欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實用文>教學(xué)反思>圓柱的體積教學(xué)反思

      圓柱的體積教學(xué)反思

      時間:2023-03-10 16:56:54 教學(xué)反思 我要投稿

      圓柱的體積教學(xué)反思(精選15篇)

        身為一名到崗不久的老師,我們都希望有一流的課堂教學(xué)能力,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,那么寫教學(xué)反思需要注意哪些問題呢?以下是小編精心整理的圓柱的體積教學(xué)反思,歡迎閱讀與收藏。

      圓柱的體積教學(xué)反思(精選15篇)

      圓柱的體積教學(xué)反思1

        《圓柱的體積》不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:(1)圓柱的體積等于長方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測是否準確呢?點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動手實踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的周長和面積把圓柱體積的'也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

        為了培養(yǎng)學(xué)生解題的靈活性,進行分層練習(xí),拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

        在本節(jié)課的教學(xué)過程中還存在諸多的問題。

        1、演示圓柱的體積的時候,因為學(xué)生手中沒有學(xué)具,教師教具的局限性,演示時后面的學(xué)生看不清楚。

        2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體

        的時候,應(yīng)多給后進生留有觀察、討論的時間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時間,讓后進生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進步。

        3、在解決實際問題的時候,不僅要注重公式的應(yīng)用,還要注意計算能力的培養(yǎng)。

      圓柱的體積教學(xué)反思2

        圓柱的體積計算方法的推導(dǎo)。教學(xué)前我就思考,不僅要讓學(xué)生掌握圓柱體積的計算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示掛圖:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測:

        (1)圓柱的體積等于長方體和正方體的體積。

       。2)圓柱的體積也等于底面積乘高。猜測是否準確呢?

        點燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的`推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用學(xué)具驗證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。還有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。首先我對這種方法加以肯定,然后利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。

      圓柱的體積教學(xué)反思3

        在本節(jié)課的教學(xué)中,教師根據(jù)教學(xué)的需要,充分利用現(xiàn)實生活中的素材,把教材中有關(guān)圓柱的提積的應(yīng)用所呈現(xiàn)的內(nèi)容變?yōu)楝F(xiàn)實生活中的問題,變書本知識為生活中的知識。

        本節(jié)課中教師沒有過多地教學(xué)生,而讓學(xué)生回歸到生活原形中去,應(yīng)用所學(xué)的知識解決了生活中的實際問題,使本來很枯燥的圓柱的體積應(yīng)用的題材生活化,增加了學(xué)生的信息量,提高了學(xué)生體會數(shù)學(xué)奧秘的積極性。學(xué)生體會到了生活中處處有數(shù)學(xué),數(shù)學(xué)就在我們身邊,知識才是我們解決實際問題的“金鑰匙”。通過尋找這些信息背后的信息,學(xué)生掌握了知識、形成了技能。同時也感受到了數(shù)學(xué)應(yīng)用的廣泛性以及數(shù)學(xué)與生活的.緊密聯(lián)系。

        但在本節(jié)課中也有不足的地方,如①由于中心問題空間較大,具有挑戰(zhàn)性,中下等學(xué)生自主探索有一定的難度;②實踐中,學(xué)生獨立思考和小組討論花時間太多,影響了后面的教學(xué),這都是以后在教學(xué)中應(yīng)注意的問題。

        總之,隨著數(shù)學(xué)的發(fā)展,數(shù)學(xué)的應(yīng)用也越來越廣泛。作為教師的我們,應(yīng)該提供給學(xué)生充分的機會,讓學(xué)生運用已學(xué)過的數(shù)學(xué)知識解決問題,在問題的解決過程中,發(fā)展學(xué)生的思維能力,用數(shù)學(xué)的眼光去感知、去觀察、去應(yīng)用。

      圓柱的體積教學(xué)反思4

        本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>

        一、在教學(xué)過程的設(shè)計方面

        1、導(dǎo)入時,力求突破教材,有所創(chuàng)新

        圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時不妨在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。

        2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)

        學(xué)生進行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,我讓學(xué)生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,,也有了充分的思考空間。這樣設(shè)計我覺得能突破難點,課堂效果很好。

        3、練習(xí)時,形式多樣,層層遞進

        例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時動了一番腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型:

        a.已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。

        b.已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πrh。

        c.已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)h。

        d.已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)h、

        e.已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2)h。

        因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法。另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。

        二、在教學(xué)策略方面

        我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的'思維發(fā)展。而在鞏固練習(xí)這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。

        三、在教學(xué)技能方面

        學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)過程中發(fā)現(xiàn)并從學(xué)生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導(dǎo)的過程需要教師有認真準備,隨時能解決課堂上可能出現(xiàn)的一些問題。

        傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設(shè)了豐富的教學(xué)情景,

        四、存在的問題

        不足之處是:由于這節(jié)課的設(shè)計是以學(xué)生為主、發(fā)揮學(xué)生的主體作用,要充分展示學(xué)生的思維過程,所以在學(xué)生動手實踐、交流討論和思考的時間上教師應(yīng)合理把握,不能時間較多,否則會導(dǎo)致練習(xí)的時間較少。

        另外,在練習(xí)設(shè)計上,題形雖然全,但覺得題量偏多,因為這部分練習(xí)涉及的計算多、難,這樣練習(xí)題還需精心設(shè)計。

      圓柱的體積教學(xué)反思5

        本節(jié)課是在學(xué)習(xí)了圓柱的體積公式后進行的解決問題。這要求學(xué)生對圓柱的體積公式掌握的比較扎實,并要求理論與實際生活相結(jié)合。讓學(xué)生通過經(jīng)歷發(fā)現(xiàn)和提出問題、分析和解決問題的完整過程,掌握問題解決的策略。使學(xué)生在解決問題的過程中體會轉(zhuǎn)化、推理和變中有不變的'數(shù)學(xué)思想。

        在教學(xué)中教學(xué)我采用操作和演示、講解和嘗試練習(xí)相結(jié)合的方法,是新課與練習(xí)有機地融為一體,做到講與練相結(jié)合。整節(jié)課我采用啟發(fā)式教學(xué)。從導(dǎo)入新授到獨立解答問題,環(huán)節(jié)清晰,教學(xué)目的明確。通過提問引導(dǎo)學(xué)生自主研究問題找到重難點,突破重難點。通過2個瓶子的倒置,把不規(guī)則的物體轉(zhuǎn)化成規(guī)則物體,再來求它們的體積。在進行轉(zhuǎn)化時,讓學(xué)生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實際是求什么?在課堂中學(xué)生積極參與,積極思考,小組合作學(xué)習(xí)。在學(xué)習(xí)中學(xué)習(xí)探究氛圍高,體現(xiàn)高年級學(xué)科特點,并且靈活運用生命化課堂的四自模式、新技術(shù),運用熟練,課堂中使用恰當(dāng)有效。但在教學(xué)時提出的問題應(yīng)該更簡潔明了。在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時常為此感到糾結(jié)。

        剛剛嘗試建構(gòu)高效的課堂教學(xué)范式,難免有困惑和疑問,今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。

      圓柱的體積教學(xué)反思6

        圓柱的體積教學(xué)反思

        在這節(jié)課學(xué)生進行數(shù)學(xué)探究時,由于條件的限制,沒有更多的學(xué)具提供給學(xué)生,只一個教具。為了讓學(xué)生充分體會,我把操作的機會給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的份數(shù)越多,切開后,拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。學(xué)生基本沒有親身參與操作,非常遺憾。但我使用了課件-----把圓柱體沿著它的直徑切成諾干等份,拼成一個近似的`長方體,展示切拼過程.學(xué)生雖然沒有親身經(jīng)歷,但也一目了然.,學(xué)習(xí)效果還可以。

        圓柱的體積練習(xí)課教學(xué)反思

        本節(jié)的練習(xí),提高了學(xué)生運用數(shù)學(xué)知識解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識的特點。運用已有的知識經(jīng)驗解決新的問題,在新舊知識的聯(lián)系上,使學(xué)生想象合理、聯(lián)系有方。

      圓柱的體積教學(xué)反思7

        “圓柱體積計算公式的推導(dǎo)”是在同學(xué)已經(jīng)學(xué)習(xí)了“圓的面積計算”、“長方體的體積”、“圓柱的認識”等相關(guān)的形體知識的基礎(chǔ)上教學(xué)的。同時又是為同學(xué)今后進一步學(xué)習(xí)其他形體知識做好充沛準備的一堂課。

        課始,教師創(chuàng)設(shè)問題情境,不時地引導(dǎo)同學(xué)運用已有的'生活經(jīng)驗和舊知,探索和解決實際問題,并制造認知抵觸,形成了“任務(wù)驅(qū)動”的探究氛圍。

        展開局部,教師為同學(xué)提供了動手操作、觀察以和交流討論的平臺,讓同學(xué)在體驗和探索空間與圖形的過程中不時積累幾何知識,以協(xié)助同學(xué)理解實際的三維世界,逐步發(fā)展其空間觀念。

        練習(xí)布置注重密切聯(lián)系生活實際,讓同學(xué)運用自身剛推導(dǎo)的圓柱體積計算公式解決引入環(huán)節(jié)中的兩個問題,使其認識數(shù)學(xué)的價值,切實體驗到數(shù)學(xué)存在于自身的身邊,數(shù)學(xué)對于了解周圍世界和解決實際問題是非常有作用的。

        教師無論是導(dǎo)入環(huán)節(jié),還是新課局部都恰當(dāng)?shù)匾龑?dǎo)同學(xué)進行知識遷移,充沛地讓同學(xué)感受和體驗“轉(zhuǎn)化”這一解決數(shù)學(xué)問題重要的思想方法。同時,還合理地運用了多媒體技術(shù),形象生動地展示了“分成的扇形越多,拼成的立體圖形就越接近于長方體”,有機地滲透了極限的初步思想。

      圓柱的體積教學(xué)反思8

        一、讓操作更詳實,留下思考的痕跡

        動手實踐、自主探索、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。組織學(xué)生在實踐操作中探究發(fā)現(xiàn)規(guī)律,從感性到理性,從實踐到認識,從具體到抽象,引導(dǎo)學(xué)生積極動手動腦、概括分析、抽象推理等,這不僅有利于學(xué)生思維的發(fā)展,而且也可以加深學(xué)生對數(shù)學(xué)知識的理解和掌握。尤其是對于幾何知識的學(xué)習(xí),課堂教學(xué)中的動手操作就顯得更加重要。究竟自己在教學(xué)的時候是否用好了學(xué)生的操作,讓學(xué)生對操作的過程有深刻的體會與認識,在操作中是否激起了學(xué)生的思考。留下自己思考的痕跡,為進一步探索知識做好準備。

        二、讓觀察更細致,尋找知識的聯(lián)系

        數(shù)學(xué)觀察力,是新課標中對提出學(xué)生應(yīng)必備的一種重要數(shù)學(xué)能力。學(xué)生在操作的'基礎(chǔ)上要學(xué)會觀察,挖掘知識之間的聯(lián)系,真正體現(xiàn)操作的價值。通過學(xué)生直觀的觀察,讓學(xué)生去挖掘數(shù)學(xué)本質(zhì)上的一些聯(lián)系,讓學(xué)生在知識的探索過程中有一個完成的體驗過程,也對所學(xué)的知識有一個更好的理解。

        三、讓探索更深入,渴求方法的掌握

        如果我們在教學(xué)的過程中能夠很好地重視學(xué)生的操作經(jīng)驗積累,并形成一定的方法,相信學(xué)生在溝通新知和舊知之間的聯(lián)系時會更加的自然而然,也能順利的實現(xiàn)知識的正遷移。因此,在數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該讓學(xué)生的探索過程更加的深入,形成一定的學(xué)習(xí)方法,為今后的學(xué)習(xí)積累知識經(jīng)驗的同時

      圓柱的體積教學(xué)反思9

        圓柱的體積這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進行教學(xué)的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會計算圓柱的體積;在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。

        在圓的體積公式推導(dǎo)過程中,給予學(xué)生足夠的時間和空間,激發(fā)學(xué)生的探究的欲望,培養(yǎng)學(xué)生的空間想象力。我把圓柱體拼成一個長方體,就是把一個新圖形轉(zhuǎn)換成一個我們學(xué)習(xí)過的圖形,通過討論,爭鳴從而得出比較深層的數(shù)學(xué)知識,這種思維的火花,我們老師應(yīng)及時捕捉,讓它開得絢麗多彩,從而讓學(xué)生的個性能得到充分的培養(yǎng)。讓學(xué)生在學(xué)習(xí)的過程中體會到數(shù)學(xué)給自己帶來了巨大的成功感和喜悅感,我們老師這樣才能寓教于樂,從而達到了事半功倍了。

        本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)教學(xué)第十二冊﹙人教版﹚《圓柱的體積》,以前教學(xué)此內(nèi)容時,直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=S和,讓學(xué)生套公式練習(xí);我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:

        一、學(xué)生學(xué)到了有價值的知識。

        學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的'知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。

        二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。

        新課程改革明確提出要“強調(diào)讓學(xué)生通過實踐增強探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。

        三、促進了學(xué)生的思維發(fā)展。

        傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進了學(xué)生的思維發(fā)展。

        本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。

      圓柱的體積教學(xué)反思10

        本課主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因為公式的推導(dǎo)過程是個難點,因此在教學(xué)設(shè)計時,我讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,幫助學(xué)生理解公式的來源,從而獲得知識。下面我來談?wù)勛约旱囊恍┓此肌?/p>

        1、導(dǎo)入時,力求突破教材,有所創(chuàng)新

        圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學(xué)生們猜一猜。猜想計算方法固然有好處,但要讓學(xué)生馬上做實驗理解圓柱體積計算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強,不利于學(xué)生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設(shè)計時在回憶了長方體、正方體體積計算方法之后,接著復(fù)習(xí)一下圓面積計算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,這時教師的引導(dǎo)才是行之有效的。不過應(yīng)該注意時間的控制,不能花費太多的時間。

        2、新課時,要實現(xiàn)人人參與,主動學(xué)習(xí)

        學(xué)生進行數(shù)學(xué)探究時,應(yīng)給予充分的思考空間,創(chuàng)設(shè)實踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時,因為學(xué)校沒有提供學(xué)具,所以我只能先讓學(xué)生展開空間想象,結(jié)合圓面積的推導(dǎo)過程,借助課件一一展示推導(dǎo)過程。讓學(xué)生觀察發(fā)現(xiàn)把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,圓柱體就轉(zhuǎn)化成一個近似的'長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計算的道理,從而推導(dǎo)出圓柱體積的計算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。

        3、練習(xí)時,形式多樣,層層遞進

        例題的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,我在設(shè)計練習(xí)時考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。

       。1)、已知圓柱底面積(s)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=sh。

       。2)、已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=πr2h。

       。3)、已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2) 2h。

       。4)、已知圓柱底面周長(c)和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2) 2h。

       。5)、已知圓柱側(cè)面積(s側(cè))和高(h),計算圓柱體積可以應(yīng)用這一公式:V=π(s側(cè)÷h÷π÷2) 2h。

        因為是第一課時所以在鞏固練習(xí)中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學(xué)生真正掌握好計算圓柱體積的方法。另外,還設(shè)計了解決生活中的問題,讓學(xué)生能學(xué)以致用解決生活中的問題。不足之處

        本想給學(xué)生準備學(xué)具,親自動手操作圓柱體體積的推導(dǎo)過程,無奈學(xué)校沒有學(xué)具,所以只能讓孩子借助圓面積的推導(dǎo)過程展開想象,然后借助課件展示圓柱體積的推導(dǎo)過程,可能對一些學(xué)困生的理解還有困難。

      圓柱的體積教學(xué)反思11

        《課程標準》指出:要創(chuàng)設(shè)與學(xué)生生活環(huán)境、知識背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、猜測、操作、驗證、歸納等活動中逐步體會數(shù)學(xué)知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學(xué)的價值,同時掌握必要的基礎(chǔ)知識與基本技能。

        在這節(jié)課中,我先是復(fù)習(xí)了長方體、正方體體積的計算,然后順勢提出“如何計算圓柱體的體積”這一全課的核心問題,從而引發(fā)學(xué)生的猜測、操作、交流等數(shù)學(xué)活動,如有學(xué)生想用單位立方體來擺,可是因圓柱體的側(cè)面是曲面,無法量出。在學(xué)生嘗試失敗的基礎(chǔ)上,促使他們改變思路,去尋找新的方法。通過學(xué)生對“圓柱體上下兩面是什么形?圓面積公式是怎么得到的?”的回答,從而引出:用割拼的方法將它轉(zhuǎn)化為其他的圖形。出示教具將圓柱沿底面已經(jīng)平分割成16等份,將其插拼成一個近似長方體;接著再啟發(fā)提問將圓柱體沿底面平分32、64等份,再拼成近似的長方體;。使學(xué)生知道“把它平分成很多很多等份,拼成的圖形將會越來越接近長方體”。通過讓學(xué)生觀察比較,延伸想象發(fā)現(xiàn)聯(lián)系:二者之間什么變了,什么不變?最后,再從長方體的體積公式推導(dǎo)出圓柱體的體積計算公式。由此至終讓學(xué)生經(jīng)歷了“做數(shù)學(xué)”的過程,并伴隨著問題的圓滿解決,又使學(xué)生體驗到了成功的喜悅與滿足。與此同時,使學(xué)生理解與感受到了數(shù)學(xué)的魅力。

        圓柱的體積一課,重點是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進行計算應(yīng)用。在計算的過程中,發(fā)現(xiàn)學(xué)生單位名稱用錯,體積單位用面積單位。為了避免單位名稱的錯誤,可在課前復(fù)習(xí)中設(shè)計單位換算的填空題,辨析題等。例如:1平方米=( )平方分米=( )平方厘米 100平方厘米=1立方分米。對于書中所給的.立體圖形,認識不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯。圓柱的高也可以叫做圓柱的長(個別學(xué)生不清楚)。在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時,應(yīng)放手讓學(xué)動手動腦自己解決,但動手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的體積公式。注意引導(dǎo)學(xué)生參與到探索知識的發(fā)生發(fā)展過程中,突破以往數(shù)學(xué)學(xué)習(xí)單一、被動的學(xué)習(xí)方式,關(guān)注學(xué)生的實踐活動和直接經(jīng)驗,“通過自己的活動”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動是數(shù)學(xué)活動的重要組成部分,也是學(xué)生學(xué)習(xí)活動的重要方式。

      圓柱的體積教學(xué)反思12

        [頭疼問題]

        近期六年級的任課教師都會頭疼我們也不例外

        年級組集體備課時會嘆氣

        在走廊里碰頭時會感慨

        嘆氣、感慨地主要原因就是:近期作業(yè)的錯誤率很高(特別是學(xué)困生)

        這使我不免停下“匆匆的步伐”凝望著這些作業(yè)叉叉多的孩子

        什么地方出問題了?

        [細細掂量]

        一輪本子改下來錯誤有以下幾類

        1、優(yōu)等生:列出一個長長的算式,直接得出錯誤的結(jié)果(看不出是哪一步出錯,反正計算錯)

        2、中等生:求表面積時,大概知道側(cè)面積+兩個底面積;但真正列式的時候底面積沒乘2;而到了只需要加一個底面積的時候(無蓋水桶等實際問題的時候)卻乘2;

        3、學(xué)困生:列出的算式都有問題。一查,圓面積計算公式都不會(夠厲害),最基本的都不會,圓柱的表面積和體積又如何能正確求出;個別的20多分鐘頭都不抬,就在計算一個圖形題,仔細一看列式出錯,后面的脫式計算過程中的結(jié)果有的有6、7位小數(shù);依然不知疲倦的算啊算,看著都累

        4、不知靈活變通,一般來講3.14最好是最后再乘,這樣可以降低計算的復(fù)雜程度,減輕計算的強度;但部分學(xué)困生勇氣可嘉,不管那一套,列式中3.14在前面就先算;放在后頭就最后算,老實得可愛;當(dāng)你在講計算技巧的時候可愛的孩子們還在埋頭苦算,結(jié)果錯誤百出。

        [標本兼治]

        1、學(xué)優(yōu)生:提出要求:不能一步得出結(jié)果,要脫式:關(guān)注做作業(yè)、打草稿的態(tài)度、習(xí)慣,養(yǎng)成草稿本清晰、數(shù)字清楚,可以避免匆忙之中抄錯數(shù)字導(dǎo)致整題出錯。

        2、中等生、學(xué)困生:

        (1)重視公式的`熟練程度:通過演示、推導(dǎo)、同桌互說、單獨抽問、上黑板默寫等方法幫助夯實基礎(chǔ)。

       。2)重點分析典型習(xí)題,幫助學(xué)生找到審題、列式、解題的方法和策略,并針對性練習(xí),提高技能

       。3)重點強記:3.14*1=…………………3.14*9= 常用計算結(jié)果,達到熟練程度,提高練習(xí)時的計算速度和正確率,也可以用于檢驗計算過程中的結(jié)果正確與否。

        (4)抓聽講習(xí)慣:要求要嚴格,教師針對問題進行分析、講評的時候,應(yīng)要求所有學(xué)生抬頭關(guān)注,集中精力聽講(往往這樣的時候?qū)W困生是不睬你的,要適當(dāng)?shù)暮八饋碚緜1分多鐘,點一點他。),有了這個保證,講評的效果就有了,出錯的幾率就就會降低了。再結(jié)合以上措施,效果就會更好。

        [寫在結(jié)尾]

        有了措施,就需要有行動——老師的行動、學(xué)生的行動都要跟上,希望一段日子后會有好效果。

        也歡迎大家說說自己的好的做法,共同提高第二單元的質(zhì)量

      圓柱的體積教學(xué)反思13

        本節(jié)課注重了數(shù)學(xué)思想方法和學(xué)習(xí)能力的培養(yǎng)。能力的發(fā)展決不等同于知識與技能的獲得。能力的形成是一個緩慢的過程,有其自身的.特點和規(guī)律,它不是學(xué)生“懂”了,也不是學(xué)生“會”了,而是學(xué)生自己“悟”出了道理、規(guī)律和思考方法等。本節(jié)課沿著“猜想-驗證”的學(xué)習(xí)流程進行,給學(xué)生提供較充分的探索交流的空間,組織、引導(dǎo)學(xué)生“經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程”,并把數(shù)學(xué)推理能力有機地融合在這樣的“過程”之中,有力地促使了學(xué)習(xí)改善學(xué)習(xí)方式。本課中學(xué)生“以舊推新”-大膽地進行數(shù)學(xué)的猜想;“以新轉(zhuǎn)舊”-積極把新知識轉(zhuǎn)化為已能解決的舊問題;“新舊交融”-合理地把新知識納入到原有的認識結(jié)構(gòu)中,教學(xué)活動成了學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動。

        整個教學(xué)過程是在“猜想-驗證”的過程中進行的,是讓學(xué)生在和已有知識經(jīng)驗中體驗和理解數(shù)學(xué),學(xué)生學(xué)會了思考、學(xué)會了解決問題的策略,學(xué)出了自信。

      圓柱的體積教學(xué)反思14

        教材作為教學(xué)的憑借與依據(jù),只不過是編者對學(xué)科知識、國家要求與學(xué)生進行整和思考的結(jié)晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實際的“跳板”。因此,教學(xué)時,我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實際,創(chuàng)造性地利用教材。

        1、挖掘訓(xùn)練空白,及時補白教材。

      編者在編寫教材時,也考慮了地域、學(xué)科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓(xùn)練空白,及時補白教材。中的例題教學(xué),就挖掘出了教材中的訓(xùn)練空白,并沒有把教學(xué)簡單地停留在一種解答方法上,而是在學(xué)生預(yù)習(xí)的基礎(chǔ)上引導(dǎo)學(xué)生深入思考,在解決問題的過程中體會“從不同的角度去考慮問題,將得到不同的結(jié)果”的道理,從而學(xué)會多角度考慮問題,提高解決問題的能力。

        2、找出知識聯(lián)系,大膽重組教材。

      數(shù)學(xué)知識具有一定的結(jié)構(gòu),知識間存在著密切的聯(lián)系,我們在教學(xué)時不能只著眼于本節(jié)課的教學(xué),而應(yīng)找出知識間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個較為完整知識系統(tǒng)。的表1僅幫助學(xué)生熟練掌握體積公式,此外無更多的教學(xué)價值,而重組后的表2不僅實現(xiàn)了編者的.意圖,而且為“比例”的教學(xué)作了提前孕伏。走出了數(shù)學(xué)教學(xué)的“只見樹木,不見森林”的“點教學(xué)”的誤區(qū)。

      圓柱的體積教學(xué)反思15

        這部分知識是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識基礎(chǔ)上進行教學(xué)的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體積公式的推導(dǎo)過程,會計算圓柱的體積;在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識“ 從生活中來到生活中去” 的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探究。

        一、讓學(xué)生在現(xiàn)實情境中體驗和理解數(shù)學(xué)

        在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會求嗎?圓柱形橡皮泥的體積你會求嗎?)學(xué)生聽到教師提的問題多在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱(新問題)和長方體(已知)的知識聯(lián)系。在此基礎(chǔ)上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,或是求壓路機滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的欲望。

        二、鼓勵學(xué)生獨立思考,引導(dǎo)學(xué)生自主探索、合作交流

        在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同學(xué)們有了圓面積計算公式推導(dǎo)的.經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進行了動手操作,拼成了一個近似的長方體。通過實驗、操作、自主探究,實現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識。的思想。

        三、練習(xí)時,要形式多樣,層層遞進

        例題“ 練一練” 中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計算圓柱的體積,教師在設(shè)計練習(xí)時要多動腦,花心思去考慮怎樣才能讓學(xué)生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型:

        1 .已知圓柱底面積(s )和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=sh

        2 .已知圓柱底面半徑(r )和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=πr?h 。

        3 .已知圓柱底面直徑(d )和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=π(d/2)?h 。

        4 .已知圓柱底面周長(c )和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)?h 。

        5 .已知圓柱側(cè)面積(s 側(cè))和高(h ),計算圓柱體積可以應(yīng)用這一公式:V=π(s 側(cè)÷h÷π÷2)?h 。

        在鞏固練習(xí)中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計算圓柱體積的方法。

      【圓柱的體積教學(xué)反思】相關(guān)文章:

      圓柱的體積教學(xué)反思02-18

      《圓柱的體積》教學(xué)反思06-13

      《圓柱的體積》教學(xué)反思(優(yōu))07-09

      (推薦)圓柱的體積教學(xué)反思01-16

      《圓柱的體積》教學(xué)反思(精)07-09

      《圓柱的體積》教學(xué)反思(15篇)03-01

      圓柱的體積教學(xué)反思精選15篇03-09

      圓柱的體積教學(xué)反思 15篇03-02

      圓柱的體積教學(xué)反思15篇02-27

      《圓柱體體積》教學(xué)反思02-19