- 等差數(shù)列教案 推薦度:
- 相關(guān)推薦
等差數(shù)列教案(精選19篇)
作為一位優(yōu)秀的人民教師,可能需要進(jìn)行教案編寫工作,借助教案可以讓教學(xué)工作更科學(xué)化。我們該怎么去寫教案呢?以下是小編收集整理的等差數(shù)列教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
等差數(shù)列教案 1
【教學(xué)目標(biāo)】
一、知識與技能
1.掌握等差數(shù)列前n項和公式;
2.體會等差數(shù)列前n項和公式的推導(dǎo)過程;
3.會簡單運(yùn)用等差數(shù)列前n項和公式。
二、過程與方法
1.通過對等差數(shù)列前n項和公式的推導(dǎo),體會倒序相加求和的思想方法;
2.通過公式的運(yùn)用體會方程的思想。
三、情感態(tài)度與價值觀
結(jié)合具體模型,將教材知識和實際生活聯(lián)系起來,使學(xué)生感受數(shù)學(xué)的實用性,有效激發(fā)學(xué)習(xí)興趣,并通過對等差數(shù)列求和歷史的了解,滲透數(shù)學(xué)史和數(shù)學(xué)文化。
【教學(xué)重點】
等差數(shù)列前n項和公式的推導(dǎo)和應(yīng)用。
【教學(xué)難點】
在等差數(shù)列前n項和公式的推導(dǎo)過程中體會倒序相加的思想方法。
【重點、難點解決策略】
本課在設(shè)計上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過學(xué)生自主探究、分析、整理出推導(dǎo)公式的思路,同時,借助多媒體的直觀演示,幫助學(xué)生理解,師生互動、講練結(jié)合,從而突出重點、突破教學(xué)難點。
【教學(xué)用具】
多媒體軟件,電腦
【教學(xué)過程】
一、明確數(shù)列前n項和的定義,確定本節(jié)課中心任務(wù):
本節(jié)課我們來學(xué)習(xí)《等差數(shù)列的前n項和》,那么什么叫數(shù)列的前n項和呢,對于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用sn表示,記sn=a1+a2+a3+…+an,
如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來共同探究如何求等差數(shù)列的前n項和。
二、問題牽引,探究發(fā)現(xiàn)
問題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見圖),奢靡之程度,可見一斑。你知道這個圖案一共花了多少圓寶石嗎?
即: S100=1+2+3+······+100=?
著名數(shù)學(xué)家高斯小時候就會算,聞名于世;那么小高斯是如何快速地得出答案的呢?請同學(xué)們思考高斯方法的`特點,適合類型和方法本質(zhì)。
特點: 首項與末項的和: 1+100=101,
第2項與倒數(shù)第2項的和: 2+99 =101,
第3項與倒數(shù)第3項的和: 3+98 =101,
· · · · · ·
第50項與倒數(shù)第50項的和: 50+51=101,
于是所求的和是: 101×50=5050。
1+2+3+ ······ +100= 101×50 = 5050
同學(xué)們討論后總結(jié)發(fā)言:等差數(shù)列項數(shù)為偶數(shù)相加時首尾配對,變不同數(shù)的加法運(yùn)算為相同數(shù)的乘法運(yùn)算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項數(shù)為奇數(shù)時怎么辦呢?
探索與發(fā)現(xiàn)1:假如讓你計算從第一層到第21層的珠寶數(shù),高斯的首尾配對法行嗎?
即計算S21=1+2+3+ ······ +21的值,在這個過程中讓學(xué)生發(fā)現(xiàn)當(dāng)項數(shù)為奇數(shù)時,首尾配對出現(xiàn)了問題,通過動畫演示引導(dǎo)幫助學(xué)生思考解決問題的辦法,為引出倒序相加法做鋪墊。
把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個數(shù)均為21個,共21行。有什么啟發(fā)?
1+ 2 + 3 + …… +20 +21
21 + 20 + 19 + …… + 2 +1
S21=1+2+3+…+21=(21+1)×21÷2=231
這個方法也很好,那么項數(shù)為偶數(shù)這個方法還行嗎?
探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?
學(xué)生探究的同時通過動畫演示幫助學(xué)生思考剛才的方法是否同樣可行?請同學(xué)們自主探究一下(老師演示動畫幫助學(xué)生)
S8=5+6+7+8+9+10+11+12=
【設(shè)計意圖】進(jìn)一步引導(dǎo)學(xué)生探究項數(shù)為偶數(shù)的等差數(shù)列求和時倒序相加是否可行。從而得出倒序相加法適合任意項數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法!
好,這樣我們就找到了一個好方法——倒序相加法!現(xiàn)在來試一試如何求下面這個等差數(shù)列的前n項和?
問題2:等差數(shù)列1,2,3,…,n, … 的前n項和怎么求呢?
解:(根據(jù)前面的學(xué)習(xí),請學(xué)生自主思考獨立完成)
【設(shè)計意圖】強(qiáng)化倒序相加法的理解和運(yùn)用,為更一般的等差數(shù)列求和打下基礎(chǔ)。
至此同學(xué)們已經(jīng)掌握了倒序相加法,相信大家可以推導(dǎo)更一般的等差數(shù)列前n項和公式了。
問題3:對于一般的等差數(shù)列{an}首項為a1,公差為d,如何推導(dǎo)它的前n項和sn公式呢?
即求 =a1+a2+a3+……+an=
∴(1)+(2)可得:2
∴
公式變形:將代入可得:
【設(shè)計意圖】學(xué)生在前面的探究基礎(chǔ)上水到渠成順理成章很快就可以推導(dǎo)出一般等差數(shù)列的前n項和公式,從而完成本節(jié)課的中心任務(wù)。在這個過程中放手讓學(xué)生自主推導(dǎo),同時也復(fù)習(xí)等差數(shù)列的通項公式和基本性質(zhì)。
三、公式的認(rèn)識與理解:
1、根據(jù)前面的推導(dǎo)可知等差數(shù)列求和的兩個公式為:
。ü揭唬
(公式二)
探究: 1、(1)相同點: 都需知道a1與n;
(2)不同點: 第一個還需知道an ,第二個還需知道d;
(3)明確若a1,d,n,an中已知三個量就可求Sn。
2、兩個公式共涉及a1, d, n, an,Sn五個量,“知三”可“求二”。
2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項和公式與梯形面積公式有什么聯(lián)系?
用梯形面積公式記憶等差數(shù)列前 n 項和公式,這里對圖形進(jìn)行了割、補(bǔ)兩種處理,對應(yīng)著等差數(shù)列 n 項和的兩個公式,請學(xué)生聯(lián)想思考總結(jié)來有助于記憶。
【設(shè)計意圖】幫助學(xué)生類比聯(lián)想,拓展思維,增加興趣,強(qiáng)化記憶
四、公式應(yīng)用、講練結(jié)合
1、練一練:
有了兩個公式,請同學(xué)們來練一練,看誰做的快做的對!
根據(jù)下列各題中的條件,求相應(yīng)的等差數(shù)列{an}的Sn :
。1)a1=5,an=95,n=10
解:500
。2)a1=100,d=-2,n=50
解:
【設(shè)計意圖】熟悉并強(qiáng)化公式的理解和應(yīng)用,進(jìn)一步鞏固“知三求二”。
下面我們來看兩個例題:
2、例題1:
20xx年11月14日教育部下發(fā)了《關(guān)于在中小學(xué)實施“校校通”工程的通知》某市據(jù)此提出了實施“校校通”工程的總目標(biāo):從20xx年起用10年時間,在全市中小學(xué)建成不同標(biāo)準(zhǔn)的校園網(wǎng)。據(jù)測算,20xx年該市用于“校校通”工程的經(jīng)費為500萬元。為了保證工程的順利實施,計劃每年投入的資金都比上一年增加50萬元。那么從20xx年起的未來10年內(nèi),該市在“校校通”工程中的總投入是多少?
解:設(shè)從20xx年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個等差數(shù)列,其中 a1=500, d=50
那么,到20xx年(n=10),投入的資金總額為
答: 從20xx年起的未來10年內(nèi),該市在“校校通”工程中的總投入是7250萬元。
【設(shè)計意圖】讓學(xué)生體會數(shù)列知識在生活中的應(yīng)用及簡單的數(shù)學(xué)建模思想方法。
3、例題2:
已知一個等差數(shù)列{an}的前10項的和是310,前20項的和是1220,由這些條件可以確定這個等差數(shù)列的前n項和的公式嗎?
解:
法1:由題意知
,
代入公式得:
解得,
法2:由題意知
,
代入公式得:
,
即,
②①得,故
由得故
【設(shè)計意圖】掌握并能靈活應(yīng)用公式并體會方程的思想方法。
4、反饋達(dá)標(biāo):
練習(xí)一:在等差數(shù)列{an}中,a1=20, an=54,sn =999,求n.
解:由解n=27
練習(xí)2: 已知{an}為等差數(shù)列,求公差。
解:由公式得
即d=2
【設(shè)計意圖】進(jìn)一強(qiáng)化求和公式的靈活應(yīng)用及化歸的思想(化歸到首項和公差這兩個基本元)。
五、歸納總結(jié) 分享收獲:(活躍課堂氣氛,鼓勵學(xué)生大膽發(fā)言,培養(yǎng)總結(jié)和表達(dá)能力)
1、倒序相加法求和的思想及應(yīng)用;
2、等差數(shù)列前n項和公式的推導(dǎo)過程;
3、掌握等差數(shù)列的兩個求和公式;
4、前n項和公式的靈活應(yīng)用及方程的思想。
…………
六、作業(yè)布置:
。ㄒ唬⿻孀鳂I(yè):
1.已知等差數(shù)列{an},其中d=2,n=15, an =-10,求a1及sn。
2.在a,b之間插入10個數(shù),使它們同這兩個數(shù)成等差數(shù)列,求這10個數(shù)的和。
。ǘ┱n后思考:
思考:等差數(shù)列的前n項和公式的推導(dǎo)方法除了倒序相加法還有沒有其它方法呢?
【設(shè)計意圖】通過布置書面作業(yè)鞏固所學(xué)知識及方法,同時通過布置課后思考題來延伸知識拓展思維。
附:板書設(shè)計
等差數(shù)列的前n項和
1、數(shù)列前n項和的定義:
2、等差數(shù)列前n項和公式的推導(dǎo):
3、公式的認(rèn)識與理解:
公式一:
公式二:
四:例題及解答:
議練活動:
等差數(shù)列教案 2
[教學(xué)目標(biāo)]
1.知識與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導(dǎo)過程;了解 等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應(yīng)的一些問題。
2.過程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問題解決問題的能力。
3.情感態(tài)度與價值觀目標(biāo):通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時總結(jié)的好習(xí)慣。
[教學(xué)重難點]
1.教學(xué)重點:等差數(shù)列的概念的理解,通項公式的推導(dǎo)及應(yīng)用。
2.教學(xué)難點:
。1)對等差數(shù)列中“等差”兩字的把握;
。2)等差數(shù)列通項公式的推導(dǎo)。
[教學(xué)過程]
一、課題引入
創(chuàng)設(shè)情境 引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)
。1)、在過去的三百多年里,人們分別在下列時間里觀測到了哈雷慧星:
1682,1758,1834,1910,1986,( )
你能預(yù)測出下次觀測到哈雷慧星的大致時間嗎?判斷的依據(jù)是什么呢?
。2)、通常情況下,從地面到11km的高空,氣溫隨高度的變化而變化符合一定的規(guī)律,請你根據(jù)下表估計一下珠穆朗瑪峰峰頂?shù)臏囟取?/p>
(3) 1,4,7,10,( ),16,…
。4) 2,0,-2,-4,-6,( ),…
它們共同的規(guī)律是?
從第二項起,每一項與前一項的差等于同一個常數(shù)。
我們把有這一特點的數(shù)列叫做等差數(shù)列。
二、新課探究
。ㄒ唬┑炔顢(shù)列的定義
1、等差數(shù)列的定義
如果一個數(shù)列從第二項起,每一項與前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
(1)定義中的關(guān)健詞有哪些?
。2)公差d是哪兩個數(shù)的差?
2、等差數(shù)列定義的數(shù)學(xué)表達(dá)式:
試一試:它們是等差數(shù)列嗎?
(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…
(2) 5,5,5,5,5,5,…
(3) -1,-3,-5,-7,-9,…
(4) 數(shù)列{an},若an+1-an=3
3、等差中頂定義
在如下的兩個數(shù)之間,插入一個什么數(shù)后這三個數(shù)就會成為一個等差數(shù)列:
。1)、2 ,( ) ,4 (2)、-12,( ) ,0 ( 3 ) a ,( ),b
如果在a與b中間插入一個數(shù)A,使a,A,b成等差數(shù)列,那么A叫做a與b的等差中項。(二)等差數(shù)列的通項公式
探究1:等差數(shù)列的通項公式(求法一)
如果等差數(shù)列 首項是 ,公差是 ,那么這個等差數(shù)列 如何表示? 呢?
根據(jù)等差數(shù)列的定義可得:
, , ,…。
所以: ,
,
,
……
由此得 ,
因此等差數(shù)列的通項公式就是: ,
探究2:等差數(shù)列的通項公式(求法二)
根據(jù)等差數(shù)列的定義可得:
……
將以上 -1個式子相加得等差數(shù)列的通項公式就是:
三、應(yīng)用與探索
例1、(1) 求等差數(shù)列8,5,2,…,的第20項。
(2) 等差數(shù)列 -5,-9,-13,…,的'第幾項是 –401?
(2)、分析:要判斷-401是不是數(shù)列的項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得 成立,實質(zhì)上是要求方程 的正整數(shù)解。
例2、在等差數(shù)列中,已知 =10, =31,求首項 與公差d。
解:由 ,得 。
在應(yīng)用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。
鞏固練習(xí)
1.等差數(shù)列{an}的前三項依次為 a-6,-3a-5,-10a-1,則a =( )。
A.1 B.-1 C.-2 D.22.一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。
四、小結(jié)
1.等差數(shù)列的通項公式:
公差 ;
2.等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;
3.判斷一個數(shù)列是否為等差數(shù)列只需看 是否為常數(shù)即可;
4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問題。
五、作業(yè):
1、必做題:課本第40頁 習(xí)題2.2 第1,3,5題
2、選做題:如何以最快的速度求:1+2+3++100=
高斯說:“請同學(xué)們預(yù)習(xí)下一節(jié):等差數(shù)列的前N項和!
等差數(shù)列教案 3
教學(xué)目標(biāo):
1.知識與技能目標(biāo):理解等差數(shù)列的概念,了解等差數(shù)列的通項公式的推導(dǎo)過程及思想,掌握并會用等差數(shù)列的通項公式,初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用。
2.過程與方法目標(biāo):培養(yǎng)學(xué)生觀察分析、猜想歸納、應(yīng)用公式的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,滲透函數(shù)、方程的思想。
3.情感態(tài)度與價值觀目標(biāo):通過對等差數(shù)列的研究培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知的精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
教學(xué)重點:
等差數(shù)列的概念及通項公式。
教學(xué)難點:
(1)理解等差數(shù)列“等差”的特點及通項公式的含義。
(2)等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
教具:多媒體、實物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
1.回憶上一節(jié)課學(xué)習(xí)數(shù)列的定義,請舉出一個具體的例子。表示數(shù)列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節(jié)課接著學(xué)習(xí)一類特殊的數(shù)列——等差數(shù)列。
2.由生活中具體的數(shù)列實例引入
(1)國際奧運(yùn)會早期,撐桿跳高的記錄近似的由下表給出:
你能看出這4次撐桿條跳世界記錄組成的數(shù)列,它的各項之間有什么關(guān)系嗎?
(2)某劇場前10排的座位數(shù)分別是:
48、46、44、42、40、38、36、34、32、30
引導(dǎo)學(xué)生觀察:數(shù)列①、②有何規(guī)律?
引導(dǎo)學(xué)生發(fā)現(xiàn)這些數(shù)字相鄰兩個數(shù)字的差總是一個常數(shù),數(shù)列①先左到右相差0.2,數(shù)列②從左到右相差-2。
二.新課探究,推導(dǎo)公式
1.等差數(shù)列的概念
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
強(qiáng)調(diào)以下幾點:
、 “從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強(qiáng)調(diào)“同一個常數(shù)” );
所以上面的2、3都是等差數(shù)列,他們的公差分別為0.20,-2。
在學(xué)生對等差數(shù)列有了直觀認(rèn)識的基礎(chǔ)上,我將給出練習(xí)題,以鞏固知識的學(xué)習(xí)。
[練習(xí)一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。
1.3,5,7,…… √ d=2
2.9,6,3,0,-3,…… √ d=-3
3.0,0,0,0,0,0,…….; √ d=0
4.1,2,3,2,3,4,……;×
5.1,0,1,0,1,……×
在這個過程中我將采用邊引導(dǎo)邊提問的方法,以充分調(diào)動學(xué)生學(xué)習(xí)的.積極性。
2.等差數(shù)列通項公式
如果等差數(shù)列{an}首項是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
進(jìn)而歸納出等差數(shù)列的通項公式:an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
n=a1+(n-1)d
a2-a1=d
a3-a2=d
a4-a3 =d
……
an –a(n-1) =d
將這(n-1)個等式左右兩邊分別相加,就可以得到
an-a1=(n-1)d
即an=a1+(n-1)d (Ⅰ)
當(dāng)n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項公式。
三.應(yīng)用舉例
例1求等差數(shù)列,12,8,4,0,…的第10項;20項;第30項;
例2 -401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
四.反饋練習(xí)
P293練習(xí)A組第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)做完上述題目,教師提問)。目的:使學(xué)生熟悉通項公式對學(xué)生進(jìn)行基本技能訓(xùn)練。
五.歸納小結(jié)提煉精華
(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。
強(qiáng)調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一
六.課后作業(yè)運(yùn)用鞏固
必做題:課本P284習(xí)題A組第3,4,5題
等差數(shù)列教案 4
教學(xué)目的:
1.明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式。
2.會解決知道中的三個,求另外一個的問題。
教學(xué)重點:等差數(shù)列的概念,等差數(shù)列的通項公式。
教學(xué)難點:等差數(shù)列的性質(zhì)
教學(xué)過程:
一、復(fù)習(xí)引入:(課件第一頁)
二、講解新課:
1.等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的 差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。
。ㄕn件第二頁)
、.公差d一定是由后項減前項所得,而不能用前項減后項來求;
、.對于數(shù)列{ },若 - =d (與n無關(guān)的數(shù)或字母),n≥2,n∈n ,則此數(shù)列是等差數(shù)列,d 為公差。
2.等差數(shù)列的通項公式: 【或 】等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得: 即: 即: 即: …… 由此歸納等差數(shù)列的通項公式可得: (課件第二頁) 第二通項公式 (課件第二頁)
三、例題講解
例1 ⑴求等差數(shù)列8,5,2…的第20項(課本p111)
、 -401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?
例2 在等差數(shù)列 中,已知 , ,求 , ,
例3將一個等差數(shù)列的通項公式輸入計算器數(shù)列 中,設(shè)數(shù)列的第s項和第t項分別為 和 ,計算 的值,你能發(fā)現(xiàn)什么結(jié)論?并證明你的結(jié)論。
小結(jié):①這就是第二通項公式的變形
②幾何特征,直線的斜率
例4 梯子最高一級寬33cm,最低一級寬為110cm,中間還有10級,各級的寬度成等差數(shù)列,計算中間各級的寬度。(課本p112例3)
例5 已知數(shù)列{ }的通項公式 ,其中 、 是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?(課本p113例4)
分析:由等差數(shù)列的定義,要判定 是不是等差數(shù)列,只要看 (n≥2)是不是一個與n無關(guān)的常數(shù)。
注:①若p=0,則{ }是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,…
、谌魀≠0, 則{ }是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點均在一次函數(shù)y=px+q的.圖象上,一次項的系數(shù)是公差,直線在y軸上的截距為q。
、蹟(shù)列{ }為等差數(shù)列的充要條件是其通項 =pn+q (p、q是常數(shù))。稱其為第3通項公式
、芘袛鄶(shù)列是否是等差數(shù)列的方法是否滿足3個通項公式中的一個。
例6.成等差數(shù)列的四個數(shù)的和為26,第二項與第三項之積為40,求這四個數(shù)。
四、練習(xí):
1.(1)求等差數(shù)列3,7,11,……的第4項與第10項。
。2)求等差數(shù)列10,8,6,……的第20項。
(3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由。
。4)-20是不是等差數(shù)列0,-3 ,-7,……的項?如果是,是第幾項?如果不是,說明理由。
2.在等差數(shù)列{ }中,(1)已知 =10, =19,求 與d;
五、課后作業(yè):
習(xí)題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 .8.9.
等差數(shù)列教案 5
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
2、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)
a、在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\(yùn)用。
b、在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
c、在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點和難點
根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:
、俚炔顢(shù)列的概念。
、诘炔顢(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。
二、學(xué)情分析對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
二、教法分析
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、學(xué)法指導(dǎo)在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)程序
本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______ 。(N﹡;解析式)
通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①
3.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的`五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②
通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。
(二) 新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):
、 “從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強(qiáng)調(diào)“同一個常數(shù)” );
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:
an+1-an=d (n≥1)
同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1.9 ,8,7,6,5,4,……;√ d=-1
2.0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3.0,0,0,0,0,0,…….; √ d=0
4.1,2,3,2,3,4,……;×
5.1,0,1,0,1,……×
其中第一個數(shù)列公差0,第三個數(shù)列公差=0
由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0
等差數(shù)列教案 6
一、預(yù)習(xí)問題:
1、等差數(shù)列的定義:一般地,如果一個數(shù)列從 起,每一項與它的前一項的差等于同一個 ,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的 , 通常用字母 表示。
2、等差中項:若三個數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,即 或 。
3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時,數(shù)列為遞增數(shù)列; 時,數(shù)列為遞減數(shù)列; 時,數(shù)列為常數(shù)列;等差數(shù)列不可能是 。
4、等差數(shù)列的通項公式: 。
5、判斷正誤:
①1,2,3,4,5是等差數(shù)列; ( )
、1,1,2,3,4,5是等差數(shù)列; ( )
、蹟(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )
、軘(shù)列 是公差為 的等差數(shù)列; ( )
、輸(shù)列 是等差數(shù)列; ( )
⑥若 ,則 成等差數(shù)列; ( )
、呷 ,則數(shù)列 成等差數(shù)列; ( )
、嗟炔顢(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列; ( )
、岬炔顢(shù)列的公差是該數(shù)列中任何相鄰兩項的差。 ( )
6、思考:如何證明一個數(shù)列是等差數(shù)列。
二、實戰(zhàn)操作:
例1、(1)求等差數(shù)列8,5,2,的第20項。
。2) 是不是等差數(shù)列 中的.項?如果是,是第幾項?
(3)已知數(shù)列 的公差 則
例2、已知數(shù)列 的通項公式為 ,其中 為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?
例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個數(shù)。
等差數(shù)列教案 7
一、教學(xué)目標(biāo)
【知識與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會等差數(shù)列的通項公式的推導(dǎo)過程及蘊(yùn)含的數(shù)學(xué)思想。
【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度與價值觀】通過對等差數(shù)列的研究,具備主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
二、教學(xué)重難點
【教學(xué)重點】
等差數(shù)列的概念、等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
【教學(xué)難點】
等差數(shù)列通項公式的推導(dǎo)。
三、教學(xué)過程
環(huán)節(jié)一:導(dǎo)入新課
教師PPT展示幾道題目:
我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個數(shù),可以得到數(shù)列:0,5,15,20,25 2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。
在澳大利亞悉尼舉行的奧運(yùn)會上,女子舉重正式列為比賽項目,該項目共設(shè)置了7個級別,其中交情的4個級別體重組成數(shù)列(單位:kg):48,53,58,63。
教師提問學(xué)生這幾組數(shù)有什么特點?學(xué)生回答從第二項開始,每一項與前一項的差都等于一個常數(shù),教師引出等差數(shù)列。
環(huán)節(jié)二:探索新知
等差數(shù)列的.概念
學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?
環(huán)節(jié)三:課堂練習(xí)
搶答:下列數(shù)列是否為等差數(shù)列?
。1)1,2,4,6,8,10,12,……
(2)0,1,2,3,4,5,6,……
(3)3,3,3,3,3,3,3,……
。4)-8,-6,-4,-2,0,2,4,……
。5)3,0,-3,-6,-9,……
環(huán)節(jié)四:小結(jié)作業(yè)
小結(jié):等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。
關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。
作業(yè):現(xiàn)實生活中還有哪些等差數(shù)列的實際應(yīng)用呢?根據(jù)實際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。
等差數(shù)列教案 8
教學(xué)目標(biāo)
1.明確等差數(shù)列的定義。
2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題
3.培養(yǎng)學(xué)生觀察、歸納能力。
教學(xué)重點
1.等差數(shù)列的概念;
2.等差數(shù)列的通項公式
教學(xué)難點
等差數(shù)列“等差”特點的理解、把握和應(yīng)用
教學(xué)方法
啟發(fā)式數(shù)學(xué)
教具準(zhǔn)備
投影片1張(內(nèi)容見下面)
教學(xué)過程
(I)復(fù)習(xí)回顧
師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式。這兩個公式從不同的.角度反映數(shù)列的特點,下面看一些例子。(放投影片)
。á颍┲v授新課
師:看這些數(shù)列有什么共同的特點?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
、
生:積極思考,找上述數(shù)列共同特點。
對于數(shù)列① (1≤n≤6); (2≤n≤6)
對于數(shù)列② -2n(n≥1)
。╪≥2)
對于數(shù)列③
。╪≥1)
。╪≥2)
共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。
師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。
一、定義:
等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。
如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。
二、等差數(shù)列的通項公式
師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得:
若將這n-1個等式相加,則可得:
即:
即:
即:
……
由此可得:
師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項 和公差d,便可求得其通項 。
如數(shù)列① (1≤n≤6)
數(shù)列②: (n≥1)
數(shù)列③:
。╪≥1)
由上述關(guān)系還可得:
即:
則: =
如:
三、例題講解
例1:(1)求等差數(shù)列8,5,2…的第20項
。2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由
n=20,得
。2)由
得數(shù)列通項公式為:
由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。
。á螅┱n堂練習(xí)
生:(口答)課本P118練習(xí)3
(書面練習(xí))課本P117練習(xí)1
師:組織學(xué)生自評練習(xí)(同桌討論)
。á簦┱n時小結(jié)
師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。
即 (n≥2)
、诘炔顢(shù)列通項公式 (n≥1)
推導(dǎo)出公式:
。╒)課后作業(yè)
一、課本P118習(xí)題3.2 1,2
二、1.預(yù)習(xí)內(nèi)容:課本P116例2—P117例4
2.預(yù)習(xí)提綱:
、偃绾螒(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?
、诘炔顢(shù)列有哪些性質(zhì)?
等差數(shù)列教案 9
一、課前預(yù)習(xí):
1、預(yù)習(xí)目標(biāo):
、偻ㄟ^實例,理解等差數(shù)列的概念;探索并掌握等差數(shù)列的通項公式;
②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識解決相應(yīng)的問題;
、垠w會等差數(shù)列與一次函數(shù)的關(guān)系。
2、預(yù)習(xí)內(nèi)容:
。1)等差數(shù)列的定義:一般地,如果一個數(shù)列從起,每一項與它的前一項的差等于同一個,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的,通常用字母表示。
(2)等差中項:若三個數(shù)組成等差數(shù)列,那么A叫做與的,即或。
。3)等差數(shù)列的單調(diào)性:等差數(shù)列的公差時,數(shù)列為遞增數(shù)列;時,數(shù)列為遞減數(shù)列;時,數(shù)列為常數(shù)列;等差數(shù)列不可能是。
。4)等差數(shù)列的通項公式:。
二、課內(nèi)探究學(xué)案
例1、1、求等差數(shù)列8、5、2… …的第20項
解:由得:
2、是不是等差數(shù)列、 、 … …的.項?如果是,是第幾項?
解:由得
由題意知,本題是要回答是否存在正整數(shù)n,使得:
成立
解得:即是這個數(shù)列的第100項。
例2、某市出租車的計價標(biāo)準(zhǔn)為1.2元/km,起步價為10元,即最初的4km(不含4km)計費為10元,如果某人乘坐該市的出租車去往14km處的目的地,且一路暢通,等候時間為0,需要支付多少車費?
分析:可以抽象為等差數(shù)列的數(shù)學(xué)模型。4km處的車費記為:公差
當(dāng)出租車行至目的地即14km處時,n=11求
所以:
例3:數(shù)列是等差數(shù)列嗎?
變式練習(xí):已知數(shù)列{}的通項公式,其中、為常數(shù),這個數(shù)列是等差數(shù)列嗎?若是,首項和公差分別是多少?
。ㄖ付▽W(xué)生求解)
解:取數(shù)列{}中任意兩項和
它是一個與n無關(guān)的常數(shù),所以{}是等差數(shù)列?
并且:
三、課后練習(xí)與提高
在等差數(shù)列中,已知求=
已知求
已知求
已知求
2、已知,則的等差中項為()
A B C D
3、2000是等差數(shù)列4,6,8…的()
A第998項B第999項C第1001項D第1000項
4、在等差數(shù)列40,37,34,…中第一個負(fù)數(shù)項是()
A第13項B第14項C第15項D第16項
5、在等差數(shù)列中,已知則等于()
A 10 B 42 C43 D45
6、等差數(shù)列-3,1,5…的第15項的值為
7、等差數(shù)列中,且從第10項開始每項都大于1,則此等差數(shù)列公差d的取值范圍是
8、在等差數(shù)列中,已知,求首項與公差d
9、在公差不為零的等差數(shù)列中,為方程的跟,求的通項公式。
10、數(shù)列滿足,設(shè)
判斷數(shù)列是等差數(shù)列嗎?試證明。
求數(shù)列的通項公式
11、數(shù)列滿足,問是否存在適當(dāng)?shù),使是等差?shù)列?
等差數(shù)列教案 10
一、設(shè)計思想
數(shù)學(xué)是思維的體操,是培養(yǎng)學(xué)生分析問題、解決問題的能力及創(chuàng)造能力的載體,新課程倡導(dǎo):強(qiáng)調(diào)過程,強(qiáng)調(diào)學(xué)生探索新知識的經(jīng)歷和獲得新知的體驗,不能在讓教學(xué)脫離學(xué)生的內(nèi)心感受,必須讓學(xué)生追求過程的體驗;谝陨险J(rèn)識,在設(shè)計本節(jié)課時,教師所考慮的不是簡單告訴學(xué)生等差數(shù)列的定義和通項公式,而是創(chuàng)造一些數(shù)學(xué)情境,讓學(xué)生自己去發(fā)現(xiàn)、證明。在這個過程中,學(xué)生在課堂上的主體地位得到充分發(fā)揮,極大的激發(fā)了學(xué)生的學(xué)習(xí)興趣,也提高了他們提出問題解決問題的能力,培養(yǎng)了他們的創(chuàng)造力。這正是新課程所倡導(dǎo)的數(shù)學(xué)理念。
本節(jié)課借助多媒體輔助手段,創(chuàng)設(shè)問題的情境,讓探究式教學(xué)走進(jìn)課堂,保障學(xué)生的主體地位,喚醒學(xué)生的主體意識,發(fā)展學(xué)生的主體能力,塑造學(xué)生的主體人格,讓學(xué)生在參與中學(xué)會學(xué)習(xí)、學(xué)會合作、學(xué)會創(chuàng)新。
二、教材分析
高中數(shù)學(xué)必修五第二章第二節(jié),等差數(shù)列,兩課時內(nèi)容,本節(jié)是第一課時。研究等差數(shù)列的定義、通項公式的推導(dǎo),借助生活中豐富的典型實例,讓學(xué)生通過分析、推理、歸納等活動過程,從中了解和體驗等差數(shù)列的定義和通項公式。通過本節(jié)課的學(xué)習(xí)要求理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式,并且了解等差數(shù)列與一次函數(shù)的關(guān)系。
本節(jié)是第二章的基礎(chǔ),為以后學(xué)習(xí)等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點內(nèi)容。在高考中也是重點考察內(nèi)容之一,并且在實際生活中有著廣泛的應(yīng)用,它起著承前啟后的作用。同時也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。等差數(shù)列是學(xué)生探究特殊數(shù)列的開始,它對后續(xù)內(nèi)容的學(xué)習(xí),無論在知識上,還是在方法上都具有積極的意義。
三、學(xué)情分析
學(xué)生已經(jīng)具有一定的理性分析能力和概括能力,且對數(shù)列的知識有了初步的接觸和認(rèn)識,對數(shù)學(xué)公式的運(yùn)用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動過程,對函數(shù)、方程思想體會逐漸深刻。他們的思維正從屬于經(jīng)驗性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗材料來理解抽象的邏輯關(guān)系。同時思維的嚴(yán)密性還有待加強(qiáng)。
四、教學(xué)目標(biāo)
1.知識目標(biāo):理解等差數(shù)列概念,掌握等差數(shù)列的通項公式,了解等差數(shù)列與一次函數(shù)的關(guān)系。
2.能力目標(biāo):培養(yǎng)學(xué)生觀察、歸納能力,應(yīng)用數(shù)學(xué)公式的能力及滲透函數(shù)、方程的思想。
3.情感目標(biāo):體驗從特殊到一般,又到特殊的認(rèn)知規(guī)律,提高數(shù)學(xué)猜想、歸納的能力。
五、重點、難點
教學(xué)重點:等差數(shù)列的概念及通項公式的推導(dǎo)。
教學(xué)難點:對等差數(shù)列概念的理解及學(xué)會通項公式的推導(dǎo)及應(yīng)用。
六、教學(xué)策略和手段
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間交往互動共同發(fā)展的過程,結(jié)合學(xué)生的實際情況,及本節(jié)內(nèi)容的特點,我采用的是“問題教學(xué)法”,其主導(dǎo)思想是以探究式教學(xué)思想為主導(dǎo),由教師提出一系列精心設(shè)計的問題,在教師的啟發(fā)指導(dǎo)下,讓學(xué)生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而使學(xué)生即獲得知識又發(fā)展智能的目的。
教學(xué)手段:多媒體計算機(jī)和傳統(tǒng)黑板相結(jié)合。通過計算機(jī)模擬演示,使學(xué)生獲得感性知識的同時,為掌握理性知識創(chuàng)造條件,這樣做,可以使學(xué)生有興趣地學(xué)習(xí),注意力也容易集中,符合教學(xué)論中的直觀性原則和可接受性原則。而保留使用黑板則能讓學(xué)生更好的經(jīng)歷整個教學(xué)過程。
七、課前準(zhǔn)備
學(xué)生預(yù)習(xí),教師做好課件并安裝好。
八、教學(xué)過程
創(chuàng)設(shè)情景,引入概念
設(shè)計意圖:希望學(xué)生能通過日常生活中的實際問題的分析對比,建立等差數(shù)列模型,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的'過程。
師生活動:
情景1:
師—把班上學(xué)生學(xué)號從小到大排成一列:
學(xué)生:
師—這是數(shù)列嗎?你能歸納出它的通項公式嗎?
學(xué)生—是,師—把上面的數(shù)列各項依次記為,填空:
學(xué)生—填空并歸納出一般規(guī)律:,( )
師—上面這個規(guī)律還有其他形式嗎?
學(xué)生—或者寫成,( )
注:要對強(qiáng)調(diào),原因在于有意義。
師—你能用普通語言概括上面的規(guī)律嗎?
學(xué)生—自由發(fā)言,選擇最恰當(dāng)?shù)恼Z言。
上面的數(shù)列已找出這一特殊規(guī)律,下面再觀察一些數(shù)列并也找出它們的規(guī)律。
情景2:看幻燈片上的實例
(1)2008年北京奧運(yùn)會,女子舉重共設(shè)置7個級別,其中較輕的4個級別體重組成數(shù)列(單位:kg):
48,53,58,63
(2)水庫的管理員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m)
18,15.5,13,10.5,8,5.5
(3)我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計算下一期的利息。按照單利計算本利和的公式是:
本利和=本金(1+利率存期)
時間年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅)
各年末本利和(單位:元)
10072,10144,10216,10288,10360
師:上面的三個數(shù)列又分別有什么規(guī)律呢?
學(xué)生—(1),(2),(3),師—歸納上面數(shù)列的共同特征:
(d是常數(shù)),師—滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個名字?
學(xué)生(共同)—等差數(shù)列。
提出課題《等差數(shù)列》
師—給出文字?jǐn)⑹龅亩x(學(xué)生敘述,板書定義):
一般的,如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首項。
對定義進(jìn)行分析,強(qiáng)調(diào):= 1 GB3 ①同一個常數(shù);= 2 GB3 ②從第二項起。
師—這樣的數(shù)列在生活中的例子,誰能再舉幾個?
學(xué)生—某劇場前8排的座位數(shù)分別是
52,50,48,46,44,42,40,38.
學(xué)生—全國統(tǒng)一鞋號中成年女鞋的各種尺碼分別是
21,21.5,22,22.5,23,23.5,24,24.5,25
搶答:觀察下列數(shù)列是否為等差數(shù)列
1,2,4,6,8,10,12,……
0,1,2,3,4,5,6,……
3,3,3,3,3,3,3……
2,4,7,11,16,……
-8,-6,-4,0,2,4,……
3,0,-3,-6,-9,……
注:常數(shù)列也是等差數(shù)列,公差是0。
推進(jìn)概念,發(fā)現(xiàn)性質(zhì)
設(shè)計意圖:概括等差中項的概念?偨Y(jié)等差中項公式,用于發(fā)現(xiàn)等差數(shù)列的性質(zhì)。
師生活動:
師—想一想,一個等差數(shù)列最少有幾項?它們之間有什么關(guān)系?
學(xué)生思考后回答,至少三項,然后老師引導(dǎo)學(xué)生概括等差中項的概念。
設(shè)三個數(shù)成等差數(shù)列,則A叫a與b的等差中項。同時有A-a=b-A,說明:(1)上面式子反過來也成立。(2)等差數(shù)列中的任意連續(xù)三項都構(gòu)成等差數(shù)列,反之亦成立。
(三)探究通項公式
設(shè)計意圖:通過具體數(shù)列的通項公式,總結(jié)一般等差數(shù)列的通項公式,體會特殊到一般的數(shù)學(xué)思想方法。
師生活動:
師—對于一個數(shù)列,我們最關(guān)心的是每一項,而這就要求我們能知道它的通項公式。下面一起來研究等差數(shù)列的通項公式。
先寫出上面引例中等差數(shù)列的通項公式。再推導(dǎo)一般等差數(shù)列的通項公式。
師—若一個數(shù)列是等差數(shù)列,它的公差是d,那么數(shù)列的通項公式是什么?
啟發(fā)學(xué)生:(歸納、猜想)可用首項與公差表示數(shù)列中任意一項。
學(xué)生—即:
即:
即:
由此可得:
師—從第幾項開始?xì)w納的?
學(xué)生—第二項,所以n≥2。
師—n=1時呢?
學(xué)生—當(dāng)n=1時,等式也是成立,因而等差數(shù)列的通項公式
( )
師—很好!
等差數(shù)列教案 11
一、教學(xué)內(nèi)容分析
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時。
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。
二、學(xué)生學(xué)習(xí)情況分析
教學(xué)內(nèi)容針對的是高二的學(xué)生,經(jīng)過高中一年的學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時要從具體的生活實例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。
三、設(shè)計思想
1、教法
⑴誘導(dǎo)思維法:這種方法有利于學(xué)生對知識進(jìn)行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性。
、品纸M討論法:有利于學(xué)生進(jìn)行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性。
⑶講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點。
2、學(xué)法
引導(dǎo)學(xué)生首先從四個現(xiàn)實問題(數(shù)數(shù)問題、女子舉重獎項設(shè)置問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法。
用多種方法對等差數(shù)列的通項公式進(jìn)行推導(dǎo)。
在引導(dǎo)分析時,留出“空白”,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)目標(biāo)
通過本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項公式的推導(dǎo)過程及思想,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力。
五、教學(xué)重點與難點
重點:
、俚炔顢(shù)列的概念。
、诘炔顢(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
難點:
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義。
、诶斫獾炔顢(shù)列是一種函數(shù)模型。
關(guān)鍵:
等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。
六、教學(xué)過程
教學(xué)環(huán)節(jié)情境設(shè)計和學(xué)習(xí)任務(wù)學(xué)生活動設(shè)計意圖創(chuàng)設(shè)情景在南北朝時期《張邱建算經(jīng)》中,有一道題“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中間三人未到者,亦依等次更給,問各得金幾何,及未到三人復(fù)應(yīng)得金幾何“。
這個問題該怎樣解決呢?傾聽課堂引入探索研究由學(xué)生觀察分析并得出答案:
在現(xiàn)實生活中,我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5,___,___,___,___,…
水庫的管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清理水庫的雜魚。如果一個水庫的水位為18cm,自然放水每天水位降低2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m):18,15.5,13,10.5,8,5.5觀察分析,發(fā)表各自的意見引向課題發(fā)現(xiàn)規(guī)律思考:同學(xué)們觀察一下上面的這兩個數(shù)列:
0,5,10,15,20,…… ①
18,15.5,13,10.5,8,5.5 ②
看這些數(shù)列有什么共同特點呢?觀察分析并得出答案:
引導(dǎo)學(xué)生觀察相鄰兩項間的關(guān)系,得到:
對于數(shù)列①,從第2項起,每一項與前一項的差都等于5;
對于數(shù)列②,從第2項起,每一項與前一項的差都等于-2.5;
由學(xué)生歸納和概括出,以上兩個數(shù)列從第2項起,每一項與前一項的差都等于同一個常數(shù)(即:每個都具有相鄰兩項差為同一個常數(shù)的特點)。通過分析,激發(fā)學(xué)生學(xué)習(xí)的探究知識的興趣,引導(dǎo)揭示數(shù)列的`共性特點。
總結(jié)提高[等差數(shù)列的概念]
對于以上幾組數(shù)列我們稱它們?yōu)榈炔顢?shù)列。請同學(xué)們根據(jù)我們剛才分析等差數(shù)列的特征,嘗試著給等差數(shù)列下個定義:
等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。那么對于以上兩組等差數(shù)列,它們的公差依次是5,5,-2.5。學(xué)生認(rèn)真閱讀課本相關(guān)概念,找出關(guān)鍵字。通過學(xué)生自己閱讀課本,找出關(guān)鍵字,提高學(xué)生的閱讀水平和思維概括能力,學(xué)會抓重點。提問:如果在與中間插入一個數(shù)A,使,A,成等差數(shù)列數(shù)列,那么A應(yīng)滿足什么條件?由學(xué)生回答:因為a,A,b組成了一個等差數(shù)列,那么由定義可以知道:A-a=b-A
所以就有讓學(xué)生參與到知識的形成過程中,獲得數(shù)學(xué)學(xué)習(xí)的成就感。由三個數(shù)a,A,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,這時,A叫做a與b的等差中項。
不難發(fā)現(xiàn),在一個等差數(shù)列中,從第2項起,每一項(有窮數(shù)列的末項除外)都是它的前一項與后一項的等差中項。
如數(shù)列:1,3,5,7,9,11,13…中5是3和7的等差中項,1和9的等差中項。
9是7和11的等差中項,5和13的等差中項。
看來,從而可得在一等差數(shù)列中,若m+n=p+q
則深入探究,得到更一般化的結(jié)論引領(lǐng)學(xué)習(xí)更深入的探究,提高學(xué)生的學(xué)習(xí)水平。
總結(jié)提高[等差數(shù)列的通項公式]
對于以上的等差數(shù)列,我們能不能用通項公式將它們表示出來呢?這是我們接下來要學(xué)習(xí)的內(nèi)容。
、、我們是通過研究數(shù)列的第n項與序號n之間的關(guān)系去寫出數(shù)列的通項公式的。下面由同學(xué)們根據(jù)通項公式的定義,寫出這三組等差數(shù)列的通項公式。由學(xué)生經(jīng)過分析寫出通項公式:
等差數(shù)列教案 12
一、教材分析
1、教學(xué)目標(biāo):
A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;
B.培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
C.通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
2、教學(xué)重點和難點
、俚炔顢(shù)列的概念。
、诘炔顢(shù)列的通項公式的'推導(dǎo)過程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項公式。
二、教法分析
采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、教學(xué)程序
本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是c)分別是
21,22,23,24,25,
2.某劇場前10排的座位數(shù)分別是:
38,40,42,44,46,48,50,52,54,56。
3.某長跑運(yùn)動員7天里每天的訓(xùn)練量(單位:)是:
7500,8000,8500,9000,9500,10000,10500。
共同特點:
從第2項起,每一項與前一項的差都等于同一個常數(shù)。
(二) 新課探究
1、給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):
① “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
、酃羁梢允钦龜(shù)、負(fù)數(shù),也可以是0。
2、推導(dǎo)等差數(shù)列的通項公式
若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:
- =d 即: = +d
– =d 即: = +d = +2d
– =d 即: = +d = +3d
進(jìn)而歸納出等差數(shù)列的通項公式:
= +(n-1)d
此時指出:
這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
– =d
– =d
– =d
– =d
將這(n-1)個等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d
當(dāng)n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當(dāng)n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。
接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n-1)×2 , 即 =2n-1 以此來鞏固等差數(shù)列通項公式運(yùn)用
。ㄈ⿷(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項公式含義的理解以及對通項公式的運(yùn)用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1 (1)求等差數(shù)列8,5,2,…的第20項;
。2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式
例2 在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。
在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固
例3 梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
(四)反饋練習(xí)
1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。
2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列
此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強(qiáng)化了等差數(shù)列的概念。
。ㄎ澹w納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。
強(qiáng)調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式 = +(n-1) d會知三求一
(六) 布置作業(yè)
必做題:課本P114 習(xí)題3.2第2,6 題
選做題:已知等差數(shù)列{ }的首項 = -24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
四、板書設(shè)計
在板書中突出本節(jié)重點,將強(qiáng)調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。
等差數(shù)列教案 13
教學(xué)目標(biāo)
知識與技能目標(biāo):理解等差數(shù)列的定義;會根據(jù)等差數(shù)列的通項公式求某一項的值;會根據(jù)等差數(shù)列的前幾項求數(shù)列的通項公式。
過程與方法目標(biāo):通過啟發(fā)、討論、引導(dǎo)、邊教邊練邊反饋的方法提高學(xué)生思考問題、解決問題的能力。
情感、態(tài)度、價值觀目標(biāo):培養(yǎng)學(xué)生的邏輯推理能力;培養(yǎng)學(xué)生在探索中學(xué)習(xí)知識的精神,增強(qiáng)學(xué)生相互合作交流的意識。
教學(xué)重點:會求等差數(shù)列的通項公式。
教學(xué)難點:等差數(shù)列的通項公式的推導(dǎo)。
教學(xué)準(zhǔn)備:課件
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入課題
如圖1所示:一個堆放鉛筆的V形架的最下面
一層放1支鉛筆,往上每一層都比它下面一層多放1
支,這個V形架的鉛筆從最下面一層往上面排起的
鉛筆支數(shù)組成數(shù)列:1,2,3,4,……
、谀硞電影院設(shè)置了20排座位,這個電影院從第1排起各排的座位數(shù)組成數(shù)列:
38,40,42,44,46,……
、廴珖y(tǒng)一鞋號中,成年女鞋的各種尺碼(表示以cm為單位的鞋底的長度)由大到小可排列為:25,24.5,24,23.5,23,22.5,22,21.5.
師生互動,探索新知
教師:請同學(xué)們仔細(xì)觀察,你發(fā)現(xiàn)這三組數(shù)列有什么變化規(guī)律?
生:數(shù)列①從第2項起,每一項與它的前一項的差都等于;
數(shù)列②從第2項起,每一項與它的前一項的差都等于;
數(shù)列③從第2項起,每一項與它的前一項的差都等于;
[設(shè)計說明:采用邊教學(xué)邊反饋的方式,有利于教師及時了解學(xué)生理解新知識的程度,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心]
教師引導(dǎo)學(xué)生觀察上面的數(shù)列①、②、③的特點。
提出問題1:上面三個數(shù)列的共同特點是什么?
學(xué)生:從第2項起,每一項與它的前一項的差都等于同一個常數(shù)。
教師:這樣我們就得到了等差數(shù)列的定義。
<一>等差數(shù)列的定義:如果一個數(shù)列從它的第2項起每一項與它的前一項的差都等于同一個常數(shù),則這個數(shù)列叫做等差數(shù)列;這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。等差數(shù)列的公差d的數(shù)學(xué)表達(dá)式為:。
基礎(chǔ)訓(xùn)練:
1、上面數(shù)列
、俚墓頳=;數(shù)列
、诘墓頳=;數(shù)列
、鄣墓頳=
[設(shè)計說明:有利于學(xué)生掃除語言與符號轉(zhuǎn)換的障礙]
2、下面的數(shù)列中,哪些是等差數(shù)列?若是,求出它的公差;若不是,則說明理由。
6,10,14,18,22,……;(2)9,8,7,6,5,4,3,2;(3)3,3,3,3,3,3;(4)1,0,1,0,1,0,1,0。
提出問題2:任何一個數(shù)列一定是等差數(shù)列嗎?如果是等差數(shù)列,公差一定是正數(shù)嗎?
師生討論得出結(jié)論:
3、一個數(shù)列是等差數(shù)列必須具有這樣的特點:從第2項起,每一項與它的.前一項的差都等于同一個常數(shù);
。2)等差數(shù)列的公差d可能是正數(shù)、負(fù)數(shù)、零。
[設(shè)計說明:從具體數(shù)列入手,有利于較多基礎(chǔ)差的學(xué)生理解等差數(shù)的定義,判斷數(shù)列是否為等差數(shù)列轉(zhuǎn)換成具體的步驟:求后面一項與前面一項的差,看這些差是否相等]
提出問題3:等差數(shù)列的公差d的數(shù)學(xué)表達(dá)式為:,揭示了求公差d可以用哪些式子表示?
師生共同活動:等,變式:
提出問題4:如果等差數(shù)列只知道首項,公差d,那么這個數(shù)列的其他項如何表示?
師生共同活動:
…,[設(shè)計說明:問題3、問題4的提出訓(xùn)練學(xué)生的變形思想、遞歸思想,從而引出等差數(shù)列的通項公式及學(xué)生容易理解通項公式的變形公式]
<二>等差數(shù)列的通項公式:
等差數(shù)列教案 14
教學(xué)目標(biāo)
1、通過教與學(xué)的互動,使學(xué)生加深對等差數(shù)列通項公式的認(rèn)識,能參與編擬一些簡單的問題,并解決這些問題;
2、利用通項公式求等差數(shù)列的項、項數(shù)、公差、首項,使學(xué)生進(jìn)一步體會方程思想;
3、通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點,難點
教學(xué)重點是通項公式的認(rèn)識;教學(xué)難點是對公式的靈活運(yùn)用。
教學(xué)用具
實物投影儀,多媒體軟件,電腦。
教學(xué)方法
研探式。
教學(xué)過程
一、復(fù)習(xí)提問
前一節(jié)課我們學(xué)習(xí)了等差數(shù)列的概念、表示法,請同學(xué)們回憶等差數(shù)列的定義,其表示法都有哪些?
等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進(jìn)一步的理解與應(yīng)用。
二、主體設(shè)計
通項公式反映了項與項數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求)。找學(xué)生試舉一例如:“已知等差數(shù)列中,首項,公差,求!边@是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運(yùn)用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上。
1、方程思想的運(yùn)用
。1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第______項。
。2)已知等差數(shù)列中,首項,則公差
。3)已知等差數(shù)列中,公差,則首項
這一類問題先由學(xué)生解決,之后教師點評,四個量,在一個等式中,運(yùn)用方程的思想方法,已知其中三個量的值,可以求得第四個量。
2、基本量方法的使用
。1)已知等差數(shù)列中,求的值。
。2)已知等差數(shù)列中,求。
若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請出題者、解題者概括):因為已知條件可以化為關(guān)于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結(jié)為前一類問題。解決這類問題只需把兩個條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量。
教師提出新的'問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于和的二元方程,這是一個和的制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定)。
如:已知等差數(shù)列中,…
由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題
。3)已知等差數(shù)列中,求;…。
類似的還有
。4)已知等差數(shù)列中,求的值。
以上屬于對數(shù)列的項進(jìn)行定量的研究,有無定性的判斷?
3、研究等差數(shù)列的單調(diào)性,考察隨項數(shù)的變化規(guī)律。著重考慮的情況。此時是的一次函數(shù),其單調(diào)性取決于的符號,由學(xué)生敘述結(jié)果。這個結(jié)果與考察相鄰兩項的差所得結(jié)果是一致的
4、研究項的符號
這是為研究等差數(shù)列前項和的最值所做的準(zhǔn)備工作?膳鋫涞念}目如
。1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
(2)等差數(shù)列從第________項起以后每項均為負(fù)數(shù)。
三、小結(jié)
1、用方程思想認(rèn)識等差數(shù)列通項公式;
2、用函數(shù)思想解決等差數(shù)列問題。
四。板書設(shè)計
等差數(shù)列通項公式
1、方程思想的運(yùn)用
2、基本量方法的使用
等差數(shù)列教案 15
一.教材分析
1.教材的地位與作用
本節(jié)課《等差數(shù)列》是《高中數(shù)學(xué)第一冊》第三章第二節(jié)第一課時的內(nèi)容,是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入學(xué)習(xí)。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,是前一章《函數(shù)》內(nèi)容的延伸,體現(xiàn)教材編排的連續(xù)性,它在實際生活中有廣泛的實際應(yīng)用,起著承前啟后的作用,同時也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。等差數(shù)列作為數(shù)列部分的主要內(nèi)容,是學(xué)生探究特殊數(shù)列的開始,對后續(xù)內(nèi)容的學(xué)習(xí),無論在知識上,還是在方法上都具有積極的意義。
2.教學(xué)目標(biāo)的確定及依據(jù)
(1)教學(xué)參考書和教學(xué)大綱明確指出:本節(jié)的重點是等差數(shù)列的概念及其通項公式的推導(dǎo)過程和應(yīng)用。本節(jié)先在具體例子的基礎(chǔ)上引出等差數(shù)列的概念,接著用不完全歸納法歸納出等差數(shù)列的通項公式,最后根據(jù)這個公式去進(jìn)行有關(guān)計算?梢姳菊n內(nèi)容的安排旨在培養(yǎng)學(xué)生的觀察分析、歸納猜想、應(yīng)用能力。
(2)從學(xué)生知識層面看:學(xué)生對數(shù)列有了初步的接觸和認(rèn)識,對方程、函數(shù)、數(shù)學(xué)公式的運(yùn)用具有一定技能,函數(shù)、方程思想體會逐漸深刻。
。3)從學(xué)生素質(zhì)層面看:我從高一年級新生開始注意培養(yǎng)學(xué)生自主合作探究的學(xué)習(xí)習(xí)慣,學(xué)生思維活躍中,課堂參與意識較濃,且高一年級學(xué)生具有一定理解、分析、推理的能力。鑒于上述分析原因,我制定了本節(jié)課的重點、難點和教學(xué)目標(biāo):
重點、難點
重點:等差數(shù)列的概念及通項公式。
難點:
。1)理解等差數(shù)列―等差‖的'特點及通項公式的含義。
。2)從函數(shù)、方程的觀點看通項公式
教學(xué)目標(biāo)
知識目標(biāo):理解等差數(shù)列的概念,了解等差數(shù)列的通項公式的推導(dǎo)過程及思想,掌握等差數(shù)列的通項公式,并能用公式解決一些簡單實際問題。
能力目標(biāo):
(1)培養(yǎng)學(xué)生觀察分析、猜想歸納、應(yīng)用公式的能力;
。2)在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,滲透函數(shù)、方程的思想。
情感目標(biāo):通過對等差數(shù)列的研究,體會從特殊到一般,又到特殊的認(rèn)識事物規(guī)律,培養(yǎng)學(xué)生主動探索,勇于發(fā)現(xiàn)的求知精神。
二.教法設(shè)計和學(xué)法指導(dǎo)
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間交往互動共同發(fā)展的過程,結(jié)合本節(jié)課特點,我采用指導(dǎo)自主學(xué)習(xí)方法,即學(xué)生主動觀察――分析概括――師生互動,形成概念――啟發(fā)引導(dǎo),演繹結(jié)論――拓展開放,鞏固提高。在學(xué)法上,引導(dǎo)學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,學(xué)會探究。
三、教學(xué)程序設(shè)計
。ㄔ诮虒W(xué)過程中,遵循學(xué)生的認(rèn)知規(guī)律,充分調(diào)動學(xué)生的積極性,盡可能讓學(xué)生經(jīng)歷知識的形成和發(fā)展過程,激發(fā)他們的學(xué)習(xí)興趣,發(fā)揮他們的主觀能動性及其在教學(xué)過程中的主體地位。為更好地使不同層次學(xué)生形成對本節(jié)課知識的理解,結(jié)合本教材特點,我設(shè)計如下教學(xué)過程)
本節(jié)課的教學(xué)過程由
(一)創(chuàng)設(shè)情境引入課題
。ǘ┬抡n探究,推導(dǎo)公式
。ㄈ⿷(yīng)用例解
。ㄋ模┚毩(xí)反饋強(qiáng)化目標(biāo)
。ㄎ澹w納小結(jié)提煉精華
。┱n后作業(yè)運(yùn)用鞏固,六個教學(xué)環(huán)節(jié)構(gòu)成。
。ㄒ唬﹦(chuàng)設(shè)情境引入課題
1、復(fù)習(xí)回顧:從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。
2、利用粉筆如圖堆放,共放7層,自上而下分別有
4、5、6、7、8、9、10根粉筆。寫成數(shù)列:4,5,6,7,8,9,10
、
3、某電影院第一排座位號是:
48、46、44、42、40、38、36、34、32、30。寫成數(shù)列:48,46,44,42,40,38,36,34,32,30
、谝龑(dǎo)學(xué)生觀察:數(shù)列①、②有何規(guī)律?
引導(dǎo)學(xué)生得出―從第2項起,每一項與前一項的差都是同一個常數(shù)‖,我們把這樣的數(shù)列叫做等差數(shù)列、(板書課題)(教學(xué)設(shè)想:通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備;練習(xí)2和3引出兩個具體的等差數(shù)列,創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)興趣,激發(fā)他們的求知欲,培養(yǎng)學(xué)生由特殊到一般的認(rèn)知能力。使學(xué)生認(rèn)識到生活離不開數(shù)學(xué),同樣數(shù)學(xué)也是離不開生活的。學(xué)會在生活中挖掘數(shù)學(xué)問題,解決數(shù)學(xué)問題,使數(shù)學(xué)生活化,生活數(shù)學(xué)化。)
(二)、新課探究,推導(dǎo)公式等差數(shù)列的概念。
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):
、偎敲恳豁椗c它的前一項的差(從第2項起)必須是同一個常數(shù)。
、诠羁梢允钦龜(shù)、負(fù)數(shù),也可以是0。所以上面的①、②都是等差數(shù)列,他們的公差分別為
1、—2。
。劬毩(xí)一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。
(1)1,3,5,7,……
。2)9,6,3,0,—3,……(3)—8,—6,—4,—2,0,……
。4)3,3,3,3,3,……(5)1,,,……
。6)15,12,10,8,6,……(教學(xué)設(shè)想:通過練習(xí),加深對概念的理解)
2、等差數(shù)列數(shù)學(xué)表達(dá)式:如果等差數(shù)列{an}首項是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:a2—a1 =d,a3—a2 =d,a4—a3 =d …… an+1a1 =d a3—a2=d a4 –a3 =d ……
an –an—1 =d將這(n—1)個等式左右兩邊分別相加,就可以得到an—a1 =(n—1)d即an = a1 +(n—1)d
。á瘢┊(dāng)n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項公式。
。ㄈ⿷(yīng)用例解
例1(1)求等差數(shù)列8,5,2,…的第20項;
。2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?
解:(1)由a1=8,d=5—8=—3,n=20得
∴ a20=8+(20—1)×(—3)=—49
。2)分析:要判斷—401是不是數(shù)列的項,關(guān)鍵是求出數(shù)列的通項公式an,判斷是否存在正整數(shù)n,使得an =—401成立。
解:由a1=—5,d=—9—(—5)=—4,得
∴ an=—5+(n—1)×(—4)=—4n—1令—4n—1=—401,解得n= 100即—401是這個數(shù)列的第100項
[說明]
。1)強(qiáng)調(diào)當(dāng)數(shù)列{an}的項數(shù)n已知時,下標(biāo)應(yīng)是確切的數(shù)字;
(2)實際上是求一個方程的正整數(shù)解的問題。這類問題學(xué)生以前見得較少,可向?qū)W生著重點出本問題的實質(zhì):要判斷—401是不是數(shù)列的項,關(guān)鍵是求出數(shù)列的通項公式an,判斷是否存在正整數(shù)n,使得an =—401成立
例2在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。(指導(dǎo)學(xué)生看書上的解題過程)
。壅f明]等差數(shù)列通項公式中的a
1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例3梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
。壅f明]讓學(xué)生會用所學(xué)數(shù)學(xué)公式解決簡單的實際問題
。ㄋ模┚毩(xí)反饋強(qiáng)化目標(biāo)
1、P113練習(xí)第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)做完上述題目,教師提問)。目的:對學(xué)生進(jìn)行基本技能訓(xùn)練。
2、若數(shù)列{an}是等差數(shù)列,若bn= an +c,試證明:數(shù)列{bn }是等差數(shù)列、證明:設(shè)等差數(shù)列{an}的公差為d bn—bn—1 =(an+c)—(an—1+c)= an—an—1 = d(常數(shù))∴{bn }是等差數(shù)列
目的:對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練
。ń虒W(xué)設(shè)想:練習(xí)1培養(yǎng)學(xué)生的計算速度和計算能力;練習(xí)2如何用定義證明數(shù)列問題)
。ㄎ澹w納小結(jié)提煉精華[老師作適當(dāng)引導(dǎo)(問題:⑴本節(jié)課你們學(xué)了什么?⑵要注意什么?⑶在生活中能否運(yùn)用?),讓學(xué)生反思、歸納、總結(jié)。這樣來培養(yǎng)學(xué)生的概括能力、表達(dá)能力。]通過本課時的學(xué)習(xí),首先要理解和掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式:an—an—1=d(n≥2);其次要會推導(dǎo)等差數(shù)列的通項公式an=a1+(n—1)d(n≥1)、本課時的重點是通項公式的靈活應(yīng)用,知道an,a1,d,n中任意三個,應(yīng)用方程的思想,可以求出另外一個。
。┱n后作業(yè)運(yùn)用鞏固必做題:課本P114習(xí)題第1,2,6題
選做題:已知等差數(shù)列{an}的首項a1=—2,第10項是第一個大于1的項。求公差d的取值范圍。(教學(xué)設(shè)想:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的需求)
四、板書設(shè)計§等差數(shù)列
1、定義
2、數(shù)學(xué)表達(dá)式
3、等差數(shù)列的通項公式例1(略)
例2(略)例3(略)
本節(jié)課的重點是等差數(shù)列的定義及其通項公式與應(yīng)用,因此把強(qiáng)調(diào)的問題放在較醒目的位置,突出了重點,同時還給學(xué)生留有作題的地方,整個板面看上去自然、清晰、美觀,還能充分表現(xiàn)出精講多練的教學(xué)方法。
等差數(shù)列教案 16
首先,我對本教材進(jìn)行分析。
一、說教材的地位和作用
《等差數(shù)列》是選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修5的第一章數(shù)列的第2節(jié)的課時,本教材在課程結(jié)構(gòu)、教學(xué)內(nèi)容、教學(xué)方法等方面進(jìn)行了新的探索和改革創(chuàng)新,對于促進(jìn)高中教育深化教學(xué)改革,提高教育教學(xué)質(zhì)量將起到積極的推動作用。等差數(shù)列這一節(jié)在數(shù)列這一章中起著奠基作用,是高中生學(xué)好數(shù)列這一部分內(nèi)容所必不可少的重點所在。
二、說教學(xué)目標(biāo)
根據(jù)本節(jié)課的機(jī)構(gòu)和內(nèi)容分析,結(jié)合現(xiàn)今高中生的認(rèn)知結(jié)構(gòu)及其心理特征,我制定了一下的教學(xué)目標(biāo):
本節(jié)課的教學(xué)目標(biāo)包括認(rèn)知目標(biāo)、能力目標(biāo)及情感、態(tài)度、價值觀目標(biāo),其中:
認(rèn)知目標(biāo):通過理解等差數(shù)列的定義,使學(xué)生能夠應(yīng)用定義判斷一個數(shù)列是否為等差數(shù)列,并確定等差數(shù)列的公差。
能力目標(biāo):
1.探索并掌握等差數(shù)列的通項公式,使學(xué)生能夠應(yīng)用其公式解決等差數(shù)列的問題;
2.體會等差數(shù)列與一次函數(shù)的關(guān)系,使學(xué)生能夠應(yīng)用一次函數(shù)的性質(zhì)解決等差數(shù)列問題;
3.掌握等差中項的定義和等差數(shù)列項的性質(zhì),使學(xué)生能夠應(yīng)用等差中項的定義和等差數(shù)列項的性質(zhì)解決問題。
情感、態(tài)度、價值觀目標(biāo):使學(xué)生能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。
三、說教學(xué)的重、難點
本著新課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,確定了一下的教學(xué)重點和難點:
(一)教學(xué)主要內(nèi)容及其重點、難點
1.教學(xué)主要內(nèi)容:等差數(shù)列的定義、通項公式和等差數(shù)列的函數(shù)性質(zhì);
2.教學(xué)重點:等差數(shù)列的定義、通項公式;
3.教學(xué)難點:在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能靈活運(yùn)用這些公式解決相應(yīng)的實際問題。
。ǘ┙虒W(xué)主要內(nèi)容及其重點、難點的解決方法
在教學(xué)中采取靈活多樣的教學(xué)形式,對理論性較強(qiáng)的內(nèi)容以知識教授為主,多媒體教授為輔,達(dá)到化抽象為具體的課堂教學(xué)效果,對于教學(xué)難點問題,主要采取討論式教學(xué)方法,首先教師提出問題讓學(xué)生開動腦筋思考并尋找解決問題的方法,然后再進(jìn)行分析、歸納和總結(jié)。
為了講清楚教學(xué)的重、難點,使學(xué)生能夠達(dá)到本節(jié)內(nèi)容設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劇?/p>
四、說教法和學(xué)法
。ㄒ唬┙谭
在教學(xué)過程中,不僅要使學(xué)生“知其然”,更要使學(xué)生“知其所以然”,在以師生既為主體,又為客體的原則下,展現(xiàn)獲取理論知識、解決實際問題方法的思維過程?紤]到高中生的現(xiàn)狀,主要采取學(xué)生活動的教學(xué)方法,讓學(xué)生真正的參與教學(xué)活動,同時教師通過課堂教學(xué)感染和激勵學(xué)生,充分調(diào)動起學(xué)生參與活動的積極性,從而通過師生互動達(dá)到最佳的教學(xué)效果。這也同時體現(xiàn)了課改的精神。
基于本節(jié)課內(nèi)容的特點,我主要采用了以下的教學(xué)方法:
1.直觀演示法:利用圖片的投影等手段進(jìn)行演示,激發(fā)學(xué)生的學(xué)習(xí)興趣,活躍課堂氣氛,促進(jìn)學(xué)生對知識的掌握;
2.活動探究法:引導(dǎo)學(xué)生通過創(chuàng)設(shè)情境等活動形式獲取知識,以學(xué)生為主體,使學(xué)生的獨立探索性得到了充分的發(fā)揮,培養(yǎng)學(xué)生的自學(xué)、思維以及活動組織能力;
3.集體討論法:針對學(xué)生提出的問題,組織學(xué)生進(jìn)行集體和分組討論,促使學(xué)生在學(xué)習(xí)中解決問題,培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作精神。
。ǘ⿲W(xué)法
在教學(xué)過程中特別注重學(xué)法的指導(dǎo),讓學(xué)生從機(jī)械的'“學(xué)答”向“學(xué)問”轉(zhuǎn)變,從“學(xué)會”向“會學(xué)”轉(zhuǎn)變,讓學(xué)生成為真正的學(xué)習(xí)的主人。我主要采取了以下方法:
1.思考評價法
2.分析歸納法
3.自主探究法
4.總結(jié)反思法
最后我來談?wù)勥@一堂課的教學(xué)過程:
五、說教學(xué)過程
在教學(xué)過程中,注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。
1.導(dǎo)入新課:由上節(jié)課學(xué)過的知識和教材開頭的情景設(shè)置導(dǎo)入新課,既概括了舊知識,引出新知識,溫故而知新,又使學(xué)生明確本節(jié)課要講述的內(nèi)容。
2.講授新課:在講授新課的過程中,突出教材重點,明了地分析教材的難點,根據(jù)具體情況,適時選擇多媒體的教學(xué)手段,可以使抽象的知識具體化、枯燥的知識生動化以及乏味的知識興趣化。
3.課堂小結(jié),強(qiáng)化知識:簡明扼要的課堂小結(jié),可使學(xué)生更深刻地理解等差數(shù)列在實際生活中的應(yīng)用,并逐漸地培養(yǎng)學(xué)生具有良好的個性。
4.板書設(shè)計:注重直觀、系統(tǒng)的板書設(shè)計,及時地體現(xiàn)教材中的知識點,以便于學(xué)生理解掌握。
5.布置作業(yè)。
等差數(shù)列教案 17
我說課的課題是等差數(shù)列的前n項和,本節(jié)內(nèi)容選自江蘇教育出版社中職數(shù)學(xué)第二冊第11章第2節(jié),下面我將從說教材、說教法學(xué)法、說教學(xué)過程、說板書設(shè)計以及說教學(xué)反思幾個方面對本節(jié)課加以說明。
一、下面先說說教材
1、教材的地位和作用
中職數(shù)學(xué)是中等職業(yè)學(xué)校各類專業(yè)學(xué)生必修的主要文化基礎(chǔ)課,學(xué)好這門課程對提高學(xué)生數(shù)學(xué)素養(yǎng)具有十分重要的意義。數(shù)列這一章是中職數(shù)學(xué)的重要內(nèi)容之一。它不僅是函數(shù)知識的延伸,而且還有著非常廣泛的實際應(yīng)用;同時數(shù)列還是培養(yǎng)學(xué)生數(shù)學(xué)思維能力的良好題材。
《等差數(shù)列的前n項和》是本章的第二節(jié),它為后繼學(xué)習(xí)提供了知識基礎(chǔ),對提高學(xué)生分析、猜想、概括、歸納的能力有著重要的作用。
《等差數(shù)列》作為《數(shù)列》這一章中兩個最重要的數(shù)列之一,具有承上啟下的作用,它的研究和解決集中體現(xiàn)了研究《數(shù)列》問題的思想和方法。學(xué)習(xí)《等差數(shù)列的前n項和》對提高學(xué)生分析、猜想、概括、歸納的能力有著重要的作用。
2、教學(xué)目標(biāo)根據(jù)教學(xué)大綱的要求和教學(xué)內(nèi)容的結(jié)構(gòu)特征,并結(jié)合學(xué)生學(xué)習(xí)的實際情況,我將本節(jié)課的教學(xué)目標(biāo)確定為以下三個方面
知識目標(biāo):掌握等差數(shù)列的前n項和公式
能力目標(biāo):
1、培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法。
2、提高學(xué)生分析問題和解決問題的能力
情感目標(biāo):
1、培養(yǎng)學(xué)生主動探索的精神和良好的學(xué)習(xí)習(xí)慣
2、讓學(xué)生在問題中感受學(xué)習(xí)的樂趣;
3、教學(xué)重點和難點。根據(jù)本節(jié)課的內(nèi)容以及學(xué)生已掌握的知識情況我將
教學(xué)重點確定為:等差數(shù)列的前n項和公式及應(yīng)用
教學(xué)難點確定為:應(yīng)用等差數(shù)列解決有關(guān)問題
二、說教法學(xué)法
教法教學(xué)有法但教無定法,教學(xué)方法要與學(xué)生學(xué)習(xí)的實際情況相結(jié)合。
中職學(xué)生的生源質(zhì)量逐年下降,大部分中職生基礎(chǔ)薄弱、理解接受能力較差,大多數(shù)學(xué)生不愛學(xué)習(xí),不會學(xué)習(xí)。學(xué)生認(rèn)為數(shù)學(xué)難,枯燥理解不了。對數(shù)學(xué)學(xué)習(xí)提不起興趣,因此在教學(xué)中我注重激發(fā)學(xué)生學(xué)習(xí)的興趣。本節(jié)課通過具體的實例引入,采用了問題、類比、發(fā)現(xiàn)、歸納的探究式教學(xué)方法。引導(dǎo)學(xué)生積極主動的去學(xué)習(xí)。在課堂教學(xué)中強(qiáng)調(diào)以學(xué)生為主體,注重精講多練。同時也注重學(xué)生非智力因素的培養(yǎng),增強(qiáng)學(xué)生的自信心和成就感。為學(xué)習(xí)營造寬松和諧的氛圍。另外在教學(xué)中使用多媒體教學(xué)手段等,提高教學(xué)質(zhì)量和教學(xué)效果。
學(xué)法我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。倡導(dǎo)學(xué)生主動參與、樂于探究,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。根據(jù)學(xué)生的認(rèn)知水平,我設(shè)計了①創(chuàng)設(shè)情境—引入問題②分析歸納—解決問題③例題研究—運(yùn)用新知④分組訓(xùn)練—鞏固新知⑤總結(jié)歸納—提高認(rèn)識⑥課后作業(yè)-自主探究六個層次的學(xué)法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。
接下來,我再具體談一談這堂課的教學(xué)過程。
三、說教學(xué)過程
(一)創(chuàng)設(shè)情境——引入問題教學(xué)設(shè)想
我經(jīng)常在想:長期以來,我們的學(xué)生為什么對數(shù)學(xué)不感興趣,甚至害怕數(shù)學(xué),其中一個重要因素就是數(shù)學(xué)離學(xué)生的生活實際太遠(yuǎn)了。事實上,數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識并掌握數(shù)學(xué)。
由生活中的實例一招聘信息引入:A公司月薪2000元;B公司第一個月800元,以后逐月遞加200元。你愿意到哪家公司上班?為什么?在A、B公司一年各共領(lǐng)多少錢?五年呢?以此來激發(fā)學(xué)生的學(xué)習(xí)興趣。再給學(xué)生講數(shù)學(xué)家高斯的故事
1+2+3+…+100=
同學(xué)們,如果你是小高斯,你會怎么向老師解釋算法呢?
(二)分析歸納——解決問題教學(xué)設(shè)想
由高斯的解題過程:
S= 1+2+3+…+100
S= 100+99+98+…+1
2S=(100+1)×100
S=(100+1)100/2=5050
讓學(xué)生在在教師的啟發(fā)引導(dǎo)下,由被動地聽講變?yōu)橹鲃訁⑴c,敢于發(fā)表自己獨特的見解,并學(xué)會傾聽、尊重他人的意見。教師引導(dǎo)學(xué)生概括總結(jié)出本課新的知識點。
1、等差數(shù)列前n項求和公式
類似m+n=s+t am+an=as+at m,n,s,t∈N+
等差求和
倒排相加
另有
即(2)——類似梯形面積公式便于記憶
進(jìn)而讓學(xué)生解決課前提出的問題
一年在A公司12×2000
在B公司
800+900+1000+…1900
五年在A公司2000×12×5
在B公司
800+900+1000+…+6700
——讓學(xué)生利用剛學(xué)的知識解決當(dāng)前的問題,讓學(xué)生明白學(xué)以致用。
。ㄈ├}研究——運(yùn)用新知教學(xué)設(shè)想
通過例題,使學(xué)生加深對知識的理解,從而達(dá)到掌握、運(yùn)用知識的效果
例1、(1)求正奇數(shù)前100項之和;
。2)求第101個正奇數(shù)到第150個正奇數(shù)之和;
。3)等差數(shù)列的通項公式為an=100-3n,求其前65項之和;
。4)在等差數(shù)列{an}中,已知a1=3,求S10
例2、某長跑運(yùn)動員7天每天的.訓(xùn)練量(單位:m)分別是7500,8000,8500,9000,9500,10000,10500,他在7天內(nèi)共跑了多少米?
例3、設(shè)等差數(shù)列{an}的公差d=,前n項之和Sn=。求a1及n
課堂上讓學(xué)生用兩種公式解題,有利于提高思維的靈活性,通過板演調(diào)動學(xué)生的積極性,也掌握本節(jié)課的重點和難點。
。ㄋ模┓纸M訓(xùn)練—鞏固新知
教學(xué)設(shè)想,例題過后,我特地設(shè)計了一組檢測題,
1、等差數(shù)列求和公式Sn=
2、等差數(shù)列{an}中,(1)a1=2,d=-1則Sn=
3、2c+4c+6c+…+2nc=
4、一堆圓木,每層總比上一層多一根,頂層4根,最底層21根,這堆木料有多少根?
5、一只掛鐘,遇整點就敲響,鐘響的次數(shù)是該點的時間數(shù),從1點到12點共響幾次?
通過游戲比賽的形式,活躍課堂氣氛,提高學(xué)生的學(xué)習(xí)興趣。來鞏固新知識。
(五)總結(jié)歸納——提高認(rèn)識教學(xué)設(shè)想
讓學(xué)生通過所學(xué)內(nèi)容的小結(jié),對知識的發(fā)生發(fā)展有一個清晰的線索,把課堂所學(xué)知識構(gòu)建起新的知識體系。同時養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
(六)課后作業(yè)自主探究
教學(xué)設(shè)想
學(xué)生經(jīng)過以上五個環(huán)節(jié)的學(xué)習(xí),已經(jīng)初步掌握了等差數(shù)列的前n項的求和,并解決了一些實際問題。
根據(jù)學(xué)生在課堂上知識掌握的情況有針對性布置課后作業(yè)。提高學(xué)生應(yīng)用知識的能力。
四、說板書設(shè)計
我將這節(jié)課的板書設(shè)計為三列,一列為本節(jié)課的基本知識點,一列為例題,一列為講解。條理清晰,一目了然。
我認(rèn)為板書設(shè)計在課堂教學(xué)中也很重要,好的板書就是一份微型教案,向?qū)W生展現(xiàn)了所學(xué)知識的框架,突出重點難點,清晰直觀地將授課內(nèi)容傳遞給學(xué)生,便于學(xué)生理解掌握。
五、說教學(xué)反思
根據(jù)課堂教學(xué)情況,課后及時總結(jié),不斷改進(jìn),精益求精,努力提高課堂教學(xué)效果。
結(jié)束:以上是我說課的內(nèi)容,不當(dāng)之處希望各位評委老師提出寶貴意見。
等差數(shù)列教案 18
一、教材分析(說教材):
1、教材所處的地位和作用:《等差數(shù)列的前n項和》是高中數(shù)學(xué)人教版第一冊第三章第三節(jié)內(nèi)容在此之前學(xué)生已學(xué)習(xí)了集合、函數(shù)的概念、等差數(shù)列的概念、通項公式和它的一些性質(zhì)等基礎(chǔ)知識,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。
2、教育教學(xué)目標(biāo):
根據(jù)上述分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
。1)知識目標(biāo):深刻理解等差數(shù)列求和公式的推導(dǎo)方法;熟記求和公式;能夠應(yīng)用求和公式并發(fā)現(xiàn)求和公式的函數(shù)本質(zhì);
。2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題的能力;初步培養(yǎng)學(xué)生運(yùn)用知識、探索知識間聯(lián)系的能力。
。3)情感目標(biāo):通過對等差數(shù)列求和公式的認(rèn)識使學(xué)生感受到現(xiàn)實生活中數(shù)據(jù)間存在的規(guī)律性,這種規(guī)律性體現(xiàn)數(shù)學(xué)美從而激發(fā)學(xué)生學(xué)習(xí)興趣。
3、重點,難點以及確定依據(jù):
教學(xué)重點是等差數(shù)列前項和公式的推導(dǎo)和應(yīng)用,難點是公式推導(dǎo)的思路。推導(dǎo)過程的展示體現(xiàn)了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運(yùn)用這一方法解決一般情況,所以推導(dǎo)公式的過程中所蘊(yùn)含的思想方法比公式本身更為重要。等差數(shù)列前項和公式有兩種形式,應(yīng)根據(jù)條件選擇適當(dāng)?shù)男问竭M(jìn)行計算;另外反用公式、變用公式、前項和公式與通項公式的綜合運(yùn)用體現(xiàn)了方程(組)思想。高斯算法表現(xiàn)了大數(shù)學(xué)家的智慧和巧思,對一般學(xué)生來說有很大難度,但大多數(shù)學(xué)生都聽說過這個故事,所以難點在于一般等差數(shù)列求和的思路上。
二、教學(xué)策略(說教法)
1、教學(xué)手段:
應(yīng)著重采用啟發(fā)式的教學(xué)方法層層推進(jìn):
、俦竟(jié)內(nèi)容分為兩課時,一節(jié)為公式推導(dǎo)及簡單應(yīng)用,一節(jié)側(cè)重于通項公式與前項和公式綜合運(yùn)用。
、谇绊椇凸降耐茖(dǎo),建議由具體問題引入,使學(xué)生體會問題源于生活。
、蹚(qiáng)調(diào)從特殊到一般,再從一般到特殊的思考方法與研究方法。
④補(bǔ)充等差數(shù)列前項和的最大值、最小值問題。
2、教學(xué)方法及其理論依據(jù):
堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力
三、學(xué)情分析:(說學(xué)法)
(1)學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個性發(fā)展生理上表少年好動,注意力易分散
。2)知識障礙上:學(xué)生原有的知識等差數(shù)列的性質(zhì)許多學(xué)生出現(xiàn)遺忘,所以應(yīng)全面系統(tǒng)的去講述;并進(jìn)行適當(dāng)?shù)膹?fù)習(xí)。學(xué)生學(xué)習(xí)本節(jié)課的知識,關(guān)鍵是推導(dǎo)思路的獲得學(xué)生不易理解,所以教學(xué)中深入淺出的分析
。3)動機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力
四、教學(xué)程序及設(shè)想:
1、新課引入(由實例得出本課新的知識點)
提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支。這個V形架上共放著多少支鉛筆?(課件設(shè)計見課件展示或在黑板上畫出簡圖)
問題就是(板書)
這是小學(xué)時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的。(由一名學(xué)生回答,再由學(xué)生討論其高明之處)高斯算法的`高明之處在于他發(fā)現(xiàn)這100個數(shù)可以分為50組,第一個數(shù)與最后一個數(shù)一組,第二個數(shù)與倒數(shù)第二個數(shù)一組,第三個數(shù)與倒數(shù)第三個數(shù)一組,…,每組數(shù)的和均相等,都等于101,50個101就等于5050了。高斯算法將加法問題轉(zhuǎn)化為乘法運(yùn)算,迅速準(zhǔn)確得到了結(jié)果。
我們希望求一般的等差數(shù)列的和,高斯算法對我們有何啟發(fā)?
2、講解新課
1、公式推導(dǎo)(板書)
問題(幻燈片):設(shè)等差數(shù)列的首項為,公差為,由學(xué)生討論,研究高斯算法對一般等差數(shù)列求和的指導(dǎo)意義。
思路一:運(yùn)用基本量思想,將各項用和表示,得,有以下等式,問題是一共有多少個,似乎與的奇偶有關(guān)。這個思路似乎進(jìn)行不下去了。
思路二:上面的等式其實就是個改寫,為回避個數(shù)問題,做一,兩式左右分別相加,得于是有:xx。這就是倒序相加法。
思路三:受思路二的啟發(fā),重新調(diào)整思路一,可得于是得到了兩個公式(投影片):和。
2、公式記憶:公式中含有四個量,運(yùn)用方程的思想,知三求一。
3、公式的應(yīng)用例1。求和:(結(jié)果用表示)
評:解題的關(guān)鍵是數(shù)清項數(shù),小結(jié)數(shù)項數(shù)的方法。
例2。等差數(shù)列中前多少項的和是9900?本題實質(zhì)是反用公式,解一個關(guān)于的一元二次函數(shù),注意得到的項數(shù)必須是正整數(shù)。
五、小結(jié)
1、推導(dǎo)等差數(shù)列前項和公式的思路;
2、公式的應(yīng)用中的數(shù)學(xué)思想。
3、進(jìn)一步提醒學(xué)生前n項和公式的函數(shù)本質(zhì)
六、板書設(shè)計
七、布置作業(yè)
針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,(可分必做題,選做題,思考題)
等差數(shù)列教案 19
教學(xué)目標(biāo):
了解等差數(shù)列的概念和性質(zhì);
能夠用等差數(shù)列的通項公式和求和公式求解等差數(shù)列的各項;
能夠通過列舉和推理等差數(shù)列的實際應(yīng)用問題。
教學(xué)重點:
等差數(shù)列的通項公式和求和公式; 等差數(shù)列的實際應(yīng)用問題。
教學(xué)難點:
等差數(shù)列的求和公式的推導(dǎo)過程。
教學(xué)過程:
一、導(dǎo)入新知 通過舉例讓學(xué)生理解等差數(shù)列的'概念。
二、等差數(shù)列的概念
定義:等差數(shù)列是指由一個起點和若干個連續(xù)的正整數(shù)構(gòu)成的數(shù)列,其中相鄰兩項之差相等。
通項公式:設(shè)等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則通項公式為an=a1+(n-1)d。
求和公式:設(shè)等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則等差數(shù)列的前n項和為Sn=n/2×(a1+(n-1)d)。
三、等差數(shù)列的實際應(yīng)用問題
通過舉例讓學(xué)生列舉等差數(shù)列的實際應(yīng)用問題,并讓學(xué)生自己嘗試解決問題。
提醒學(xué)生等差數(shù)列的求和公式和通項公式在實際問題中的應(yīng)用。
四、小結(jié)
總結(jié)本節(jié)課所學(xué)的知識點,讓學(xué)生復(fù)習(xí)并強(qiáng)化所學(xué)知識。
【等差數(shù)列教案】相關(guān)文章:
等差數(shù)列教案03-10
等差數(shù)列教學(xué)反思04-09
等差數(shù)列教學(xué)反思8篇04-14
教案中班教案02-23
大班健康教案教案03-07
加法教案大班教案10-10
小班教案小班教案03-10