顯得不那么非要不可了。而通過多媒體課件演示圓柱的“化圓為方”的過程卻是完全必要的。教師與學(xué)生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準(zhǔn)長(zhǎng)方體”之后,可以引導(dǎo)學(xué)生觀察這個(gè)長(zhǎng)方體的“近似性”,并啟發(fā)他們想象當(dāng)?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過程,大多數(shù)學(xué)生應(yīng)當(dāng)是可以真正理解的。

      圓柱的體積教學(xué)反思11

        本節(jié)課是在學(xué)習(xí)了圓柱的體積公式后進(jìn)行的解決問題。這要求學(xué)生對(duì)圓柱的體積公式掌握的比較扎實(shí),并要求理論與實(shí)際生活相結(jié)合。讓學(xué)生通過經(jīng)歷發(fā)現(xiàn)和提出問題、分析和解決問題的完整過程,掌握問題解決的策略。使學(xué)生在解決問題的過程中體會(huì)轉(zhuǎn)化、推理和變中有不變的數(shù)學(xué)思想。

        在教學(xué)中教學(xué)我采用操作和演示、講解和嘗試練習(xí)相結(jié)合的方法,是新課與練習(xí)有機(jī)地融為一體,做到講與練相結(jié)合。整節(jié)課我采用啟發(fā)式教學(xué)。從導(dǎo)入新授到獨(dú)立解答問題,環(huán)節(jié)清晰,教學(xué)目的明確。通過提問引導(dǎo)學(xué)生自主研究問題找到重難點(diǎn),突破重難點(diǎn)。通過2個(gè)瓶子的.倒置,把不規(guī)則的物體轉(zhuǎn)化成規(guī)則物體,再來求它們的體積。在進(jìn)行轉(zhuǎn)化時(shí),讓學(xué)生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實(shí)際是求什么?在課堂中學(xué)生積極參與,積極思考,小組合作學(xué)習(xí)。在學(xué)習(xí)中學(xué)習(xí)探究氛圍高,體現(xiàn)高年級(jí)學(xué)科特點(diǎn),并且靈活運(yùn)用生命化課堂的四自模式、新技術(shù),運(yùn)用熟練,課堂中使用恰當(dāng)有效。但在教學(xué)時(shí)提出的問題應(yīng)該更簡(jiǎn)潔明了。在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時(shí)常為此感到糾結(jié)。

        剛剛嘗試建構(gòu)高效的課堂教學(xué)范式,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。

      圓柱的體積教學(xué)反思12

        “圓柱體積計(jì)算公式的推導(dǎo)”是在學(xué)生已經(jīng)學(xué)習(xí)了“圓的面積計(jì)算”、“長(zhǎng)方體的體積”、“圓柱的認(rèn)識(shí)”等相關(guān)的形體知識(shí)的`基礎(chǔ)上教學(xué)的。同時(shí)又是為學(xué)生今后進(jìn)一步學(xué)習(xí)其他形體知識(shí)做好充分準(zhǔn)備的一堂課。

        課始,教師創(chuàng)設(shè)問題情境,不斷地引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,探索和解決實(shí)際問題,并制造認(rèn)知沖突,形成了“任務(wù)驅(qū)動(dòng)”的探究氛圍。

        展開部分,教師為學(xué)生提供了動(dòng)手操作、觀察以及交流討論的平臺(tái),讓學(xué)生在體驗(yàn)和探索空間與圖形的過程中不斷積累幾何知識(shí),以幫助學(xué)生理解現(xiàn)實(shí)的三維世界,逐步發(fā)展其空間觀念。

        練習(xí)安排注重密切聯(lián)系生活實(shí)際,讓學(xué)生運(yùn)用自己剛推導(dǎo)的圓柱體積計(jì)算公式解決引入環(huán)節(jié)中的兩個(gè)問題,使其認(rèn)識(shí)數(shù)學(xué)的價(jià)值,切實(shí)體驗(yàn)到數(shù)學(xué)存在于自己的身邊,數(shù)學(xué)對(duì)于了解周圍世界和解決實(shí)際問題是非常有作用的。

        教師無論是導(dǎo)入環(huán)節(jié),還是新課部分都恰當(dāng)?shù)匾龑?dǎo)學(xué)生進(jìn)行知識(shí)遷移,充分地讓學(xué)生感受和體驗(yàn)“轉(zhuǎn)化”這一解決數(shù)學(xué)問題重要的思想方法。同時(shí),還合理地運(yùn)用了多媒體技術(shù),形象生動(dòng)地展示了“分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體”,有機(jī)地滲透了極限的初步思想。

      圓柱的體積教學(xué)反思13

        圓柱的體積一課,重點(diǎn)是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進(jìn)行計(jì)算應(yīng)用。

        教學(xué)中學(xué)生存在的問題是:

        1、學(xué)生對(duì)推導(dǎo)過程理解有困難,不深入;

        2、在計(jì)算的過程中,單位名稱用錯(cuò),體積單位用面積單位。

        3、對(duì)于書中所給的立體圖形,認(rèn)識(shí)不到位,不能正確分辨直徑、半徑以及圓柱的.高,做題出錯(cuò)。圓柱的高也可以叫做圓柱的長(zhǎng)(個(gè)別學(xué)生不清楚)

        突破難點(diǎn)的方法:

        1、為了避免單位名稱的錯(cuò)誤,可在課前復(fù)習(xí)中設(shè)計(jì)單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。

        2、在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時(shí),應(yīng)放手讓學(xué)動(dòng)手動(dòng)腦自己解決,但動(dòng)手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長(zhǎng)方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的體積公式。

        3、注意引導(dǎo)學(xué)生參與到探索知識(shí)的發(fā)生發(fā)展過程中,突破以往數(shù)學(xué)學(xué)習(xí)單一、被動(dòng)的學(xué)習(xí)方式,關(guān)注學(xué)生的實(shí)踐活動(dòng)和直接經(jīng)驗(yàn),“通過自己的活動(dòng)”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動(dòng)是數(shù)學(xué)活動(dòng)的重要組成部分,也是學(xué)生學(xué)習(xí)活動(dòng)的重要方式。

      圓柱的體積教學(xué)反思14

        本節(jié)的教學(xué)重難點(diǎn)是:

        1、探索并掌握?qǐng)A柱體積公式,能計(jì)算圓柱的體積。

        2、在探索圓柱體積的過程中,進(jìn)一步體會(huì)轉(zhuǎn)化的.數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)結(jié)論的確定性。

        教學(xué)方法:我利用課件演示和實(shí)物演示來解決。讓學(xué)生學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想。

        成功之處:

        1、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;

        2、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動(dòng)多種感觀參與學(xué)習(xí);

        3、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識(shí)的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果。

        不足之處:

        1、個(gè)別學(xué)生還是對(duì)公式不會(huì)靈活應(yīng)用。

        2、練習(xí)題有些多,應(yīng)選擇一些有代表性的題,這樣小測(cè)驗(yàn)就能有充足的時(shí)間了。

        3、關(guān)注學(xué)生的有些少,尤其是應(yīng)關(guān)注做錯(cuò)的學(xué)生,應(yīng)知道為什么錯(cuò),及時(shí)在課堂評(píng)價(jià)出結(jié)果會(huì)更好。

        4、老師講得多,應(yīng)放手讓學(xué)生自己觀察自己處理自己總結(jié),會(huì)更好。

      圓柱的體積教學(xué)反思15

        本節(jié)課主要是引導(dǎo)學(xué)生探索并掌握?qǐng)A柱的體積公式,主要重視了以下幾方面:

        1、重視先猜想、再驗(yàn)證的思路來引入教學(xué)。

        新課伊始,課件出示三個(gè)幾何體的底面和高,引導(dǎo)學(xué)生來觀察這三個(gè)幾何體,發(fā)現(xiàn)它們的底面積都相等,高也都相等。進(jìn)一步引導(dǎo)思考:想一想,長(zhǎng)方體和正方體的體積相等嗎?為什么?猜一猜,圓柱的體積與長(zhǎng)方體和正方體的體積相等嗎?學(xué)生認(rèn)同,并提出等于底面積乘高。教師再次拋出問題:這僅僅是猜想,那用什么辦法驗(yàn)證呢?今天這節(jié)課就來研究這個(gè)問題。

        2、重視利用知識(shí)、方法的遷移來展開教學(xué)。

        本課的例題探索,有一個(gè)目標(biāo)就是使學(xué)生在活動(dòng)中進(jìn)一步體會(huì)“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識(shí)解決新問題的能力,發(fā)展空間觀念和初步的推理能力。因此,筆者在執(zhí)教時(shí),根據(jù)陳星月的回答順勢(shì)復(fù)習(xí)了圓面積的推導(dǎo):把一個(gè)圓平均分成16份、32份、64份或更多,剪開后可以拼成近似的長(zhǎng)方形,圓的面積就可以轉(zhuǎn)化成長(zhǎng)方形的面積進(jìn)行計(jì)算。接著提問:那么,受這個(gè)啟發(fā),那我們能不能將圓柱轉(zhuǎn)化成長(zhǎng)方體來計(jì)算體積呢?首先實(shí)物演示圓柱切拼的過程。把圓柱的底面平均分成16份,切開后可以拼成一個(gè)近似的長(zhǎng)方體。然后進(jìn)行課件演示,發(fā)現(xiàn):把圓柱的底面平均分的份數(shù)越多,拼成的幾何體會(huì)越來越接近長(zhǎng)方體。這樣有利于激活學(xué)生已有的知識(shí)和經(jīng)驗(yàn),使學(xué)生充分體會(huì)圓柱體積公式推導(dǎo)過程的合理性,并不斷豐富對(duì)圖形轉(zhuǎn)化方法的感受。

        3、重視通過核心問題的討論和板書的精當(dāng)設(shè)計(jì)來突出重點(diǎn)、突破難點(diǎn)。

        核心問題即指中心問題,是諸多問題中相對(duì)最具思維價(jià)值、最利于學(xué)生思考及最能揭示事物本質(zhì)的問題。它是在教學(xué)過程中,為學(xué)生更好地理解和掌握新知、更好地積累學(xué)習(xí)經(jīng)驗(yàn)和方法,針對(duì)具體教學(xué)內(nèi)容,提煉而成的教學(xué)中心問題。就如圓柱體積的計(jì)算而言,在這節(jié)課的教學(xué)過程中,教師抓住“圓柱的體積可能跟圓柱的哪些條件有關(guān)呢?”“拼成的'長(zhǎng)方體與原來的圓柱有什么關(guān)系?”“要計(jì)算圓柱的體積一般要知道哪些條件?”這三個(gè)問題,使學(xué)生在獲取圓柱體積公式的同時(shí)又了解了體積公式的由來,并及時(shí)總結(jié)了思考問題的方法。核心問題也可以指為了探究知識(shí)的來龍去脈而在關(guān)鍵環(huán)節(jié)提出的指向性問題。

        當(dāng)然,需要注意和改進(jìn)的地方是:書寫格式的規(guī)范。

      【圓柱的體積教學(xué)反思】相關(guān)文章:

      圓柱的體積教學(xué)反思02-18

      圓柱的體積教學(xué)反思05-16

      《圓柱的體積》教學(xué)反思01-04

      圓柱的體積教學(xué)反思08-24

      《圓柱的體積》教學(xué)反思06-13

      《圓柱的體積》教學(xué)反思(精)07-09

      (推薦)圓柱的體積教學(xué)反思01-16

      《圓柱的體積》教學(xué)反思(優(yōu))07-09

      《圓柱的體積》教學(xué)反思【精】06-09

      圓柱的體積教學(xué)反思(15篇)03-08