欧美日韩在线免费观看,久久精品合集精品视频,每日更新在线观看AV_手机,这里是精品中文字幕

<mark id="47rz2"><center id="47rz2"><dd id="47rz2"></dd></center></mark>

    <legend id="47rz2"><u id="47rz2"><blockquote id="47rz2"></blockquote></u></legend>

      當(dāng)前位置:好文網(wǎng)>實(shí)用文>教案>余弦定理教案最新

      余弦定理教案最新

      時(shí)間:2023-12-20 08:14:58 教案 我要投稿
      • 相關(guān)推薦

      余弦定理教案最新

        作為一名辛苦耕耘的教育工作者,常常需要準(zhǔn)備教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。那么大家知道正規(guī)的教案是怎么寫(xiě)的嗎?以下是小編整理的余弦定理教案最新,供大家參考借鑒,希望可以幫助到有需要的朋友。

      余弦定理教案最新

      余弦定理教案最新1

        一、教材分析

        本節(jié)知識(shí)是職業(yè)高中數(shù)學(xué)教材第五章第九節(jié)《解三角形》的內(nèi)容,與初中學(xué)習(xí)的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,在實(shí)際測(cè)量問(wèn)題及航海問(wèn)題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。并且在探索建立余弦定理時(shí)還用到向量法,坐標(biāo)法等數(shù)學(xué)方法,同時(shí)還用到了數(shù)形結(jié)合,方程等數(shù)學(xué)思想。因此,余弦定理的知識(shí)非常重要。特別是在三角形中的求角問(wèn)題中作用更大。做為職業(yè)高中的學(xué)生必須學(xué)好學(xué)透這節(jié)知識(shí)

        根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

       、倮斫庹莆沼嘞叶ɡ,能正確使用定理

        ②培養(yǎng)學(xué)生教形結(jié)合分析問(wèn)題的能力

       、叟囵B(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)耐评硭季S和良好的審美能力。

        教學(xué)重點(diǎn):定理的探究及應(yīng)用

        教學(xué)難點(diǎn):定理的探究及理解

        二、學(xué)情分析

        對(duì)于職業(yè)高中的高一學(xué)生,雖然知識(shí)經(jīng)驗(yàn)并不豐富,但他們的智利發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)和探討以符合這類(lèi)學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

        三、教法分析

        根據(jù)教材的內(nèi)容和編排的特點(diǎn),為更有效地突出重點(diǎn),突破難點(diǎn),以學(xué)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,讓學(xué)生的思維由問(wèn)題開(kāi)始,到發(fā)想、探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線,聯(lián)系方法與技能使學(xué)生較易證明余弦定理,另外通過(guò)例題和練習(xí)來(lái)突破難點(diǎn),注重知識(shí)的'形成過(guò)程,突出教學(xué)理念的創(chuàng)新。

        四、學(xué)法指導(dǎo):

        指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

        五、教學(xué)過(guò)程

        第一:創(chuàng)設(shè)情景,大概用2分鐘

        第二:實(shí)踐探究,形成定理,大約用25分鐘

        第三:應(yīng)用定理,拓展反思,大約用13分鐘

       。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

        “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,從用正弦定理可解的兩類(lèi)三角形出發(fā),揭示勾股定理特點(diǎn),說(shuō)明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應(yīng)怎樣解決呢?需要我們繼續(xù)探究,引出課題。

       。ǘ┻壿嬐评恚C明猜想

        提出問(wèn)題,探究問(wèn)題,形成定理,回顧分析,形成結(jié)論,再認(rèn)識(shí)結(jié)論,總結(jié)用途。變形延伸,培養(yǎng)發(fā)散,對(duì)比特殊,認(rèn)知推廣。落實(shí)定理,構(gòu)建定理應(yīng)用體系。

       。ㄈw納總結(jié),簡(jiǎn)單應(yīng)用

        1.讓學(xué)生用文字?jǐn)⑹鲇嘞叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。

        2.回顧余弦定理的內(nèi)容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

       。ㄋ模┲v解例題,鞏固定理

        1、審題確定條件。

        2、明確求解任務(wù)。

        3、確定使用公式。

        4、科學(xué)求解過(guò)程。

       。ㄎ澹┱n堂練習(xí),提高鞏固

        1、在△ABC中,已知下列條件,解三角形。

        (1)A=45°,C=30°,c=10cm

        (2)A=60°,B=45°,c=20cm

        2、在△ABC中,已知下列條件,解三角形。

        (1)a=20cm,b=11cm,B=30°

        (2)c=54cm,b=39cm,C=115°

        學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。

        (六)小結(jié)反思,提高認(rèn)識(shí)

        通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?

        1.用向量證明了余弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

        2.兩種表達(dá)。

        3.兩類(lèi)問(wèn)題。

       。ㄆ撸┧季S拓展,自主探究

        利用余弦定理判斷三角形形狀,即余弦定理的推論。

      余弦定理教案最新2

        一、教材分析

        本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過(guò)了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過(guò)渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來(lái),實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問(wèn)題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。

        在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。

        二、教學(xué)目標(biāo)的確定

        基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:

        1、知識(shí)與技能:熟練掌握余弦定理的內(nèi)容及公式,能初步應(yīng)用余弦定理解決一些有關(guān)三角形邊角計(jì)算的問(wèn)題;

        2、過(guò)程與方法:掌握余弦定理的'兩種證明方法,通過(guò)探究余弦定理的過(guò)程學(xué)會(huì)分析問(wèn)題從特殊到一般的過(guò)程與方法,提高運(yùn)用已有知識(shí)分析、解決問(wèn)題的能力;

        3、情感態(tài)度與價(jià)值觀:在探究余弦定理的過(guò)程中培養(yǎng)學(xué)生探索精神和創(chuàng)新意識(shí),形成嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維方式,培養(yǎng)用數(shù)學(xué)觀點(diǎn)解決問(wèn)題的能力和意識(shí)、

        三、教學(xué)方法的選擇

        基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問(wèn)題出發(fā),發(fā)現(xiàn)無(wú)法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問(wèn)題,最終形成概念,獲得方法,培養(yǎng)能力。

        在教學(xué)中利用計(jì)算機(jī)多媒體來(lái)輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。

        四、教學(xué)過(guò)程的設(shè)計(jì)

        為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過(guò)程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過(guò)程如下:

        1、創(chuàng)設(shè)情境,引入課題

        利用多媒體引出如下問(wèn)題:

        A地和B地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)C,可以測(cè)得的大小及,求A、B兩地之間的距離c。

        【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過(guò)正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無(wú)法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。

        2、探索研究、構(gòu)建新知

       。1)由于初中接觸的是解直角三角形的問(wèn)題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時(shí)考慮。此時(shí)使用勾股定理,得。

       。2)從直角三角形這一特殊情況出發(fā),引導(dǎo)學(xué)生在一般三角形中構(gòu)造直角即作邊的高,從而在構(gòu)造的直角三角形中利用勾股定理列出邊之間的等式關(guān)系、

       。3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。

        通過(guò)解決問(wèn)題可以得到在任意三角形中都有,之后讓同學(xué)們類(lèi)比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。

        【設(shè)計(jì)意圖】通過(guò)創(chuàng)設(shè)情景、引導(dǎo)學(xué)生探究出余弦定理這一數(shù)學(xué)體驗(yàn),既可以培養(yǎng)學(xué)生分析問(wèn)題的能力,也可以加深學(xué)生對(duì)余弦定理的認(rèn)識(shí)、

        在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類(lèi)比向量法證明正弦定理的過(guò)程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來(lái)表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。

        根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類(lèi)解斜三角形的問(wèn)題:

       。1)已知三邊,求三個(gè)角;

       。2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。

        3、例題講解、鞏固練習(xí)

        本階段的教學(xué)主要是通過(guò)對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問(wèn)題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書(shū),課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書(shū),從而鞏固余弦定理的運(yùn)用。

        例題講解:

        例1在中,(1)已知,求;

        (2)已知,求。

        【設(shè)計(jì)意圖】例題1分別是通過(guò)已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。

        例2對(duì)于例題1(2),求的大小。

        【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問(wèn)題可以避免解的取舍問(wèn)題。

        例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),【設(shè)計(jì)意圖】例3通過(guò)對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。

        課堂練習(xí):

        練習(xí)1在中,(1)已知,求;

        (2)已知,求。

        【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。

        練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。

        A、能組成直角三角形

        B、能組成銳角三角形

        C、能組成鈍角三角形

        D、不能組成三角形

        【設(shè)計(jì)意圖】與例題3相呼應(yīng)。

        練習(xí)3在中,已知,試求的大小。

        【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。

        4、課堂小結(jié),布置作業(yè)

        先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):

       。1)余弦定理的內(nèi)容和公式;

       。2)余弦定理實(shí)質(zhì)上是勾股定理的推廣;

       。3)余弦定理的可以解決的兩類(lèi)解斜三角形的問(wèn)題。

        通過(guò)師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。

        布置作業(yè)

        必做題:習(xí)題1、2、1、2、3、5、6;

        選做題:習(xí)題1、2、12、13。

        【設(shè)計(jì)意圖】

        作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。

        各位老師,以上所說(shuō)只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。

        本說(shuō)課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見(jiàn),謝謝。

      余弦定理教案最新3

        一、教材

       。ㄒ唬┙滩牡匚慌c作用

        《余弦定理》是必修5第一章《解三角形》的第一節(jié)內(nèi)容,前面已經(jīng)學(xué)習(xí)了正弦定理以及必修4中的任意角、誘導(dǎo)公式以及恒等變換,為后面學(xué)習(xí)三角函數(shù)奠定了基礎(chǔ),因此本節(jié)課有承上啟下的作用。本節(jié)課是解決有關(guān)斜三角形問(wèn)題以及應(yīng)用問(wèn)題的一個(gè)重要定理,它將三角形的邊和角有機(jī)地聯(lián)系起來(lái),實(shí)現(xiàn)了"邊"與"角"的互化,從而使"三角"與"幾何"產(chǎn)生聯(lián)系,為求與三角形有關(guān)的量提供了理論依據(jù),同時(shí)也為判斷三角形形狀,證明三角形中的有關(guān)等式提供了重要依據(jù)。

        (二)教學(xué)目標(biāo)

        根據(jù)上述教材內(nèi)容分析以及新課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu),心理特征及原有知識(shí)水平,我將本課的教學(xué)目標(biāo)定為:

        ⒈知識(shí)與技能:

        掌握余弦定理的內(nèi)容及公式;能初步運(yùn)用余弦定理解決一些斜三角形

        ⒉過(guò)程與方法:

        在探究學(xué)習(xí)的過(guò)程中,認(rèn)識(shí)到余弦定理可以解決某些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題,幫助學(xué)生提高運(yùn)用有關(guān)知識(shí)解決實(shí)際問(wèn)題的能力。

       、城楦小B(tài)度與價(jià)值觀:

        培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識(shí);在運(yùn)用余弦定理的過(guò)程中,讓學(xué)生逐步養(yǎng)成實(shí)事求是,扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,學(xué)習(xí)用數(shù)學(xué)的思維方式解決問(wèn)題,認(rèn)識(shí)世界;通過(guò)本節(jié)的運(yùn)用實(shí)踐,體會(huì)數(shù)學(xué)的科學(xué)價(jià)值,應(yīng)用價(jià)值;

       。ㄈ┍竟(jié)課的重難點(diǎn)

        教學(xué)重點(diǎn)是:運(yùn)用余弦定理探求任意三角形的邊角關(guān)系,解決與之有關(guān)的計(jì)算問(wèn)題,運(yùn)用余弦定理解決一些與測(cè)量以及幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。

        教學(xué)難點(diǎn)是:靈活運(yùn)用余弦定理解決相關(guān)的實(shí)際問(wèn)題。

        教學(xué)關(guān)鍵是:熟練掌握并靈活應(yīng)用余弦定理解決相關(guān)的實(shí)際問(wèn)題。

        下面為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>

        二、學(xué)情

        從知識(shí)層面上看,高中學(xué)生通過(guò)前一節(jié)課的學(xué)習(xí)已經(jīng)掌握了余弦定理及其推導(dǎo)過(guò)程;從能力層面上看,學(xué)生初步掌握運(yùn)用余弦定理解決一些簡(jiǎn)單的斜三角形問(wèn)題的技能;從情感層面上看,學(xué)生對(duì)教學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性,但在探究問(wèn)題的能力以及合作交流等方面的發(fā)展不夠均衡。

        三、教法和學(xué)法

        貫徹的指導(dǎo)思想是把"學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生",倡導(dǎo)"自主、合作、探究"的學(xué)習(xí)方式。讓學(xué)生自主探索學(xué)會(huì)分析問(wèn)題,解決問(wèn)題。

        四、教學(xué)過(guò)程

        下面為了完成教學(xué)目標(biāo),解決教學(xué)重點(diǎn),突破教學(xué)難點(diǎn),課堂教學(xué)我準(zhǔn)備按以下五個(gè)環(huán)節(jié)展開(kāi):

        環(huán)節(jié)⒈復(fù)習(xí)引入

        由于本節(jié)課是余弦定理的第一課時(shí),因此先領(lǐng)著學(xué)生回顧復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容,采用提問(wèn)的方式,找同學(xué)回答余弦定理的內(nèi)容及公式,并且讓學(xué)生回想公式推導(dǎo)的思路和方法,這樣一來(lái)可以檢驗(yàn)學(xué)生對(duì)所學(xué)知識(shí)的掌握情況,二來(lái)也為新課作準(zhǔn)備。

        環(huán)節(jié)⒉應(yīng)用舉例

        在本環(huán)節(jié)中,我將給出兩道典型例題

        △ABC的頂點(diǎn)為A(6,5),B(-2,8)和C(4,1),求(精確到)。

        已知三點(diǎn)A(1,3),B(-2,2),C(0,-3),求△ABC各內(nèi)角的大小。

        通過(guò)利用余弦定理解斜三角形的思想,來(lái)對(duì)這兩道例題進(jìn)行分析和講解;本環(huán)節(jié)的目的在于通過(guò)典型例題的解答,鞏固學(xué)生所學(xué)的'知識(shí),進(jìn)一步深化對(duì)于余弦定理的認(rèn)識(shí)和理解,提高學(xué)生的理解能力和解題計(jì)算能力。

        環(huán)節(jié)⒊練習(xí)反饋

        練習(xí)B組題,1、2、3;習(xí)題1-1A組,1、2、3

        在本環(huán)節(jié)中,我將找學(xué)生到黑板做題,期間巡視下面同學(xué)的做題情況,加以糾正和講解;通過(guò)解決書(shū)后練習(xí)題,鞏固學(xué)生當(dāng)堂所學(xué)知識(shí),同時(shí)教師也可以及時(shí)了解學(xué)生的掌握情況,以便及時(shí)調(diào)整自己的教學(xué)步調(diào)。

        環(huán)節(jié)⒋歸納小結(jié)

        在本環(huán)節(jié)中,我將采用師生共同總結(jié)-交流-完善的方式,首先讓學(xué)生自己總結(jié)出余弦定理可以解決哪些類(lèi)型的問(wèn)題,再由師生共同完善,總結(jié)出余弦定理可以解決的兩類(lèi)問(wèn)題:⑴已知三邊,求各角;⑵已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角。本環(huán)節(jié)的目的在于引導(dǎo)學(xué)生學(xué)會(huì)自己總結(jié);讓學(xué)生進(jìn)一步體會(huì)知識(shí)的形成、發(fā)展、完善的過(guò)程。

        環(huán)節(jié)⒌課后作業(yè)

        必做題:習(xí)題1-1A組,6、7;習(xí)題1-1B組,2、3、4、5

        選做題:習(xí)題1-1B組7,8,9.

        基于因材施教的原則,在根據(jù)不同層次的學(xué)生情況,把作業(yè)分為必做題和選做題,必做題要求所有學(xué)生全部完成,選做題要求學(xué)有余力的學(xué)生完成,使不同程度的學(xué)生都有所提高。本環(huán)節(jié)的目的是讓學(xué)生進(jìn)一步鞏固和深化所學(xué)的知識(shí),培養(yǎng)學(xué)生的自主探究能力。

        五、板書(shū)

        在本節(jié)課中我將采用提綱式的板書(shū)設(shè)計(jì),因?yàn)樘峋V式-條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對(duì)教材內(nèi)容和知識(shí)體系的理解和記憶。

      【余弦定理教案最新】相關(guān)文章:

      余弦定理教案11-10

      精華余弦定理說(shuō)課稿04-21

      余弦定理說(shuō)課稿模板02-19

      《余弦定理》說(shuō)課稿范文01-31

      眼睛教案最新11-23

      《坐井觀天》教案最新11-22

      風(fēng)箏教案最新10-26

      最新谷雨教案03-29

      美術(shù)教案最新02-14