- 相關(guān)推薦
《積的變化規(guī)律》教學(xué)反思
作為一位優(yōu)秀的老師,我們要在教學(xué)中快速成長(zhǎng),對(duì)學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,快來(lái)參考教學(xué)反思是怎么寫(xiě)的吧!以下是小編為大家收集的《積的變化規(guī)律》教學(xué)反思,歡迎大家分享。
《積的變化規(guī)律》教學(xué)反思1
教學(xué)內(nèi)容:蘇教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)四年級(jí)(下冊(cè))P83例題,P83-84“想想做做”。
教學(xué)目標(biāo):
1、使學(xué)生借助計(jì)算器的計(jì)算,探索并掌握“一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘幾,得到的積等于原來(lái)的積乘幾”的變化規(guī)律。
2、使學(xué)生在利用計(jì)算器探索規(guī)律的過(guò)程中,經(jīng)歷觀察、比較、猜想、驗(yàn)證和歸納等一系列的數(shù)學(xué)活動(dòng),體驗(yàn)探索和發(fā)現(xiàn)數(shù)學(xué)規(guī)律的基本方法,進(jìn)一步獲得探索規(guī)律的經(jīng)驗(yàn),發(fā)展思維能力。
3、使學(xué)生在參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的過(guò)程中,學(xué)會(huì)與他人交流,體會(huì)與他人合作交流的價(jià)值,逐步形成良好的與他人合作的習(xí)慣和意識(shí)。
4、使學(xué)生在發(fā)現(xiàn)規(guī)律的過(guò)程中,體驗(yàn)數(shù)學(xué)活動(dòng)的探索性和創(chuàng)造性,感受數(shù)學(xué)結(jié)論的嚴(yán)謹(jǐn)性和確定性,獲得成功的樂(lè)趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和自信心。
教學(xué)過(guò)程:
一、游戲引入:
用計(jì)算器玩游戲
要求:在1-9中任意選一個(gè)數(shù),然后用計(jì)算器把這個(gè)數(shù)乘3,再乘127,算出結(jié)果。只要一報(bào)出結(jié)果,老師馬上能知道,一開(kāi)始在1-9中任意選擇的是哪個(gè)數(shù)。
【意圖:計(jì)算器作為探索的`工具并以游戲方式載入一是有利于激活學(xué)生熟練運(yùn)用計(jì)算器的能力,同時(shí)對(duì)游戲中隱含的規(guī)律產(chǎn)生好奇,為后繼進(jìn)一步運(yùn)用計(jì)算器探索規(guī)律做好心理上的準(zhǔn)備】
二、揭示課題:
1、剛才我們用計(jì)算器玩了個(gè)小游戲,今天課上我們還要用到計(jì)算器,我們要用它來(lái)探索規(guī)律。(板書(shū)課題:用計(jì)算器探索規(guī)律)
2、看了這個(gè)課題,現(xiàn)在你最想了解的是什么?通過(guò)交流讓學(xué)生感受到三個(gè)方面:①什么規(guī)律? ②怎樣研究? ③有什么用?
【意圖:一開(kāi)始提出探索的目標(biāo)有利于學(xué)生明確探索的內(nèi)容和方向,把重點(diǎn)集中到探索和發(fā)現(xiàn)規(guī)律上來(lái),本課的著力點(diǎn)自然地凸現(xiàn)了出來(lái)!
三、探索規(guī)律
。ㄒ唬┙⒉孪
1、用計(jì)算器計(jì)算:36×30的積。
2、36、30在這個(gè)乘法算式中叫做什么?1080又叫做什么?
3、猜想:如果其中的一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘一個(gè)數(shù),得到的積可能會(huì)有什么變化呢?比如,一個(gè)因數(shù)36不變,把另一個(gè)因數(shù)30乘2,或者把30乘10,積會(huì)有什么樣的變化呢?再比如,一個(gè)因數(shù)30不變,另一個(gè)因數(shù)36乘8,或者乘100,積又會(huì)有什么樣的變化呢?能不能來(lái)猜一猜?
《積的變化規(guī)律》教學(xué)反思2
在乘法運(yùn)算中探索積的變化規(guī)律是整數(shù)四則運(yùn)算中內(nèi)容結(jié)構(gòu)的一個(gè)重要方面,這堂課以兩組乘法算式為載體,引導(dǎo)學(xué)生探索當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況,從中歸納出積的變化規(guī)律。通過(guò)這個(gè)過(guò)程的探索,不但讓學(xué)生理解兩數(shù)相乘時(shí),積的變化隨其中一個(gè)因數(shù)(或兩個(gè)因數(shù))的變化而變化,同時(shí)體會(huì)事物間是密切相關(guān)的',受到辯證思想的啟蒙教育。
在第一次的試教中,由于選擇的一組題目較為容易,很多學(xué)生在解決問(wèn)題時(shí),不需要利用積的變化規(guī)律就能很容易口算出答案,使這一規(guī)律不能很好的應(yīng)用,也沒(méi)有應(yīng)用的價(jià)值,規(guī)律的方便性就體現(xiàn)不出來(lái)了,因此在第二次試教時(shí),我將這類型的題目加大了難度,使學(xué)生不能用口算的方法來(lái)計(jì)算出答案,只能運(yùn)用這個(gè)規(guī)律來(lái)計(jì)算,但事與愿違,由于題目的難度偏大,一部分學(xué)生索性就用列豎式的方法來(lái)解決了。因此,在對(duì)題目的把握上還需下番心思。個(gè)別學(xué)生能用這個(gè)規(guī)律來(lái)算,卻說(shuō)不清個(gè)中的緣由,說(shuō)明對(duì)這個(gè)規(guī)律還沒(méi)有真正理解,掌握好,還不能信手拈來(lái)。個(gè)別同學(xué)豎的能看出來(lái),寫(xiě)成橫的就不太認(rèn)識(shí)了。
在讓學(xué)生自主探索一個(gè)因數(shù)不變,積隨著另一個(gè)因數(shù)的變化而變化的規(guī)律時(shí),我讓學(xué)生根據(jù)預(yù)先設(shè)置好的題目來(lái)探究規(guī)律,這樣顯得有些程序化。如果能讓學(xué)生現(xiàn)場(chǎng)根據(jù)自己想的,一個(gè)因數(shù)乘任何數(shù)(擴(kuò)大任意倍數(shù)),看看積會(huì)怎么變化,這樣會(huì)更有說(shuō)服力,學(xué)生也更容易接受。
對(duì)于這類學(xué)生剛剛剛嘗試探索規(guī)律的問(wèn)題,應(yīng)廣泛地進(jìn)行小組討論,發(fā)揮集體的智慧,群策群力,讓學(xué)生自己經(jīng)歷研究問(wèn)題的一般方法:研究具體問(wèn)題——?dú)w納發(fā)現(xiàn)規(guī)律——解釋說(shuō)明規(guī)律——舉例驗(yàn)證規(guī)律,讓學(xué)生真正成為課堂的主人,給學(xué)生留出充足的探索空間,讓學(xué)生自主地進(jìn)行探索與交流。老師只是適時(shí)補(bǔ)充或糾正,把 思考的權(quán)利還給學(xué)生。
《積的變化規(guī)律》教學(xué)反思3
《積的變化規(guī)律》教學(xué)反思本節(jié)課的課題是積的變化規(guī)律,是在學(xué)習(xí)了三位數(shù)乘兩位數(shù)的的基礎(chǔ)上探索積的變化規(guī)律。在講新知識(shí)之前,讓學(xué)生先明確關(guān)系:因數(shù)X?因數(shù)=積。引導(dǎo)學(xué)生思考:若改變其中的`一個(gè)因數(shù)不變,改變另一個(gè)因數(shù),積灰發(fā)生怎樣的變化?教師作出正確的指引,可以節(jié)約課堂時(shí)間。隨后給出兩組算式(教材例題),讓學(xué)生通過(guò)自主思考,自主探索,發(fā)現(xiàn)和歸納出積的積的變化規(guī)律,再讓學(xué)生分別用三位數(shù)乘兩位數(shù)的方法和運(yùn)用規(guī)律求得數(shù)的方法,對(duì)積的變化規(guī)律進(jìn)行驗(yàn)證,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的嚴(yán)謹(jǐn)性,最后進(jìn)行針對(duì)性習(xí)題鞏固。
在練習(xí)設(shè)計(jì)上,難度層次分明。先是運(yùn)用規(guī)律計(jì)算有規(guī)律算式,進(jìn)而運(yùn)用規(guī)律解決實(shí)際問(wèn)題。但是在本節(jié)課的教學(xué)實(shí)踐上發(fā)現(xiàn)還有一些環(huán)節(jié)有待進(jìn)一步完善:
在引入方面,學(xué)生更能接受把舊知識(shí)向新知識(shí)過(guò)度的方式的學(xué)法。
在驗(yàn)證環(huán)節(jié)上,要根據(jù)學(xué)生的實(shí)際情況設(shè)計(jì)題目難度,本課上驗(yàn)證環(huán)節(jié)應(yīng)降低難度,計(jì)算太難會(huì)導(dǎo)致重點(diǎn)發(fā)生偏離,無(wú)法突破。在進(jìn)行一些探索活動(dòng)的設(shè)計(jì)時(shí)還應(yīng)更大膽放手,讓學(xué)生成為學(xué)習(xí)的主人,使課堂成為學(xué)生展示個(gè)性的舞臺(tái)。
《積的變化規(guī)律》教學(xué)反思4
新課程標(biāo)準(zhǔn)提出要讓學(xué)生“經(jīng)歷、體驗(yàn)、探索”。因此在教學(xué)《積的變化規(guī)律》這節(jié)課中,我注重情境的創(chuàng)設(shè),創(chuàng)造性地使用教材,將教材中的兩組算式調(diào)整為一組乘法算式。這一組算式是以能夠體現(xiàn)我們課本所要傳達(dá)的信息與知識(shí),引導(dǎo)學(xué)生通過(guò)這一組算式去發(fā)現(xiàn)問(wèn)題,從而去經(jīng)歷發(fā)現(xiàn)規(guī)律——總結(jié)規(guī)律——驗(yàn)證規(guī)律——運(yùn)用規(guī)律這四個(gè)層次的學(xué)習(xí)。在這四個(gè)層次的學(xué)習(xí)中,學(xué)生通過(guò)觀察、探索、交流、歸納等方式經(jīng)歷積的變化規(guī)律的探索過(guò)程,初步獲得探索規(guī)律的一般方法和經(jīng)驗(yàn),體驗(yàn)發(fā)現(xiàn)規(guī)律是一件很愉快的事情。
但是在這節(jié)課上還是存在一些問(wèn)題:
1、學(xué)生雖然能夠通過(guò)例題找出積的變化規(guī)律,但是仍有部分學(xué)生并沒(méi)有真正懂得該規(guī)律的應(yīng)用。這在后面的練習(xí)時(shí)表現(xiàn)的尤為明顯,部分學(xué)生還是用以前的老方法進(jìn)行計(jì)算,而不是找到規(guī)律直接寫(xiě)得數(shù)。在以后的教學(xué)中還要多加練習(xí),也多關(guān)注思維慢一些的學(xué)生,加強(qiáng)對(duì)他們的引導(dǎo),使他們能更積極更有目標(biāo)的`去思考。
2、這節(jié)課主要是通過(guò)學(xué)生的觀察、探索、交流,從而歸納積的變化規(guī)律,有部分學(xué)生還是不敢舉手大膽的交流。這部分學(xué)生主要是害怕自己說(shuō)錯(cuò)了,讓別的同學(xué)取笑。針對(duì)學(xué)生不敢發(fā)言,在以后的課堂教學(xué)中要注意多給學(xué)生鼓勵(lì),多給學(xué)生信心,使學(xué)生暢所欲言。
3、由于學(xué)生參與度不夠,導(dǎo)致課堂進(jìn)度受影響,設(shè)計(jì)的鞏固練習(xí)題沒(méi)有全部進(jìn)行完。
《積的變化規(guī)律》教學(xué)反思5
今天教學(xué)了積的變化規(guī)律,昨天布置了預(yù)習(xí)作業(yè):
計(jì)算、再觀察比較下列算式:30*24=720 (30*2)*24= (30*4)*24= 30*(24*5)= 后面三個(gè)算式等號(hào)左邊與第一個(gè)算式左邊比,什么發(fā)生了什么變化,算出后三題的積再與第一題的積比一比,你有什么發(fā)現(xiàn)? 30*24=720 (30÷2)*24= (30÷5)*24= 30*(24÷6)= 后面三個(gè)算式等號(hào)左邊與第一個(gè)算式左邊比,什么發(fā)生了什么變化,算出后三題的積再與第一題的積比一比,你有什么發(fā)現(xiàn)?學(xué)生在課始交流計(jì)算結(jié)果與自己的人發(fā)現(xiàn)時(shí),習(xí)慣于表述成:一個(gè)因數(shù)不變,另一個(gè)因數(shù)擴(kuò)大幾倍,積也擴(kuò)大相同的倍數(shù);一個(gè)因數(shù)不變,另一個(gè)因數(shù)縮小幾倍,積也縮小相同的倍數(shù)。
為了驗(yàn)證大家的發(fā)現(xiàn),我們首先讓大家用書(shū)中的例題驗(yàn)證,再讓大家各舉一個(gè)例子驗(yàn)證得出積得變化規(guī)律。但遺憾的是在后面的練習(xí)中學(xué)生還是習(xí)慣于直接計(jì)算積卻不用所學(xué)的積得變化規(guī)律去求積,在我的追問(wèn)下好的學(xué)生想到根據(jù)記得變化規(guī)律直接用原來(lái)的積乘幾求到現(xiàn)在的積。
我也反思我的教學(xué)中是否有導(dǎo)致學(xué)與用剝離的'現(xiàn)象,可能在開(kāi)始的教學(xué)中教師只注重學(xué)生得出規(guī)律的結(jié)果反而削弱了學(xué)生對(duì)規(guī)律本身的理解與實(shí)際應(yīng)用,于是在課即將結(jié)束前我出示了題目:根據(jù)275*46=12650 直接寫(xiě)出275*92= 的結(jié)果并說(shuō)明解題思路,到此學(xué)生才全部理解了記得變化規(guī)律的有用性。雖然是后知后覺(jué)但畢竟是真正有了“知覺(jué)”了。
《積的變化規(guī)律》教學(xué)反思6
昨天學(xué)習(xí)了四年級(jí)上冊(cè)的《積的變化規(guī)律》,一步步引導(dǎo)學(xué)生,最后學(xué)生通過(guò)仔細(xì)觀察發(fā)現(xiàn):一個(gè)因數(shù)是沒(méi)有變的,另一個(gè)因數(shù)乘幾,然后積也乘相同的數(shù),當(dāng)時(shí)的我特別驚訝,認(rèn)為這些孩子還是有一定的思考能力的,只不過(guò)需要老師在教授知識(shí)的時(shí)候讓孩子們靜下來(lái)去觀察,去發(fā)現(xiàn)。但是,在讓學(xué)生以此規(guī)律來(lái)舉例的'時(shí)候,全班學(xué)生都是舉例擴(kuò)大10倍的算式,我很納悶,“難道他們就沒(méi)有其他的想法嗎?”,接著再次引導(dǎo),想試著讓他們舉出不同的例子,可是,依然如初。緊接著,我通過(guò)練習(xí)題,讓他們?nèi)⑹鲞@些發(fā)現(xiàn)的規(guī)律,他們都很好的敘述。試著做一道解決問(wèn)題“一個(gè)長(zhǎng)方形草坪面積為200平方米,長(zhǎng)不變,寬增加到24米,擴(kuò)大后的草坪面積是多少?”結(jié)果不出所料,只有一個(gè)人看出之間的倍數(shù)關(guān)系了,另一部分同學(xué)就是利用三年級(jí)的知識(shí)把這道題給解決了。
我不解。
思考良久,他們雖然能總結(jié)出規(guī)律,但是他們卻依然習(xí)慣用舊知來(lái)解決問(wèn)題,對(duì)于新知,如果不會(huì)學(xué)以致用,那原因只有一個(gè):還是沒(méi)有深入理解。他可能沒(méi)有搞懂為什么要去學(xué)這個(gè)知識(shí)?也就是說(shuō)學(xué)這個(gè)知識(shí)能去解決什么樣的問(wèn)題。我在教授的時(shí)候,只注重了讓他們?nèi)グl(fā)現(xiàn),去探索,卻忘記了告訴他們我們可以用這個(gè)“規(guī)律”做什么?我們學(xué)更多的知識(shí),就是為了解決不同種類的問(wèn)題,可以讓我們的生活越來(lái)越簡(jiǎn)便。
《積的變化規(guī)律》教學(xué)反思7
通過(guò)本節(jié)課的學(xué)習(xí),教學(xué)完后自己靜靜的坐下來(lái)想,發(fā)現(xiàn)自己在這節(jié)課的教學(xué)中從在很多的不足之處:
1、對(duì)于要求不明確。在本節(jié)課中我設(shè)計(jì)了讓學(xué)生在小組討論后發(fā)現(xiàn)了算式中從在一定的規(guī)律,然后通過(guò)讓學(xué)生在接著寫(xiě)兩個(gè),再讓學(xué)生自己接著寫(xiě)的時(shí)候,發(fā)現(xiàn)有的學(xué)生在跟著老師的要求寫(xiě),而有的學(xué)生自己隨意的寫(xiě),使得部分學(xué)生的思維出現(xiàn)了偏向,故有的學(xué)生就不明白了,而在接下來(lái)的教學(xué)中就造成時(shí)間的大量浪費(fèi)。
2、自己的語(yǔ)言不夠精煉。如:在讓學(xué)生計(jì)算給出的兩組算式時(shí),沒(méi)有明確按照怎樣的順序來(lái)完成,使得有的學(xué)生就自己隨意去完成,故讓學(xué)生總結(jié)發(fā)現(xiàn)時(shí),有的學(xué)生不明白而用了比較多的時(shí)間,再一個(gè)就是在引導(dǎo)學(xué)生探索變化規(guī)律時(shí),就提的問(wèn)題太多,使得學(xué)生沒(méi)有獨(dú)立分析和自主發(fā)現(xiàn)。
3、缺乏耐心,不善等待。如:當(dāng)學(xué)生沒(méi)有自覺(jué)地應(yīng)用規(guī)律進(jìn)行計(jì)算時(shí),教師缺乏耐心,直接請(qǐng)發(fā)現(xiàn)規(guī)律的同學(xué)起來(lái)說(shuō)。如果當(dāng)時(shí)能引導(dǎo)這位同學(xué)觀察一下,因數(shù)怎樣變化的,能不能不計(jì)算就報(bào)出積是多少?等待會(huì)讓課堂和諧、大氣,真正做到面向全體了。
4、練習(xí)設(shè)計(jì)的不夠全面和精細(xì)。在練習(xí)的設(shè)計(jì)中缺乏逆向思維的練習(xí),可以設(shè)計(jì)當(dāng)兩個(gè)因數(shù)同時(shí)變化時(shí),這時(shí)積將如何變化的情形,而是在教學(xué)時(shí)只在拓展練習(xí)-一個(gè)因數(shù)擴(kuò)大2倍,另一個(gè)因數(shù)縮小2倍,求積發(fā)現(xiàn)規(guī)律的題。
5、對(duì)教學(xué)內(nèi)容的'理解和把握能力還應(yīng)加強(qiáng)。本節(jié)課在開(kāi)始的時(shí)候,我完全可以只出示一組練習(xí),讓學(xué)生計(jì)算后充分挖掘這組題的價(jià)值。如從上往下看……從下往上看……讓學(xué)生充分利用習(xí)題資源理解規(guī)律,既強(qiáng)調(diào)了規(guī)律的統(tǒng)一性,又節(jié)約了時(shí)間,這樣第二組題就可以用來(lái)驗(yàn)證規(guī)律,有利于學(xué)生進(jìn)一步理解規(guī)律。
一節(jié)課下來(lái),留給自己的是太多的思考。愿自己在以后的教學(xué)中,多學(xué)習(xí)有經(jīng)驗(yàn)的教師的教學(xué),不斷探索,不斷改進(jìn),不斷創(chuàng)新,不斷長(zhǎng)進(jìn)。
《積的變化規(guī)律》是人教版教材數(shù)學(xué)四年級(jí)上冊(cè)第3單元的內(nèi)容。在以前計(jì)算的過(guò)程中就已經(jīng)初步感悟過(guò),但是沒(méi)有總結(jié)成規(guī)律,它是在學(xué)生掌握了三位數(shù)乘兩位數(shù)的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課主要引導(dǎo)學(xué)生探索當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況,從中歸納出積的變化規(guī)律。通過(guò)這個(gè)過(guò)程的探索,不但讓學(xué)生理解兩數(shù)相乘時(shí)積的變化隨其中一個(gè)因數(shù)的變化而變化,同時(shí)體會(huì)事物間是密切聯(lián)系的,培養(yǎng)學(xué)生遷移類推的能力。
“探索規(guī)律”是數(shù)與代數(shù)領(lǐng)域要教學(xué)的主要內(nèi)容之一。本節(jié)課的教學(xué)目標(biāo)是讓學(xué)生探索因數(shù)變化引起積的變化規(guī)律,感受發(fā)現(xiàn)數(shù)學(xué)中的規(guī)律。在教學(xué)中我引導(dǎo)學(xué)生通過(guò)觀察、口算、計(jì)算、說(shuō)理、交流等活動(dòng),歸納出積的變化規(guī)律。并會(huì)用數(shù)學(xué)語(yǔ)言刻畫(huà)這個(gè)規(guī)律,感悟函數(shù)的思想方法。同時(shí),讓學(xué)生通過(guò)觀察、比較、分析、概括、等思維活動(dòng)體驗(yàn)歸納規(guī)律的方法,從面獲得一定的價(jià)值體驗(yàn)。
成功之處:
1.引導(dǎo)學(xué)生經(jīng)歷規(guī)律發(fā)現(xiàn)的過(guò)程,讓過(guò)程在孩子的經(jīng)歷中變得清晰。教學(xué)中要讓學(xué)生充分經(jīng)歷規(guī)律的發(fā)現(xiàn)過(guò)程,把發(fā)現(xiàn)的過(guò)程細(xì)化、廣泛化,讓每個(gè)學(xué)生都參與。在起初的觀察里思維靈活的學(xué)生嘗試說(shuō)出“兩個(gè)數(shù)相乘,一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘幾,積也乘幾”,接著引導(dǎo)學(xué)生理解“也”的含義,強(qiáng)化“一個(gè)因數(shù)不變,另一個(gè)因數(shù)和積的變化是相同的”。在這里學(xué)生的已有水平已經(jīng)達(dá)到了初步認(rèn)識(shí)“積的變化規(guī)律”,接下來(lái)讓學(xué)生舉例,深化規(guī)律。這個(gè)過(guò)程,讓學(xué)生感悟到規(guī)律的得出要經(jīng)過(guò)探索、猜想、驗(yàn)證,歸納。培養(yǎng)了學(xué)生各方面能力。
2.體驗(yàn)成功,讓每個(gè)孩子都有所收獲。每個(gè)孩子都期待成功,每個(gè)孩子都能成功,數(shù)學(xué)要讓不同的人得到不同的發(fā)展。在教學(xué)中讓每個(gè)孩子都參與在舉例子的過(guò)程中,舉不同的例子來(lái)驗(yàn)證規(guī)律,運(yùn)用規(guī)律,這個(gè)過(guò)程就是學(xué)生消化知識(shí)、運(yùn)用知識(shí)的過(guò)程,孩子在數(shù)學(xué)活動(dòng)中得到了成功的喜悅。
3.體會(huì)快樂(lè)的同時(shí)感受數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)和其他學(xué)科不同,它是一門邏輯性非常強(qiáng)非常講究嚴(yán)謹(jǐn)性的學(xué)科,因此在教學(xué)中要注意特點(diǎn),突出教學(xué)的嚴(yán)謹(jǐn)性。這節(jié)感受數(shù)學(xué)嚴(yán)謹(jǐn)性就是滲透在各個(gè)環(huán)節(jié)。比如發(fā)現(xiàn)了“兩個(gè)數(shù)相乘,因數(shù)乘幾,積也乘幾”再讓學(xué)生說(shuō)說(shuō)理解;老師也展示自己的想法與學(xué)生的想法產(chǎn)生沖突;這些都是數(shù)學(xué)嚴(yán)謹(jǐn)性的體現(xiàn)。
不足之處:
教學(xué)第一個(gè)規(guī)律時(shí),呈現(xiàn)的材料太少,讓學(xué)生一下子由初步的感悟總結(jié)提煉規(guī)律,不符合學(xué)生的認(rèn)知規(guī)律。應(yīng)該在初步感悟的基礎(chǔ)上讓學(xué)生嘗試舉例,再去總結(jié)提煉,這樣既加深學(xué)生的理解,也符合認(rèn)知規(guī)律。
《積的變化規(guī)律》教學(xué)反思8
今天教學(xué)了積的變化規(guī)律,昨天布置了預(yù)習(xí)作業(yè):計(jì)算、再觀察比較下列算式30*24=720 (30*2)*24= (30*4)*24= 30*(24*5)= 后面三個(gè)算式等號(hào)左邊與第一個(gè)算式左邊比,什么發(fā)生了什么變化,算出后三題的積再與第一題的積比一比,你有什么發(fā)現(xiàn)? 30*24=720 (30÷2)*24= (30÷5)*24= 30*(24÷6)= 后面三個(gè)算式等號(hào)左邊與第一個(gè)算式左邊比,什么發(fā)生了什么變化,算出后三題的積再與第一題的.積比一比,你有什么發(fā)現(xiàn)?學(xué)生在課始交流計(jì)算結(jié)果與自己的人發(fā)現(xiàn)時(shí),習(xí)慣于表述成:一個(gè)因數(shù)不變,另一個(gè)因數(shù)擴(kuò)大幾倍,積也擴(kuò)大相同的倍數(shù);一個(gè)因數(shù)不變,另一個(gè)因數(shù)縮小幾倍,積也縮小相同的倍數(shù)。為了驗(yàn)證大家的發(fā)現(xiàn),我們首先讓大家用書(shū)中的例題驗(yàn)證,再讓大家各舉一個(gè)例子驗(yàn)證得出積得變化規(guī)律。但遺憾的是在后面的練習(xí)中學(xué)生還是習(xí)慣于直接計(jì)算積卻不用所學(xué)的積得變化規(guī)律去求積,在我的追問(wèn)下好的學(xué)生想到根據(jù)記得變化規(guī)律直接用原來(lái)的積乘幾求到現(xiàn)在的積。我也反思我的教學(xué)中是否有導(dǎo)致學(xué)與用剝離的現(xiàn)象,可能在開(kāi)始的教學(xué)中教師只注重學(xué)生得出規(guī)律的結(jié)果反而削弱了學(xué)生對(duì)規(guī)律本身的理解與實(shí)際應(yīng)用,于是在課即將結(jié)束前我出示了題目:根據(jù)275*46=12650 直接寫(xiě)出275*92= 的結(jié)果并說(shuō)明解題思路,到此學(xué)生才全部理解了記得變化規(guī)律的有用性。雖然是后知后覺(jué)但畢竟是真正有了“知覺(jué)”了。
《積的變化規(guī)律》教學(xué)反思9
積的變化規(guī)律是在學(xué)生已經(jīng)掌握了三位數(shù)乘兩位數(shù)的口算和筆算方法的基礎(chǔ)上進(jìn)行教學(xué)的,信息窗呈現(xiàn)了篩沙車清理海水浴場(chǎng)的情景。通過(guò)介紹篩沙車每分鐘清潔沙灘的面積數(shù)量,引導(dǎo)學(xué)生提出問(wèn)題,引入對(duì)積的變化規(guī)律的探索。課堂教學(xué)的重點(diǎn)是讓學(xué)生自己探索出積的變化規(guī)律,并靈活運(yùn)用這個(gè)規(guī)律解決問(wèn)題。
在探究積的變化規(guī)律時(shí),我注重學(xué)生的觀察、分析、比較,讓學(xué)生在充分經(jīng)歷中感悟,在充分感悟中提煉。新課標(biāo)注重學(xué)生的“過(guò)程與方法”的探究,提倡學(xué)生充分地經(jīng)歷問(wèn)題的產(chǎn)生、發(fā)現(xiàn)、探索的過(guò)程。整個(gè)過(guò)程,學(xué)生主動(dòng)參與,借助統(tǒng)計(jì)表和乘法算式探究積的變化規(guī)律,在大量的舉例、充分地觀察中去感悟積的變化與不變的規(guī)律,初步構(gòu)建自己的認(rèn)知體系,充分經(jīng)歷了知識(shí)的發(fā)生過(guò)程。較好的培養(yǎng)了學(xué)生的'觀察能力、分析能力和概括能力,培養(yǎng)學(xué)生的探究意識(shí)。
為了讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,提高學(xué)習(xí)數(shù)學(xué)的興趣。在課堂練習(xí)中,我再次出示本課信息窗情境圖。讓學(xué)生繼續(xù)探究:5輛篩沙車每分鐘清潔沙灘多少平方米?15輛呢?30輛呢?“這個(gè)練習(xí)回歸生活實(shí)踐,讓學(xué)生感受到積的變化規(guī)律存在于生活的各個(gè)角落。引導(dǎo)學(xué)生聯(lián)系生活實(shí)際,學(xué)以致用。
不足之處:
教學(xué)過(guò)程中我發(fā)現(xiàn),學(xué)生在描述積的變化規(guī)律時(shí),語(yǔ)言總是不夠準(zhǔn)確、表述總是不夠完整。于是,我發(fā)揮了教師的主導(dǎo)作用,引導(dǎo)學(xué)生逐步完整、準(zhǔn)確地描述出積變化的規(guī)律。今后我們應(yīng)該注重學(xué)生概括能力的培養(yǎng)。
《積的變化規(guī)律》教學(xué)反思10
《積的變化規(guī)律》主要引導(dǎo)學(xué)生探索“當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況”,從中歸納出積的變化規(guī)律。通過(guò)這個(gè)過(guò)程的探索,不但讓學(xué)生理解兩數(shù)相乘時(shí)積的變化隨其中一個(gè)因數(shù)的變化而變化,同時(shí)體會(huì)事物間是密切聯(lián)系的,培養(yǎng)學(xué)生遷移類推的能力。
這堂課我以幾組口算乘法算式為載體?谒悱h(huán)節(jié)結(jié)束后,我問(wèn):“你能根據(jù)每組算式的特點(diǎn)接下去再寫(xiě)2個(gè)算式嗎?”通過(guò)這一環(huán)節(jié),只要學(xué)生能寫(xiě)出算式,那么他基本上對(duì)規(guī)律就有了大致的了解,雖然說(shuō)不出,也心領(lǐng)神會(huì)了。
但在接下來(lái)的練習(xí)中,學(xué)生突出的`表現(xiàn)是不能準(zhǔn)確的找到積的變化規(guī)律,學(xué)生似乎只停留在知識(shí)的表面,在教完這節(jié)課后,留給自己是無(wú)盡的思考,為什么學(xué)生開(kāi)始學(xué)習(xí)時(shí)興趣高漲,到后來(lái)的沉默,說(shuō)明學(xué)生沒(méi)有正真的掌握,接下來(lái)只好培養(yǎng)學(xué)生遷移類推培養(yǎng)學(xué)生遷移類推的能力和解決問(wèn)題培養(yǎng)學(xué)生遷移類推的能力,通過(guò)學(xué)生多說(shuō)多練來(lái)改善了。
《積的變化規(guī)律》教學(xué)反思11
《積的變化規(guī)律》是人教版教材數(shù)學(xué)四年級(jí)上冊(cè)第四單元的內(nèi)容。它是在學(xué)生掌握了三位數(shù)乘兩位數(shù)的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課的教學(xué)目標(biāo)是讓學(xué)生探索因數(shù)變化引起積的變化規(guī)律,感受發(fā)現(xiàn)數(shù)學(xué)中的規(guī)律。在教學(xué)中我先創(chuàng)設(shè)情境,讓學(xué)生列出相應(yīng)的乘法算式,通過(guò)對(duì)算式的觀察,讓學(xué)生討論自己的發(fā)現(xiàn),然后引出新知,再讓學(xué)生根據(jù)自探提示自主的去探索規(guī)律、驗(yàn)證規(guī)律,并使用規(guī)律.,本課主要是學(xué)生自主地去學(xué)習(xí),我鼓勵(lì)學(xué)生積極發(fā)言,大膽猜想,小心求證,積極主動(dòng)地探索新知,讓學(xué)生體會(huì)成功的喜悅,激發(fā)了學(xué)習(xí)興趣,增強(qiáng)了自信心。這節(jié)課上下來(lái)還是存在許多問(wèn)題:
1、由于本課例題比較簡(jiǎn)單,大部分學(xué)生通過(guò)口算就能直接算出答案,無(wú)需通過(guò)積的變化規(guī)律進(jìn)行計(jì)算,這就給部分思維發(fā)散性較差的學(xué)生形成了一個(gè)假象,以至無(wú)法真正懂得該規(guī)律的應(yīng)用。這在后面拓展應(yīng)用知識(shí)時(shí)表現(xiàn)的尤為明顯,部分學(xué)生還是用以前的老方法進(jìn)行計(jì)算,而不是找到規(guī)律直接寫(xiě)得數(shù)。在以后的教學(xué)中,要特別關(guān)注思維慢一些的學(xué)生,加強(qiáng)對(duì)他們的引導(dǎo),使他們能更積極更有目標(biāo)的去思考,增強(qiáng)學(xué)生的自信心,使學(xué)生能積極主動(dòng)地去獲取知識(shí)。
2、要用好評(píng)價(jià)語(yǔ)言,鼓勵(lì)學(xué)生參與到課堂學(xué)習(xí)中。這節(jié)課的主要特點(diǎn)是讓學(xué)生在一個(gè)愉悅的學(xué)習(xí)環(huán)境中進(jìn)行思考、探索、討論、發(fā)言,但是大部分學(xué)生還是不敢舉手大膽的交流。這部分學(xué)生主要是害怕自己說(shuō)錯(cuò)了,讓別的同學(xué)取笑。針對(duì)學(xué)生不敢發(fā)言,在以后的課堂教學(xué)中要注意多給學(xué)生鼓勵(lì),多給學(xué)生信心,以使學(xué)生暢所欲言。
3、對(duì)于積的變化規(guī)律的運(yùn)用,學(xué)生對(duì)于基本的練習(xí)能夠運(yùn)用自如,但是靈活度較高的練習(xí)就有些困難。因此,在選擇練習(xí)時(shí)應(yīng)關(guān)注練習(xí)的廣度,讓學(xué)生見(jiàn)多識(shí)廣、靈活運(yùn)用。
4、學(xué)生參與探索活動(dòng),經(jīng)歷發(fā)現(xiàn)規(guī)律的過(guò)程是新課標(biāo)教材編排的意圖,面對(duì)新的數(shù)學(xué)問(wèn)題,教師鼓勵(lì)學(xué)生在主動(dòng)觀察、猜測(cè)、討論、交流和驗(yàn)證等數(shù)學(xué)活動(dòng)中,感受到數(shù)學(xué)問(wèn)題的探究性和挑戰(zhàn)性,通過(guò)看、想、說(shuō)、動(dòng)手做、練的過(guò)程,順利的完成本課的教學(xué)任務(wù),并能充分體現(xiàn)了數(shù)學(xué)學(xué)習(xí)的“親歷性”,努力使學(xué)生在獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度等多方面也得到一定的進(jìn)步和發(fā)展。特別是在初步感知規(guī)律后,引導(dǎo)學(xué)生猜想:是不是所有的乘法算式都具有這樣相同的特點(diǎn)呢,再自己想辦法加以驗(yàn)證。
5、由于學(xué)生參與度不高,時(shí)間沒(méi)有把握好導(dǎo)致所學(xué)的知識(shí)沒(méi)有進(jìn)行提升,設(shè)計(jì)的鞏固練習(xí)題也沒(méi)來(lái)得及做,還有就是沒(méi)有對(duì)本節(jié)課進(jìn)行總結(jié)。
學(xué)生們個(gè)個(gè)像數(shù)學(xué)家一樣,進(jìn)行大膽的`猜想,并自主地舉出例證材料進(jìn)行驗(yàn)證,發(fā)現(xiàn)真正的數(shù)學(xué)規(guī)律。這樣,學(xué)生在研究發(fā)現(xiàn)數(shù)學(xué)規(guī)律的同時(shí),受到了一次科學(xué)研究方法的啟蒙,是發(fā)展學(xué)生的創(chuàng)新意識(shí)和創(chuàng)造性學(xué)習(xí)的有效途徑。因此,在今后的教學(xué)中,我將給學(xué)生提供充分的時(shí)間與空間,與學(xué)生合作,教師應(yīng)作為指導(dǎo)者參與其中,規(guī)范研究過(guò)程,增強(qiáng)驗(yàn)證過(guò)程的實(shí)效性。這樣,從整體到部分,由部分又回到整體,從上向下,從下向上,由表及里地引導(dǎo)學(xué)生觀察,將靜態(tài)的、結(jié)論性的數(shù)學(xué)轉(zhuǎn)化為動(dòng)態(tài)的、探索性的數(shù)學(xué)活動(dòng),使學(xué)生有充分的機(jī)會(huì)從事數(shù)學(xué)活動(dòng),幫助學(xué)生在實(shí)踐探索的過(guò)程中體驗(yàn)數(shù)學(xué),并從中獲得一定的數(shù)學(xué)思想方法和數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),培養(yǎng)學(xué)生從正反兩個(gè)方面觀察事物的辨證思想。同時(shí)作為教師,在課前應(yīng)該努力做好各種設(shè)想、準(zhǔn)備,然而課堂上卻又經(jīng)常碰到出乎意料的問(wèn)題,如所面對(duì)的學(xué)生在認(rèn)知水平和學(xué)習(xí)能力存在顯著差異等,老師要表現(xiàn)出較好的課堂機(jī)機(jī)智,不能順著教案往下走。這時(shí)需要教師適時(shí)隨機(jī)應(yīng)變,根據(jù)學(xué)生學(xué)習(xí)的情況,靈活地調(diào)整原有設(shè)計(jì),生成新的超出原計(jì)劃的教學(xué)流程,使課堂處在動(dòng)態(tài)和不斷生成的過(guò)程中,以滿足學(xué)生自主學(xué)習(xí)的要求,只有把自己的教育能力上升到教育智慧的高度,才能勝任動(dòng)態(tài)生成式教學(xué)。
《積的變化規(guī)律》教學(xué)反思12
《積的變化規(guī)律》是在學(xué)生掌握一定的乘除法計(jì)算方法和用計(jì)算器進(jìn)行計(jì)算的基礎(chǔ)上教學(xué)的,本課用計(jì)算器來(lái)探索一些積的變化規(guī)律。
本課的教學(xué)思路:用口算導(dǎo)入,其中口算中安排了一些因數(shù)變化的對(duì)比題,如:25×4和25×8等?谒阃瓿珊螅處煱鍟(shū):3564×158=?你能口算嗎?怎么辦?使學(xué)生明白用計(jì)算器方便我們進(jìn)行大數(shù)目的或復(fù)雜的運(yùn)算。
新課教學(xué),出示教材中的例題,幫助學(xué)生理解題意:積的變化是什么意思?跟誰(shuí)比變化了?怎樣計(jì)算?在計(jì)算前,先讓學(xué)生猜一猜:你覺(jué)得積會(huì)怎樣變?能提出你的猜想嗎?然后學(xué)生借助計(jì)算器進(jìn)行計(jì)算,填寫(xiě)教材中的表格。集體交流,提出問(wèn)題:你的猜想正確嗎?那在其他的乘法算式中還有沒(méi)有這樣的規(guī)律呢?寫(xiě)出一道算式,運(yùn)用剛才的方法去試一試,并在你的小組里交流。小組匯報(bào),并總結(jié)出積的變化規(guī)律——一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘幾,得到的積就是原來(lái)的積乘幾。
鞏固練習(xí),由淺入深。先是模仿例題的練習(xí),根據(jù)規(guī)律直接填表;然后是直接根據(jù)一道算式填出變化后的得數(shù);最后是應(yīng)用規(guī)律解決生活中的實(shí)際問(wèn)題,如:購(gòu)買同一種商品,數(shù)量發(fā)生變化,總價(jià)也跟著發(fā)生相同的變化。
課堂小結(jié),一是所學(xué)知識(shí),二是研究問(wèn)題的方法(提出猜想——舉例驗(yàn)證——得出規(guī)律——解釋?xiě)?yīng)用),同時(shí)進(jìn)一步激勵(lì)學(xué)生進(jìn)一步研究:如果乘法算式中兩個(gè)因數(shù)同時(shí)變化呢,積會(huì)怎么變?
教學(xué)后,有幾點(diǎn)體會(huì):
一、在充分經(jīng)歷中感悟。
在本課教學(xué)中,我就充分注意這一點(diǎn),注重讓學(xué)生充分參與積的變化這個(gè)規(guī)律的發(fā)現(xiàn),充分調(diào)動(dòng)學(xué)生參與的主動(dòng)性,讓學(xué)生在大量的舉例、充分地觀察中去感悟積的.變化的規(guī)律,初步構(gòu)建自己的認(rèn)知體系。
二、在充分感悟中提煉。
在本課教學(xué)中,學(xué)生通過(guò)舉例、觀察對(duì)積的變化規(guī)律有了初步的感悟、也有了初步的理解,但學(xué)生在描述規(guī)律時(shí),語(yǔ)言總是不夠準(zhǔn)確、表述總是不夠完整。此時(shí),我充分地發(fā)揮了自己的主導(dǎo)作用,抓住一些關(guān)鍵的例子、抓住一些關(guān)鍵的詞語(yǔ)讓學(xué)生去推敲、去體會(huì),最終引導(dǎo)學(xué)生完整、準(zhǔn)確地描述出積變化的規(guī)律,并通過(guò)一些重點(diǎn)詞的理解,使學(xué)生更加深刻地理解規(guī)律,構(gòu)建起完整的認(rèn)知體系。
不足之處:
一、教師的語(yǔ)言不夠凝練。如:引導(dǎo)學(xué)生用計(jì)算器探索變化規(guī)律時(shí),提的問(wèn)題太多,不利于學(xué)生獨(dú)立分析和思考。
二、缺乏耐心,不善等待。如:第1題練習(xí),當(dāng)學(xué)生沒(méi)有自覺(jué)地應(yīng)用規(guī)律進(jìn)行計(jì)算時(shí),教師缺乏耐心,直接請(qǐng)發(fā)現(xiàn)規(guī)律的同學(xué)起來(lái)說(shuō)。如果當(dāng)時(shí)能引導(dǎo)這位同學(xué)觀察一下,因數(shù)怎樣變化的,能不能不計(jì)算就報(bào)出積是多少?等待會(huì)讓課堂和諧和大氣。
三、練習(xí)設(shè)計(jì)可以更有深度。如:設(shè)計(jì)逆向思維的練習(xí),在表格中加入已知積的變化求因數(shù)的變化;拓展練 本節(jié)課的課題是積的變化規(guī)律,是在學(xué)習(xí)了三位數(shù)乘兩位數(shù)的的基礎(chǔ)上探索積的變化規(guī)律。
在講新知識(shí)之前,讓學(xué)生先明確關(guān)系:因數(shù)X?因數(shù)=積。引導(dǎo)學(xué)生思考:若改變其中的一個(gè)因數(shù)不變,改變另一個(gè)因數(shù),積灰發(fā)生怎樣的變化?教師作出正確的指引,可以節(jié)約課堂時(shí)間。隨后給出兩組算式(教材例題),讓學(xué)生通過(guò)自主思考,自主探索,發(fā)現(xiàn)和歸納出積的積的變化規(guī)律,再讓學(xué)生分別用三位數(shù)乘兩位數(shù)的方法和運(yùn)用規(guī)律求得數(shù)的方法,對(duì)積的變化規(guī)律進(jìn)行驗(yàn)證,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的嚴(yán)謹(jǐn)性,最后進(jìn)行針對(duì)性習(xí)題鞏固。
在練習(xí)設(shè)計(jì)上,難度層次分明。先是運(yùn)用規(guī)律計(jì)算有規(guī)律算式,進(jìn)而運(yùn)用規(guī)律解決實(shí)際問(wèn)題。但是在本節(jié)課的教學(xué)實(shí)踐上發(fā)現(xiàn)還有一些環(huán)節(jié)有待進(jìn)一步完善:
1、在引入方面,學(xué)生更能接受把舊知識(shí)向新知識(shí)過(guò)度的方式的學(xué)法
2、在驗(yàn)證環(huán)節(jié)上,要根據(jù)學(xué)生的實(shí)際情況設(shè)計(jì)題目難度,本課上驗(yàn)證環(huán)節(jié)應(yīng)降低難度,計(jì)算太難會(huì)導(dǎo)致重點(diǎn)發(fā)生偏離,無(wú)法突破。
3、在進(jìn)行一些探索活動(dòng)的設(shè)計(jì)時(shí)還應(yīng)更大膽放手,讓學(xué)生成為學(xué)習(xí)的主人,使課堂成為學(xué)生展示個(gè)性的舞臺(tái)。
《積的變化規(guī)律》教學(xué)反思13
《積的變化規(guī)律》是人教版四年級(jí)上冊(cè)第三單元的內(nèi)容,它是在學(xué)生掌握了三位數(shù)乘兩位數(shù)的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課主要引導(dǎo)學(xué)生探索當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況,從中歸納出積的變化規(guī)律。
在本課教學(xué)中,我注重讓學(xué)生充分參與積的變化這個(gè)規(guī)律的發(fā)現(xiàn),讓學(xué)生在充分地觀察、大量的舉例中去感悟積的變化的規(guī)律,充分調(diào)動(dòng)學(xué)生參與的主動(dòng)性,初步構(gòu)建自己的認(rèn)知體系。讓學(xué)生自己經(jīng)歷研究問(wèn)題的一般方法是:研究具體問(wèn)題——?dú)w納發(fā)現(xiàn)規(guī)律——解釋說(shuō)明規(guī)律——舉例驗(yàn)證規(guī)律。讓學(xué)生真正成為了課堂的主人,給學(xué)生留出了充足的探索空間,讓學(xué)生自主地進(jìn)行探索與交流。老師只是適時(shí)補(bǔ)充或糾正。我在練習(xí)題的設(shè)計(jì)上,既注重了基礎(chǔ)知識(shí)的鞏固,又注意了不同層次學(xué)生的需求。我不僅使學(xué)生了解課本上的積的變化規(guī)律:兩數(shù)想乘,一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘(或除以)幾,積就乘(或除以)幾;我還通過(guò)練習(xí),讓學(xué)生感知:兩數(shù)相乘,一個(gè)因數(shù)乘(或除以)幾,另一個(gè)因數(shù)除以(或乘)幾,積不變的規(guī)律;還讓學(xué)生感知兩數(shù)相乘,兩個(gè)因數(shù)都擴(kuò)大相同的.倍數(shù),積就擴(kuò)大這兩個(gè)倍數(shù)的乘積倍。如:6×2=12 (6×10)×(2×10)=60×20=1200。拓展了學(xué)生的思路,我認(rèn)為平時(shí)的教學(xué)不應(yīng)受教材的框框限制,適合自己,適合學(xué)生,教會(huì)學(xué)生思考的方法,培養(yǎng)學(xué)生的數(shù)學(xué)思想是最重要的。
雖然課堂上學(xué)生通過(guò)舉例、觀察對(duì)積的變化規(guī)律有了初步的感悟、也有了初步的理解,但學(xué)生在描述規(guī)律時(shí),語(yǔ)言總是不夠準(zhǔn)確、表述總是不夠完整。“語(yǔ)言表達(dá)是學(xué)生思維的全面展現(xiàn)”,學(xué)生們對(duì)于新知內(nèi)容的理解在很大程度上靠語(yǔ)言描繪去反饋,當(dāng)學(xué)生的概括能力受挫時(shí),我想:首先應(yīng)該反思的是我們的教學(xué)是否讓學(xué)生真正明白了。當(dāng)學(xué)生真正明白了一道、兩道、十道,甚至更多的題目后,怎樣概括,而不是讓學(xué)生就題論題似乎也是個(gè)問(wèn)題。今后我要不斷嘗試充分地發(fā)揮自己的主導(dǎo)作用,怎樣抓住一些關(guān)鍵的例子、抓住一些關(guān)鍵的詞語(yǔ)讓學(xué)生去推敲、去體會(huì),最終引導(dǎo)學(xué)生完整、準(zhǔn)確地描述出積變化的規(guī)律,并通過(guò)一些重點(diǎn)詞的理解,使學(xué)生更加深刻地理解規(guī)律,構(gòu)建起完整的認(rèn)知體系。切不可因?yàn)榕碌⒄`進(jìn)度、怕麻煩、怕羅嗦而剝奪了學(xué)生說(shuō)的權(quán)利,剝奪了鍛煉學(xué)生思維的機(jī)會(huì),使主導(dǎo)霸道地代替了主體。
另外,只有讓學(xué)生真正深刻地理解規(guī)律,才能熟練、恰當(dāng)?shù)剡\(yùn)用規(guī)律,而不是生搬硬套。例如:1、貨車在普通公路上以45千米/時(shí)的速度行駛,4小時(shí)可以行多少千米?8小時(shí)呢?12小時(shí)呢? 2、一塊長(zhǎng)方形的果園,長(zhǎng)是18米,面積是108平方米。如果長(zhǎng)不變,寬擴(kuò)大3倍,擴(kuò)大后的果園面積是多少平方米? 很顯然,這兩道題用積的變化規(guī)律來(lái)解決是最簡(jiǎn)便快捷的方法。而學(xué)生只有真正深刻地理解了積的變化規(guī)律,才會(huì)活學(xué)活用,而不至于再用老方法去繞圈解決,從而使學(xué)生更深體會(huì)到學(xué)數(shù)學(xué)、用數(shù)學(xué),生活中處處有數(shù)學(xué)。
《積的變化規(guī)律》教學(xué)反思14
《積的變化規(guī)律》是教材四年級(jí)上冊(cè)第三單元的內(nèi)容,它是在學(xué)生掌握了三位數(shù)乘兩位數(shù)的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課主要引導(dǎo)學(xué)生探索當(dāng)一個(gè)因數(shù)不變時(shí),另一個(gè)因數(shù)與積的變化情況,從中歸納出積的變化規(guī)律。
在本課教學(xué)中,我注重讓學(xué)生充分參與積的變化這個(gè)規(guī)律的發(fā)現(xiàn),讓學(xué)生在充分地觀察、大量的舉例中去感悟積的變化的規(guī)律,充分調(diào)動(dòng)學(xué)生參與的`主動(dòng)性,初步構(gòu)建自己的認(rèn)知體系。讓學(xué)生自己經(jīng)歷研究問(wèn)題的一般方法是:研究具體問(wèn)題——?dú)w納發(fā)現(xiàn)規(guī)律——解釋說(shuō)明規(guī)律——舉例驗(yàn)證規(guī)律。讓學(xué)生真正成為了課堂的主人,給學(xué)生留出了充足的探索空間,讓學(xué)生自主地進(jìn)行探索與交流。老師只是適時(shí)補(bǔ)充或糾正。我在練習(xí)題的設(shè)計(jì)上,既注重了基礎(chǔ)知識(shí)的鞏固,又注意了不同層次學(xué)生的需求。我不僅使學(xué)生了解課本上的積的變化規(guī)律:兩數(shù)想乘,一個(gè)因數(shù)不變,另一個(gè)因數(shù)乘(或除以)幾,積就乘(或除以)幾;我還通過(guò)練習(xí),讓學(xué)生感知了:兩數(shù)相乘,一個(gè)因數(shù)乘(或除以)幾,另一個(gè)因數(shù)除以(或乘)幾,積不變的規(guī)律;兩數(shù)相乘,兩個(gè)因數(shù)分別擴(kuò)大若干倍,積就擴(kuò)大兩因數(shù)擴(kuò)大倍數(shù)的積的倍數(shù)。如:6×2=1260×20=1200。拓展了學(xué)生的思路,我認(rèn)為平時(shí)的教學(xué)不應(yīng)受教材的框框限制,適合自己,適合學(xué)生,教會(huì)學(xué)生思考的方法,培養(yǎng)學(xué)生的數(shù)學(xué)思想是最重要的。
但我反思自己課堂上的一個(gè)現(xiàn)象就是:學(xué)生通過(guò)舉例、觀察對(duì)積的變化規(guī)律有了初步的感悟、也有了初步的理解,但學(xué)生在描述規(guī)律時(shí),語(yǔ)言總是不夠準(zhǔn)確、表述總是不夠完整!罢Z(yǔ)言表達(dá)是學(xué)生思維的全面展現(xiàn)”,學(xué)生們對(duì)于新知內(nèi)容的理解在很大程度上靠語(yǔ)言描繪去反饋,當(dāng)學(xué)生的概括能力受挫時(shí),我想:首先應(yīng)該反思的是我們的教學(xué)是否讓學(xué)生真正明白了。當(dāng)學(xué)生真正明白了一道、兩道、十道,甚至更多的題目后,怎樣概括,而不是讓學(xué)生就題論題似乎也是個(gè)問(wèn)題。今后我要不斷嘗試充分地發(fā)揮自己的主導(dǎo)作用,怎樣抓住一些關(guān)鍵的例子、抓住一些關(guān)鍵的詞語(yǔ)讓學(xué)生去推敲、去體會(huì),最終引導(dǎo)學(xué)生完整、準(zhǔn)確地描述出積變化的規(guī)律,并通過(guò)一些重點(diǎn)詞的理解,使學(xué)生更加深刻地理解規(guī)律,構(gòu)建起完整的認(rèn)知體系。切不可因?yàn)榕碌⒄`進(jìn)度、怕麻煩、怕羅嗦而剝奪了學(xué)生說(shuō)的權(quán)利,剝奪了鍛煉學(xué)生思維的機(jī)會(huì),使主導(dǎo)霸道地代替了主體。
另外,只有讓學(xué)生真正深刻地理解規(guī)律,才能熟練、恰當(dāng)?shù)剡\(yùn)用規(guī)律,而不是生搬硬套。
例如:1、貨車在普通公路上以45千米/時(shí)的速度行駛,4小時(shí)可以行多少千米?8小時(shí)呢?12小時(shí)呢?
2、一塊長(zhǎng)方形的果園,長(zhǎng)是18米,面積是108平方米。如果長(zhǎng)不變,寬擴(kuò)大3倍,擴(kuò)大后的果園面積是多少平方米?很顯然,這兩道題用積的變化規(guī)律來(lái)解決是最簡(jiǎn)便快捷的方法。而學(xué)生只有真正深刻地理解了積的變化規(guī)律,才會(huì)活學(xué)活用,而不至于再用老法子去繞圈解決,從而使學(xué)生更深體會(huì)到學(xué)數(shù)學(xué)、用數(shù)學(xué),生活中處處有數(shù)學(xué)。
《積的變化規(guī)律》教學(xué)反思15
探索規(guī)律是一個(gè)發(fā)現(xiàn)關(guān)系、發(fā)展思維的過(guò)程,有利于學(xué)生夯實(shí)基礎(chǔ),鼓勵(lì)創(chuàng)新,更能夠體現(xiàn)數(shù)學(xué)思考,凸顯過(guò)程與方法,同時(shí),也能夠讓學(xué)生在自主探索與思考中感受到學(xué)習(xí)的快樂(lè),形成積極的學(xué)習(xí)情感與態(tài)度。教學(xué)中,我首先從調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生的興趣入手,給教材例題中的算式創(chuàng)設(shè)了具體的'情境,之后再根據(jù)學(xué)生回答,提出問(wèn)題,讓學(xué)生去思考,去觀察,去尋找。其次我結(jié)合學(xué)生的認(rèn)知規(guī)律,設(shè)置了發(fā)現(xiàn)-驗(yàn)證-小結(jié)-應(yīng)用這樣一些學(xué)習(xí)探究過(guò)程,并通過(guò)學(xué)生獨(dú)立觀察、分組驗(yàn)證、集體小結(jié)等活動(dòng),讓學(xué)生親身經(jīng)歷自主探究規(guī)律的全過(guò)程,較好的發(fā)揮了學(xué)生學(xué)習(xí)的主體地位,強(qiáng)化了學(xué)生對(duì)積的變化規(guī)律的理解和掌握。同時(shí)我還設(shè)計(jì)了應(yīng)用規(guī)律解決問(wèn)題和對(duì)規(guī)律應(yīng)用的適度拓展,使得不同層面的的學(xué)生都得到了發(fā)展學(xué)生在整個(gè)學(xué)習(xí)過(guò)程中不但收貨了知識(shí)提高了能力而且還在享受著探究的樂(lè)趣和成功的喜悅。
【《積的變化規(guī)律》教學(xué)反思】相關(guān)文章:
積的變化規(guī)律教學(xué)反思02-11
《積的變化規(guī)律》教學(xué)反思15篇04-07
《積的變化規(guī)律》教學(xué)反思(15篇)04-07
積的變化規(guī)律教學(xué)教案02-21